(新课标)2020年高考物理一轮总复习第十章第三讲电磁感应中的电路和图象问题教案
(人教版)2020年度高考物理一轮复习 第十章 电磁感应 专题强化十二 电磁感应的综合问题学案

专题强化十二电磁感应的综合问题专题解读 1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题.2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心.3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图象、动能定理和能量守恒定律等.命题点一电磁感应中的图象问题1.题型简述借助图象考查电磁感应的规律,一直是高考的热点,此类题目一般分为两类:(1)由给定的电磁感应过程选出正确的图象;(2)由给定的图象分析电磁感应过程,定性或定量求解相应的物理量或推断出其他图象.常见的图象有B-t图、E-t图、i-t图、v-t图及F-t图等.2.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.3.解题步骤(1)明确图象的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图象或判断图象.4.两种常用方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断.例1 (多选)(2017·河南六市一模)边长为a 的闭合金属正三角形轻质框架,左边竖直且与磁场右边界平行,完全处于垂直于框架平面向里的匀强磁场中,现把框架匀速水平向右拉出磁场,如图1所示,则下列图象与这一拉出过程相符合的是( )图1答案 BC解析 设正三角形轻质框架开始出磁场的时刻t =0,则其切割磁感线的有效长度L =2x tan 30°=233x ,则感应电动势E 电动势=BLv =233Bvx ,则C 项正确,D 项错误.框架匀速运动,故F 外力=F 安=B 2L 2v R =4B 2x 2v 3R∝x 2,A 项错误.P 外力功率=F 外力v ∝F 外力∝x 2,B 项正确. 变式1 (2017·江西南昌三校四联)如图2所示,有一个矩形边界的匀强磁场区域,磁场方向垂直纸面向里.一个三角形闭合导线框,由位置1(左)沿纸面匀速到位置2(右).取线框刚到达磁场边界的时刻为计时起点(t =0),规定逆时针方向为电流的正方向,则图中能正确反映线框中电流与时间关系的是( )图2答案 A解析 线框进入磁场的过程,磁通量向里增加,根据楞次定律得知感应电流的磁场向外,由安培定则可知感应电流方向为逆时针,电流方向应为正方向,故B 、C 错误;线框进入磁场的过程,线框切割磁感线的有效长度先均匀增大后均匀减小,由E =BLv ,可知感应电动势先均匀增大后均匀减小;线框完全进入磁场后,磁通量不变,没有感应电流产生;线框穿出磁场的过程,磁通量向里减小,根据楞次定律得知感应电流的磁场向里,由安培定则可知感应电流方向为顺时针,电流方向应为负方向,线框切割磁感线的有效长度先均匀增大后均匀减小,由E =BLv ,可知感应电动势先均匀增大后均匀减小,故A 正确,D 错误.变式2 (2017·河北唐山一模)如图3所示,在水平光滑的平行金属导轨左端接一定值电阻R ,导体棒ab 垂直导轨放置,整个装置处于竖直向下的匀强磁场中.现给导体棒一向右的初速度,不考虑导体棒和导轨电阻,下列图线中,导体棒速度随时间的变化和通过电阻R 的电荷量q 随导体棒位移的变化描述正确的是( )图3答案 B解析 导体棒运动过程中受向左的安培力F =B 2L 2v R,安培力阻碍棒的运动,速度减小,由牛顿第二定律得棒的加速度大小a =F m =B 2L 2v Rm,则a 减小,v -t 图线斜率的绝对值减小,故B项正确,A 项错误.通过R 的电荷量q =I Δt=E R Δt =ΔΦΔt R ·Δt =ΔΦR =BL Rx ,可知C 、D 项错误.命题点二 电磁感应中的动力学问题1.题型简述感应电流在磁场中受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决这类问题需要综合应用电磁感应规律(法拉第电磁感应定律、楞次定律)及力学中的有关规律(共点力的平衡条件、牛顿运动定律、动能定理等).2.两种状态及处理方法状态特征 处理方法 平衡态加速度为零 根据平衡条件列式分析 非平衡态加速度不为零 根据牛顿第二定律进行动态分析或结合功能关系进行分析3.动态分析的基本思路解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度最大值或最小值的条件.具体思路如下:例2 (2016·全国卷Ⅱ·24)如图4,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:图4(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.答案 (1)Blt 0(F m -μg ) (2)B 2l 2t 0m解析 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得F -μmg =ma ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律知产生的电动势为E =Blv ③ 联立①②③式可得 E =Blt 0(F m -μg ) ④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律I =E R ⑤式中R 为电阻的阻值.金属杆所受的安培力为F 安=BlI ⑥因金属杆做匀速运动,有F -μmg -F 安=0 ⑦联立④⑤⑥⑦式得R =B 2l 2t 0m. 变式3 (2017·江淮十校三模)宽为L 的两光滑竖直裸导轨间接有固定电阻R ,导轨(电阻忽略不计)间Ⅰ、Ⅱ区域中有垂直纸面向里宽为d ,磁感应强度为B 的匀强磁场,Ⅰ、Ⅱ区域间距为h ,如图5,有一质量为m 、长为L 、电阻不计的金属杆与竖直导轨紧密接触,从距区域Ⅰ上端H 处由静止释放.若杆在Ⅰ、Ⅱ区域中运动情况完全相同,现以杆由静止释放为计时起点,则杆中电流随时间t 变化的图象可能正确的是( )图5答案 B解析 杆在Ⅰ、Ⅱ区域中运动情况完全相同,说明产生的感应电流也应完全相同,排除A 和C 选项.因杆在无磁场区域中做a =g 的匀加速运动,又杆在Ⅰ、Ⅱ区域中运动情况完全相同,则杆在Ⅰ、Ⅱ区域应做减速运动,在区域Ⅰ中对杆受力分析知其受竖直向下的重力和竖直向上的安培力,由牛顿第二定律得加速度a =mg -B 2L 2v R m,方向竖直向上,则知杆做加速度逐渐减小的减速运动,又I =BLv R,由I -t 图线斜率变化情况可知选项B 正确,选项D 错误. 变式4 (2017·上海单科·20改编)如图6,光滑平行金属导轨间距为L ,与水平面夹角为θ,两导轨上端用阻值为R 的电阻相连,该装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面.质量为m 的金属杆ab 以沿导轨平面向上的初速度v 0从导轨底端开始运动,然后又返回到出发位置.在运动过程中,ab 与导轨垂直且接触良好,不计ab 和导轨的电阻及空气阻力.图6(1)求ab 开始运动时的加速度a 的大小;(2)分析并说明ab 在整个运动过程中速度、加速度的变化情况.答案 见解析解析 (1)利用楞次定律,对初始状态的ab 受力分析得:mg sin θ+BIL =ma ①对回路分析 I =E R =BLv 0R②联立①②得 a =g sin θ+B 2L 2v 0mR(2)上滑过程:由第(1)问中的分析可知,上滑过程加速度大小表达式为:a 上=g sin θ+B 2L 2v mR ③上滑过程,a 、v 反向,做减速运动.利用③式,v 减小则a 减小,可知,杆上滑时做加速度逐渐减小的减速运动.下滑过程:由牛顿第二定律,对ab 受力分析得:mg sin θ-B 2L 2v R =ma 下 ④a 下=g sin θ-B 2L 2v mR ⑤因a 下与v 同向,ab 做加速运动.由⑤得v 增加,a 下减小,杆下滑时做加速度逐渐减小的加速运动.命题点三电磁感应中的动力学和能量问题1.题型简述电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功来实现的.安培力做功的过程,是电能转化为其他形式的能的过程;外力克服安培力做功的过程,则是其他形式的能转化为电能的过程.2.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;(3)根据能量守恒定律或功能关系列式求解.3.求解电能应分清两类情况(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则①利用安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则减少的机械能等于产生的电能.例3如图7所示,间距为L的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r的定值电阻.质量为m、电阻也为r的金属杆MN垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度为B的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强度也为B的匀强磁场.闭合开关S,让金属杆MN从图示位置由静止释放,已知金属杆MN运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆MN两端始终与导轨接触良好,重力加速度为g.求:图7(1)金属杆MN在倾斜导轨上滑行的最大速率v m;(2)金属杆MN在倾斜导轨上运动,速度未达到最大速度v m前,当流经定值电阻的电流从零增大到I0的过程中,通过定值电阻的电荷量为q,求这段时间内在定值电阻上产生的焦耳热Q;(3)金属杆MN在水平导轨上滑行的最大距离x m.答案见解析解析(1)金属杆MN在倾斜导轨上滑行的速度最大时,其受到的合力为零,对其受力分析,可得mg sin θ-BI m L=0根据法拉第电磁感应定律、闭合电路欧姆定律可得:I m =BLv m 2r 解得:v m =2mgr sin θB 2L 2 (2)设在这段时间内,金属杆MN 运动的位移为x由电流的定义可得:q =I Δt根据法拉第电磁感应定律、闭合电路欧姆定律得:平均电流I =B ΔS 2r Δt =BLx 2r Δt解得:x =2qr BL设电流为I 0时金属杆MN 的速度为v 0,根据法拉第电磁感应定律、闭合电路欧姆定律,可得I 0=BLv 02r ,解得v 0=2rI 0BL设此过程中,电路产生的焦耳热为Q 热,由功能关系可得:mgx sin θ=Q 热+12mv 02定值电阻r 产生的焦耳热Q =12Q 热 解得:Q =mgqr sin θBL -mI 20r 2B 2L 2 (3)设金属杆MN 在水平导轨上滑行时的加速度大小为a ,速度为v 时回路电流为I ,由牛顿第二定律得:BIL =ma由法拉第电磁感应定律、闭合电路欧姆定律可得:I =BLv 2r联立可得:B 2L 22r v =m Δv ΔtB 2L 22r v Δt =m Δv ,即B 2L 22rx m =mv m 得:x m =4m 2gr 2sin θB 4L4 变式5 (多选)(2017·山东潍坊中学一模)如图8所示,同一竖直面内的正方形导线框a 、b 的边长均为l ,电阻均为R ,质量分别为2m 和m .它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间有一宽度为2l 、磁感应强度大小为B 、方向垂直竖直面的匀强磁场区域.开始时,线框b 的上边与匀强磁场的下边界重合,线框a 的下边到匀强磁场的上边界的距离为l .现将系统由静止释放,当线框b 全部进入磁场时,a 、b 两个线框开始做匀速运动.不计摩擦和空气阻力,重力加速度为g ,则( )图8A.a 、b 两个线框匀速运动时的速度大小为2mgR B 2l 2B.线框a 从下边进入磁场到上边离开磁场所用时间为3B 2l 3mgRC.从开始运动到线框a 全部进入磁场的过程中,线框a 所产生的焦耳热为mglD.从开始运动到线框a 全部进入磁场的过程中,两线框共克服安培力做功为2mgl 答案 BC解析 设两线框匀速运动的速度为v ,此时轻绳上的张力大小为F T ,则对a 有:F T =2mg -BIl ,对b 有:F T =mg ,又I =ER ,E =Blv ,解得v =mgR B 2l 2,故A 错误.线框a 从下边进入磁场后,线框a 通过磁场时以速度v 匀速运动,则线框a 从下边进入磁场到上边离开磁场所用时间t =3l v =3B 2l 3mgR,故B 正确.从开始运动到线框a 全部进入磁场的过程中,线框a 只在其匀速进入磁场的过程中产生焦耳热,设为Q ,由功能关系有2mgl -F T l =Q ,得Q =mgl ,故C 正确.设两线框从开始运动到线框a 全部进入磁场的过程中,两线框共克服安培力做的功为W ,此过程中左、右两线框分别向上、向下运动2l 的距离,对这一过程,由能量守恒定律有:4mgl=2mgl +12×3mv 2+W ,得W =2mgl -3m 3g 2R 22B 4l4,故D 错误. 变式6 如图9所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:图9(1)MN 刚扫过金属杆时,杆中感应电流的大小I ;(2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .答案 (1)Bdv 0R (2)B 2d 2v 0mR (3)B 2d 2v 0-v2R解析 (1)MN 刚扫过金属杆时,感应电动势E =Bdv 0 感应电流I =E R解得I =Bdv 0R(2)安培力F =BId 由牛顿第二定律得F =ma解得a =B 2d 2v 0mR(3)金属杆切割磁感线的相对速度v ′=v 0-v ,则 感应电动势E ′=Bd (v 0-v )电功率P =E ′2R解得P =B 2d 2v 0-v2R1.将一段导线绕成如图1甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab 边置于垂直纸面向里为匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B 随时间t 变化的图象如图乙所示.用F 表示ab 边受到的安培力,以水平向右为F 的正方向,能正确反映F 随时间t 变化的图象是( )图1答案 B解析 根据B -t 图象可知,在0~T2时间内,B -t 图线的斜率为负且为定值,根据法拉第电磁感应定律E =n ΔBΔt S 可知,该段时间圆环区域内感应电动势和感应电流是恒定的,由楞次定律可知,ab 中电流方向为b →a ,再由左手定则可判断ab 边受到向左的安培力,且0~T2时间内安培力恒定不变,方向与规定的正方向相反;在T2~T 时间内,B -t 图线的斜率为正且为定值,故ab 边所受安培力仍恒定不变,但方向与规定的正方向相同.综上可知,B 正确. 2.如图2所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向里的匀强磁场区域,磁场仅限于虚线边界所围的区域,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一直线上.若取顺时针方向为电流的正方向,则金属框穿过磁场的过程中感应电流i 随时间t 变化的图象是( )图2答案 C解析 在金属框进入磁场过程中,感应电流的方向为逆时针,金属框切割磁感线的有效长度线性增大,排除A 、B ;在金属框出磁场的过程中,感应电流的方向为顺时针方向,金属框切割磁感线的有效长度线性减小,排除D ,故C 正确.3.(多选)(2017·山东泰安二模)如图3甲所示,间距为L 的光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度为B ,轨道左侧连接一定值电阻R .垂直导轨的导体棒ab 在平行导轨的水平外力F 作用下沿导轨运动,F 随t 变化的规律如图乙所示.在0~t 0时间内,棒从静止开始做匀加速直线运动.图乙中t 0、F 1、F 2为已知量,棒和导轨的电阻不计.则( )图3A.在t 0以后,导体棒一直做匀加速直线运动B.在t 0以后,导体棒先做加速,最后做匀速直线运动C.在0~t 0时间内,导体棒的加速度大小为2F 2-F 1RB 2L 2t 0D.在0~t 0时间内,通过导体棒横截面的电荷量为F 2-F 1t 02BL答案 BD解析 因在0~t 0时间内棒做匀加速直线运动,故在t 0时刻F 2大于棒所受的安培力,在t 0以后,外力保持F 2不变,安培力逐渐变大,导体棒先做加速度减小的加速运动,当加速度a =0,即导体棒所受安培力与外力F 2相等后,导体棒做匀速直线运动,故A 错误,B 正确.设在0~t 0时间内导体棒的加速度为a ,通过导体棒横截面的电荷量为q ,导体棒的质量为m ,t 0时刻导体棒的速度为v ,则有:a =v t 0,F 2-B 2L 2v R =ma ,F 1=ma ,q =ΔΦR ,ΔΦ=B ΔS =BLv 2t 0,解得:a =F 2-F 1R B 2L 2t 0,q =F 2-F 1t 02BL,故C 错误,D 正确. 4.如图4所示的匀强磁场中有一根弯成45°的金属线POQ ,其所在平面与磁场垂直,长直导线MN 与金属线紧密接触,起始时OA =l 0,且MN ⊥OQ ,所有导线单位长度电阻均为r ,MN 匀速水平向右运动的速度为v ,使MN 匀速运动的外力为F ,则外力F 随时间变化的规律图象正确的是( )图4答案 C解析 设经过时间t ,则MN 距O 点的距离为l 0+vt ,直导线在回路中的长度也为l 0+vt ,此时直导线产生的感应电动势E =B (l 0+vt )v ;整个回路的电阻为R =(2+2)(l 0+vt )r ,回路的电流I =E R=B l 0+vt v 2+2l 0+vt r =Bv2+2r;直导线受到的外力F 大小等于安培力,即F =BIL =BBv2+2r(l 0+vt )=B 2v2+2r(l 0+vt ),故C 正确.5.(多选)(2017·河南三市二模)如图5所示,一根总电阻为R 的导线弯成宽度和高度均为d 的“半正弦波”形闭合线框.竖直虚线之间有宽度也为d 、磁感应强度为B 的匀强磁场,方向垂直于线框所在的平面.线框以速度v 向右匀速通过磁场,ab 边始终与磁场边界垂直.从b 点到达边界开始到a 点离开磁场为止,在这个过程中( )图5A.线框中的感应电流先沿逆时针方向后沿顺时针方向B.ab 段直导线始终不受安培力的作用C.平均感应电动势为12BdvD.线框中产生的焦耳热为B 2d 3vR答案 AD解析 整个过程中闭合线框中的磁通量先增大后减小,由楞次定律和安培定则可判定A 正确.ab 段导线中有电流通过且与磁场垂直,故其受安培力的作用,B 错误.由于整个过程中磁通量变化量为0,故平均感应电动势为0,C 错误.整个过程中线框中产生一个周期的正弦式交变电流,其电动势峰值为E m =Bdv ,则线框中产生的焦耳热为Q =E 2R t =⎝ ⎛⎭⎪⎫Bdv 22R·2d v =B 2d 3vR,D 正确.6.(2016·全国卷Ⅰ·24)如图6,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab (仅标出a 端)和cd (仅标出c 端)长度均为L ,质量分别为2m 和m ;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca ,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为R ,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g ,已知金属棒ab 匀速下滑.求:图6(1)作用在金属棒ab 上的安培力的大小; (2)金属棒运动速度的大小. 答案 (1)mg (sin θ-3μcos θ) (2)mgRB 2L 2(sin θ-3μcos θ) 解析 (1)由于ab 、cd 棒被平行于斜面的导线相连,故ab 、cd 速度总是相等,cd 也做匀速直线运动.设导线的张力的大小为F T ,右斜面对ab 棒的支持力的大小为F N1,作用在ab 棒上的安培力的大小为F ,左斜面对cd 棒的支持力大小为F N2,对于ab 棒,受力分析如图甲所示,由力的平衡条件得2mg sin θ=μF N1+F T +F①F N1=2mg cos θ ②对于cd 棒,受力分析如图乙所示,由力的平衡条件得mg sin θ+μF N2=F T ′=F T ③F N2=mg cos θ④联立①②③④式得:F =mg (sin θ-3μcos θ) ⑤(2)设金属棒运动速度大小为v ,ab 棒上的感应电动势为E =BLv ⑥ 回路中电流I =ER⑦ 安培力F =BIL⑧联立⑤⑥⑦⑧得:v =mgRB 2L2(sin θ-3μcos θ) 7.如图7所示,两平行光滑金属导轨倾斜放置且固定,两导轨间距为L ,与水平面间的夹角为θ,导轨下端有垂直于轨道的挡板(图中未画出),上端连接一个阻值R =2r 的电阻,整个装置处在磁感应强度为B 、方向垂直导轨向上的匀强磁场中,两根相同的金属棒ab 、cd放在导轨下端,其中棒ab 靠在挡板上,棒cd 在沿导轨平面向上的拉力作用下,由静止开始沿导轨向上做加速度为a 的匀加速运动.已知每根金属棒质量为m 、长度为L 、电阻为r ,导轨电阻不计,棒与导轨始终接触良好.求:图7(1)经多长时间棒ab 对挡板的压力变为零; (2)棒ab 对挡板压力为零时,电阻R 的电功率; (3)棒ab 运动前,拉力F 随时间t 的变化关系. 答案 (1)5mgr sin θ2B 2L 2a (2)m 2g 2r sin 2θ2B 2L 2(3)F =m (g sin θ+a )+3B 2L 2a5rt解析 (1)棒ab 对挡板的压力为零时,受力分析可得BI ab L =mg sin θ设经时间t 0棒ab 对挡板的压力为零,棒cd 产生的电动势为E ,则E =BLat 0回路中电流I =Er +R 外R 外=Rr R +r =23r I ab =R R +rI解得t 0=5mgr sin θ2B 2L 2a(2)棒ab 对挡板压力为零时,cd 两端电压为U cd =E -Ir解得U cd =mgr sin θBL此时电阻R 的电功率为P =U 2cd R解得P =m 2g 2r sin 2θ2B 2L2(3)对cd 棒,由牛顿第二定律得F -BI ′L -mg sin θ=ma I ′=E ′r +R 外E ′=BLat解得F =m (g sin θ+a )+3B 2L 2a5rt .8.(2016·全国卷Ⅲ·25)如图8,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:图8(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 答案 (1)kt 0SR(2)B 0lv 0(t -t 0)+kSt (B 0lv 0+kS )B 0l R解析 (1)在金属棒未越过MN 之前,穿过回路的磁通量的变化量为ΔΦ=ΔBS =k ΔtS ① 由法拉第电磁感应定律有E =ΔΦΔt②由欧姆定律得I =E R③由电流的定义得I =Δq Δt④联立①②③④式得 |Δq |=kS RΔt⑤由⑤式得,在t =0到t =t 0的时间间隔内即Δt =t 0,流过电阻R 的电荷量q 的绝对值为 |q |=kt 0SR⑥(2)当t >t 0时,金属棒已越过MN .由于金属棒在MN 右侧做匀速运动,有F =F 安⑦式中,F 是外加水平恒力,F 安是金属棒受到的安培力.设此时回路中的电流为I ,F 安=B 0lI ⑧此时金属棒与MN 之间的距离为s =v 0(t -t 0) ⑨ 匀强磁场穿过回路的磁通量为Φ′=B 0ls ⑩回路的总磁通量为Φt =Φ+Φ′ ⑪其中Φ=B 1S =ktS ⑫由⑨⑩⑪⑫式得,在时刻t (t >t 0),穿过回路的总磁通量为Φt =B 0lv 0(t -t 0)+kSt ⑬ 在t 到t +Δt 的时间间隔内,总磁通量的改变量ΔΦt 为 ΔΦt =(B 0lv 0+kS )Δt⑭由法拉第电磁感应定律得,回路感应电动势的大小为E t =ΔΦtΔt⑮由欧姆定律得I =E t R⑯联立⑦⑧⑭⑮⑯式得F =(B 0lv 0+kS )B 0lR.。
2020版高考物理一轮复习第十章交变电流传感器第3讲电感电容传感器学案解析版

第3讲 电感 电容 传感器一、电感、电容对交变电流的作用1.电感对交变电流的阻碍作用(1)电感对交变电流的阻碍作用与自感系数和交变电流的频率有关,自感系数、交变电流的频率越大,电感对交变电流的阻碍作用越大.(2)扼流圈有两种:一种叫做低频扼流圈,线圈的自感系数L 很大,作用是“通直流,阻交流”,另一种叫做高频扼流圈,线圈的自感系数很小,作用是“通直流、通低频,阻高频”.2.电容对交变电流的阻碍作用(1)电容对交变电流的阻碍作用与电容和交变电流的频率有关,电容、交变电流的频率越大,电容对交变电流的阻碍作用越小.(2)电容在电路中表现为“通交流、隔直流、通高频、阻低频”.二、传感器1.传感器的一般概念 传感器是指这样一类元件,它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断.把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了.传感器是一种采集信息的重要器件,一般由敏感元件和输出部分组成,通过敏感元件获取外界信息并转换为电信号,通过输出部分输出,然后经控制器分析处理.常见的传感器有:热电传感器、光电传感器、声电传感器、力传感器等.2.光敏电阻:通常是由硫化镉等半导体制成,其特点是光照变强,电阻变小.光敏电阻是把光照强度这个光学量转换为电阻这一电学量的元件.3.金属热电阻和热敏电阻:金属热电阻是由铂、铜等金属材料制成,其特点是温度升高,电阻变大;热敏电阻是由半导体材料制成,其特点是温度升高,电阻变小.它们都能够把温度这个热学量转化为电阻这个电学量.4.霍尔元件:通常是由半导体材料制成,其产生的霍尔电压U H =k IB d.霍尔元件能把磁感应强度这个磁学量转换为电压这个电学量.5.力传感器:典型的应用是电子秤,其中的主要元件为应变片,它的作用是将物体形变这个力学量转化为电压这个电学量.6.温度传感器:典型的应用是日光灯启动器和电熨斗,其中的主要元件为双金属片.日光灯启动器中的双金属片,其外层材料的热膨胀系数小于内层材料的热膨胀系数.电熨斗的工作原理(如图1):图1双金属片上层金属的热膨胀系数大于下层金属,常温下,弹性铜片和双金属片触点是接触的,通电后,电热丝发热,当温度升高到某一值时,双金属片上层的金属受热膨胀,形变量大于下层金属,双金属片向下弯曲,使触点分离,切断电路;随着温度的降低,当降到某一温度时,双金属片收缩恢复原状,两触点又接触,接通电路.调温旋钮下压弹性铜片,可使触点分离的温度升高;上提弹性铜片,可降低触点的分离温度,从而实现了调温控制.7.感温铁氧体:也叫感温磁体.常温下具有铁磁性,能够被磁体吸引,当温度上升到约103℃时,就失去铁磁性,不能被磁体吸引了.这个温度在物理学中称为该材料的“居里温度”或“居里点”.8.电饭锅:结构图如图2所示.图2其工作过程:开始煮饭时压下开关按钮,由于常温下感温磁体具有磁性,永磁体将吸引感温磁体,因此手松开后这个按钮不会恢复到图示位置,则触点接触,电路接通,这时电饭锅处于加热状态.当水沸腾时,水的温度保持沸点不变,故感温磁体仍与永磁体相吸,继续加热.当饭煮熟后,水分被大米吸收,锅底的温度上升,当温度超过103℃时,感温磁体失去磁性,由于弹簧的作用,按钮开关将恢复到如图所示的位置,切断电源,从而停止加热.9.光传感器:光传感器是将光信号转化为电信号的装置,实际应用有鼠标器和火灾报警器等,如图3所示,烟雾散射式火灾报警器是利用烟雾对光的散射来工作的.罩内装有发光二极管、光电三极管和不透明挡板.平时光电三极管接收不到发光二极管发出的光,呈高电阻状态.当烟雾进入罩内后对光有散射作用,使部分光线照射到光电三极管上,其电阻变小,与传感器连接的电路检测出这种变化,就会发出警报.图3命题点一电感、电容对交流电路的影响例1 (多选)(2017·江苏单科·7)某音响电路的简化电路图如图4所示,输入信号既有高频成分,也有低频成分,则( )图4A.电感L1的作用是通高频B.电容C2的作用是通高频C.扬声器甲用于输出高频成分D.扬声器乙用于输出高频成分答案BD解析在交流电路中,电感的作用是通低频、阻高频,电容的作用是通高频、阻低频,故A 错误,B正确;结合电路结构分析可知,C错误,D正确.变式1 (2018·盐城市三模)如图5甲所示,把带铁芯的线圈L与小灯泡串联起来,先把它们接到电动势为E(内阻不计)的直流电源上;再把它们接到交流电源上,如图乙所示,直流电源的电压与交流电压的有效值相等.下列叙述正确的是( )图5A.接交流电时灯泡更亮些B.接直流电和交流电时灯泡一样亮C.减小交流电频率时图乙中灯泡变亮D.图甲中闭合S瞬间,通过灯泡的电流立即达到最大值答案 C命题点二温度传感器的应用例2 (2017·江苏单科·11)某同学通过实验制作一个简易的温控装置,实验原理电路图如图6所示,继电器与热敏电阻R t、滑动变阻器R串联接在电源E两端,当继电器的电流超过15mA时,衔铁被吸合,加热器停止加热,实现温控.继电器的电阻约20Ω,热敏电阻的阻值R t与温度t的关系如下表所示.(1)提供的实验器材有:电源E1(3V,内阻不计)、电源E2(6V,内阻不计)、滑动变阻器R1(0~200Ω)、滑动变阻器R2(0~500Ω)、热敏电阻R t、继电器、电阻箱(0~999.9Ω)、开关S、导线若干.为使该装置实现对30~80℃之间任一温度的控制,电源E应选用(选填“E1”或“E2”),滑动变阻器R应选用(选填“R1”或“R2”).图6(2)实验发现电路不工作.某同学为排查电路故障,用多用电表测量各接点间的电压,则应将如图7所示的选择开关旋至(选填“A”“B”“C”或“D”).图7(3)合上开关S,用调节好的多用电表进行排查.在图6中,若只有b、c间断路,则应发现表笔接入a、b时指针(选填“偏转”或“不偏转”),接入a、c时指针(选填“偏转”或“不偏转”).(4)排除故障后,欲使衔铁在热敏电阻为50℃时被吸合,下列操作步骤的正确顺序是.(填写各步骤前的序号)①将热敏电阻接入电路②观察到继电器的衔铁被吸合③断开开关,将电阻箱从电路中移除④合上开关,调节滑动变阻器的阻值⑤断开开关,用电阻箱替换热敏电阻,将阻值调至108.1Ω答案(1)E2R2(2)C(3)不偏转偏转(4)⑤④②③①解析(1)若实现对30℃温度的控制,继电器和R t的电压U=0.015×(20+199.5) V≈3.29V,因此符合要求的电源应选E2.若实现对80℃温度的控制,对全电路有6V=0.015A×(20Ω+49.1Ω+R),解得R=330.9Ω.因此滑动变阻器应选R2.(2)因电路中有电源,排查电路故障应选用多用电表的直流电压挡,故选C.(3)只有b、c间断路,表笔接入a、b间时,电表与电源之间形不成闭合电路,则电表指针不偏转,表笔接入a、c间时,能形成闭合电路,电表指针发生偏转.(4)欲使衔铁在50℃被吸合,由表中数据可知,此时热敏电阻的阻值为108.1Ω,操作步骤应是先断开开关,用电阻箱替换热敏电阻,将阻值调至108.1Ω,闭合开关,调节滑动变阻器的阻值,观察继电器的衔铁被吸合,然后断开开关,将电阻箱从电路中移除,再将热敏电阻接入电路原位置,故步骤顺序应为⑤④②③①.变式2 (多选)如图8所示的火警报警装置,R1为热敏电阻,若温度升高,则R1的阻值会急剧减小,从而引起电铃电压的增加.当电铃电压达到一定值时,电铃会响.下列说法中正确的是( )图8A.要使报警的临界温度升高,可以适当增大电源的电动势B.要使报警的临界温度降低,可以适当增大电源的电动势C.要使报警的临界温度升高,可以把R2的滑片P适当向下移D.要使报警的临界温度降低,可以把R2的滑片P适当向下移答案BD命题点三光电传感器的应用例3 为了节能和环保,一些公共场所使用光控开关控制照明系统.光控开关可采用光敏电阻来控制,光敏电阻是阻值随着光的照度而发生变化的元件(照度可以反映光的强弱,光越强照度越大,照度单位为lx).某光敏电阻R P 在不同照度下的阻值如下表:(1)根据表中数据,请在图9甲所示的坐标系中描绘出阻值随照度变化的曲线,并说明阻值随照度变化的特点..(2)如图乙所示,当1、2两端所加电压上升至2V 时,控制开关自动启动照明系统.请利用下列器材设计一个简单电路,给1、2两端提供电压,要求当天色渐暗照度降低至1.0lx 时启动照明系统,在虚线框内完成电路原理图.(不考虑控制开关对所设计电路的影响)提供的器材如下:光敏电阻R P (符号,阻值见上表);直流电源E (电动势3V ,内阻不计);定值电阻:R 1=10kΩ,R 2=20kΩ,R 3=40kΩ(限选其中之一,并在图中标出);开关S 及导线若干.图9答案 见解析解析 (1)光敏电阻的阻值随照度变化的曲线如图甲所示,光敏电阻的阻值随照度的增大而减小.(2)电源电动势E =3V ,由题意可知,当照度降低至1.0lx 时,1、2两端电压升至2V ,由题中所给数据知,此时光敏电阻阻值R P =20kΩ,光敏电阻两端电压U R P =2V ,串联电阻分压U R =1V ,由U R P U R =R P R =2,得R =R P 2=10kΩ,故选定值电阻R 1,电路原理图如图乙所示.变式3 (多选)(2018·东台创新学校月考)如图10所示为某商厦安装的光敏电阻自动计数器的示意图.其中A 为光源,B 为由电动机带动匀速运行的自动扶梯,R 1为光敏电阻,R 2为定值电阻.每当扶梯上有顾客经过,挡住由A 射向R 1的光线时,计数器就计数一次.此光敏计数器的基本工作原理是( )图10A.当有光照射R 1时,信号处理系统获得低电压B.当有光照射R1时,信号处理系统获得高电压C.信号处理系统每获得一次低电压就计数一次D.信号处理系统每获得一次高电压就计数一次答案BC解析当光线照射R1时,R1阻值减小,R总减小,由欧姆定律I=UR总,且电源电压不变得,电路中的电流增大,R2是定值电阻,U2=IR2,R2两端电压增大,信号处理系统获得高电压,A 错误,B正确;当有顾客经过时计数器计数,即没有光照时信号处理系统获得一次低电压就计数一次,C正确,D错误.命题点四电容式传感器例4 如图11所示是四种电容式传感器的示意图,关于这四个传感器的作用,下列说法不正确的是( )A.图甲的传感器可以用来测量角度B.图乙的传感器可以用来测量液面的高度C.图丙的传感器可以用来测量压力D.图丁的传感器可以用来测量速度图11答案 D1.(2017·东台市5月模拟)电感对交变电流有阻碍作用,下列说法正确的是( )A.线圈的自感系数越大,感抗一定越大B.交流的频率越小,感抗一定越小C.高频扼流圈可以用来“通低频,阻高频”D.低频扼流圈可以用来“通交流,阻直流”答案 C2.(2018·南通中学模拟)下列关于几种传感器的说法错误的是( )A.双金属片温度传感器是用来控制温度的,可应用于日光灯启动器B.光敏电阻传感器是用来控制光照强度的,应用于卧室C.烟雾传感器可应用于宾馆的天花板,防止火灾的发生D.压力传感器可应用于电容式话筒答案 B3.关于传感器,下列说法中正确的是( )A.话筒是一种常用的声传感器,其作用是将电信号转换为声信号B.电熨斗能够自动控制温度的原因是它装有双金属片温度传感器,这种传感器的作用是控制电路的通断C.霍尔元件能把磁感应强度这个磁学量转换成电阻这个电学量D.光敏电阻在光照射下其电阻会显著变大答案 B解析 话筒是一种常用的声传感器,其作用是将声信号转换为电信号,故A 错误;双金属片温度传感器在电路中相当于开关,可以控制电路的通断,故B 正确;霍尔元件能把磁感应强度这个磁学量转换为电压这个电学量,故C 错误;光敏电阻在光照射下其电阻会变小,D 错误.4.酒精测试仪用于机动车驾驶人员是否酗酒及其他严禁酒后作业人员的现场检测.它利用的是一种二氧化锡半导体型酒精气体传感器,酒精气体传感器的电阻随酒精气体浓度的变化而变化.在如图12所示的电路中,酒精气体的不同浓度对应着传感器的不同电阻.这样,理想电压表的指针就与酒精气体浓度有了对应关系.如果二氧化锡半导体型酒精气体传感器电阻的倒数与酒精气体的浓度成正比,那么,电压表示数U 与酒精气体浓度C 之间的对应关系正确的是( )图12A.U 越大,表示C 越大,C 与U 成正比B.U 越大,表示C 越大,但是C 与U 不成正比C.U 越大,表示C 越小,C 与U 成反比D.U 越大,表示C 越小,但是C 与U 不成反比答案 B解析 设二氧化锡半导体型酒精气体传感器的电阻为R x ,由闭合电路欧姆定律得,干路的电流I =Er +R 0+R +R x ,电压表示数U =IR 0=ER 0r +R 0+R +R x,而R x C =k (定值),由以上关系式可见U 越大,表示C 越大,但是C 与U 不成正比,故B 正确.5.(多选)(2018·盐城中学质检)如图13,理想变压器原、副线圈的匝数比n 1∶n 2=10∶1,将原线圈接在交流电源上,副线圈上电阻R 和理想交流电压表并联接入电路,已知交流电源电压u =2202sin100πt (V),现在A 、B 两点间接入不同的电子元件,下列说法正确的是( )图13A.在A 、B 两点间串联一相同电阻R ,电压表的示数为11VB.在A 、B 两点间接入理想二极管,电压表的读数为11VC.在A、B两点间接入一只电容器,只提高交流电的频率,电压表读数增大D.在A、B两点间接入一只电感线圈,只降低交流电的频率,电阻R消耗电功率减小答案AC1.(多选)传感器已经广泛应用于我们的生活,为我们带来了方便.下列可以用来控制电路通断的温度传感器元件有( )A.双金属片B.应变片C.感温铁氧体D.干簧管答案AC2.下列哪些技术没有涉及到传感器的应用( )A.宾馆的自动门B.工厂、电站的静电除尘C.家用电饭煲的跳闸和保温D.声控开关答案 B3.在街旁的路灯,江海里的航标都要求在夜晚亮,白天熄,利用半导体的电学特性制成了自动点亮、熄灭的装置,实现了自动控制,这是利用半导体的( )A.压敏性B.光敏性C.热敏性D.三种特性都利用答案 B4.(多选)(2018·苏州市模拟)如图1所示的电路中,理想变压器原、副线圈的匝数比n1∶n2=4∶1,电阻R=25Ω,C为电容器,原线圈接u=2002sin (100πt) V的交流电.则( )图1A.该交流电的频率为50HzB.理想交流电流表的读数为0C.电阻R的功率为200WD.电容器的耐压值应大于502V答案AD5.(多选)(2018·铜山中学模拟)电子眼系统通过路面下埋设的感应线来感知汽车的压力.感应线是一个压电薄膜传感器,压电薄膜在受压时两端产生电压,压力越大电压越大,压电薄膜与电容器C和电阻R组成图2甲所示的回路.红灯亮时,如果汽车的前、后轮先后经过感应线,回路中产生两个脉冲电流,如图乙所示,即视为“闯红灯”,电子眼拍照.则红灯亮时( )图2A.某车轮经过感应线的过程中,电容器先充电后放电B.某车轮经过感应线的过程中,电阻R 上的电流先增大后减小C.车轮停在感应线上时,电阻R 上有恒定的电流D.汽车前轮刚越过感应线,又倒回到线内,仍会被电子眼拍照答案 AD6.(2018·泰州中学等综合评估)如图3甲所示,理想变压器原、副线圈的匝数比为5∶1,、R 和L 分别是理想交流电压表、定值电阻和电感线圈,D 1、D 2均为灯泡.已知原线圈两端电压u 按图乙所示正弦规律变化,下列说法正确的是( )图3A.电压表示数为62.2VB.电压u 的表达式u =311sin100πt (V)C.仅增大电压u 的频率,电压表示数增大D.仅增大电压u 的频率,D 1变亮答案 B解析 根据题图乙可知,原线圈电压的最大值为311V ,则有效值U 1=3112V≈220V,根据理想变压器电压与匝数成正比得:U 1U 2=n 1n 2=51,解得:U 2=44V ,所以电压表示数为44V ,故A 错误;原线圈电压的最大值为311V ,ω=2πT=100πrad/s,则电压u 的表达式u =311sin100πt (V),故B 正确;原线圈电压不变,线圈匝数不变,仅增大电压u 的频率,电压表示数不变,则D 1亮度不变;频率越大,电感线圈阻碍作用越大,所以D 2变暗,故C 、D 错误.7.(多选)(2018·江苏百校12月大联考)如图4所示为一水箱水量检测工作原理图.水箱内液面升、降情况可通过浮球的运动转换为改变电路中接入电阻的大小,最终由水量表来显示水箱中的储水量.控制电路中有一磁敏传感器A ,当通过磁敏传感器A 的磁通量高于设定的上限时触发电磁铁接通,电动机工作,对水箱进行补水(水路部分未画出);当通过磁敏传感器A 的磁通量低于设定的下限时电磁铁断开,电动机停止工作,下列对该原理图分析正确的有( )图4A.液面下降时,变阻器R 接入电路的电阻变大B.液面下降到一定高度时,通过磁敏传感器A 的磁通量会增加至设定上限,触发电磁铁接通,电动机工作C.水箱中存储的水越多,通过水量表的电流越大D.水箱中存储的水越多,电池E 的效率越高答案 BD8.(2018·泰州中学四模)如图5所示,理想变压器原、副线圈的匝数比n 1∶n 2=2∶1,原线圈所接交变电压u =252sin100πt (V),C 为电容器,L 为自感线圈,刚开始开关S 断开,下列说法正确的是( )图5A.开关S 闭合前,理想交流电压表示数为12.5VB.开关S 闭合稳定后,灯泡比闭合前亮C.只增加交变电流的频率,灯泡变亮D.只增加交变电流的频率,理想交流电压表示数变大答案 A解析 电压表测的是电压有效值,由题意可知,原线圈两端电压有效值为U 1=25V ,根据变压器的电压与匝数关系可知,开关S 闭合前,交流电压表示数即副线圈两端的电压:U 2=n 2n 1U 1=12×25V=12.5V ,故A 正确;开关S 闭合稳定后,灯泡与电容器、电阻R 并联,电路中的电流值增大,线圈对电路中电流的阻碍作用增大,则线圈上分担的电压增大,而U 2不变,所以灯泡比闭合前暗,故B 错误;交变电流的频率越大,自感线圈对交变电流的阻碍作用越大,故灯泡的亮度要变暗,故C 错误;交变电流的频率对变压器的变压关系没有影响,电压表示数不变,故D 错误.9.(2018·如东县质量检测)有一种测量物体重力的电子秤,其电路原理图如图6虚线框中所示,主要由三部分构成:踏板、压力传感器R (实质上是一个阻值可随压力大小而变化的电阻器)、显示体重的仪表G(实质上是电流表).不计踏板的质量,已知电流表的量程为2A ,内阻为1Ω,电源电动势为12V ,内阻为1Ω,电阻R 随压力F 变化的函数关系式为R =30-0.01F (F 和R 的单位分别是N 和Ω).下列说法中正确的是( )图6A.该秤能测量的最大体重是2500NB.该秤零刻度线(即踏板空载时的刻度线)应标在电流表G 刻度盘0.375A 处C.该秤零刻度线(即踏板空载时的刻度线)应标在电流表G 刻度盘0.400A 处D.该秤可以通过电路规律转换成F =3200+1200I关系进行刻度转换 答案 B解析 由闭合电路欧姆定律得E =I (r +r g +R ),最大电流2 A ,则R 最小为4 Ω,F 最大为2600N ,故A 错误;F =0时,电路总电阻为32Ω,则此时I 0=E R 总=1232A =0.375A ,B 正确,C 错误;将R =30-0.01F 代入E =I (r +r g +R ),整理得F =3200-1200I ,D 错误.10.(2017·盐城市第三次模拟)如图7所示是“二分频”音箱内部电路,来自前级电路的电信号,被电容和电感组成的分频电路分成高频成分和低频成分,分别送到高、低音扬声器,下列说法正确的是( )图7A.C 1让低频成分通过B.L 2让高频成分通过C.扬声器BL 1是低音扬声器D.扬声器BL 2是低音扬声器答案 D11.现要组装一个由热敏电阻控制的报警系统,要求当热敏电阻的温度达到或超过60℃时,系统报警.提供的器材有:热敏电阻,报警器(内阻很小,流过的电流超过I c 时就会报警),电阻箱(最大阻值为999.9Ω),直流电源(输出电压为U ,内阻不计),滑动变阻器R 1(最大阻值为1000Ω),滑动变阻器R 2(最大阻值为2000Ω),单刀双掷开关一个,导线若干. 在室温下对系统进行调节.已知U 约为18V ,I c 约为10mA ;流过报警器的电流超过20mA 时,报警器可能损坏;该热敏电阻的阻值随温度升高而减小,在60℃时阻值为650.0Ω.(1)在图8中完成待调节的报警系统原理电路图的连线.图8(2)电路中应选用滑动变阻器(填“R 1”或“R 2”).(3)按照下列步骤调节此报警系统:①电路接通前,需将电阻箱调到一固定的阻值,根据实验要求,这一阻值为Ω;滑动变阻器的滑片置于(填“a ”或“b ”)端附近,不能置于另一端的原因是.②将开关向(填“c ”或“d ”)端闭合,缓慢移动滑动变阻器的滑片,直至.(4)保持滑动变阻器滑片的位置不变,将开关向另一端闭合,报警系统即可正常使用. 答案 (1)见解析图 (2)R 2(3)①650.0b接通电源后,流过报警器的电流会超过20mA,报警器可能损坏②c报警器开始报警解析(1)先用电阻箱替代热敏电阻,连接成闭合回路进行调试.电路图连接如图所示.(2)当电路中电流I c=10mA时,根据闭合电路欧姆定律有I c=UR总,解得R总=1800Ω,此时热敏电阻的阻值为650.0Ω,则滑动变阻器的阻值为1150Ω,所以滑动变阻器选R2.(3)①当热敏电阻阻值小于或等于650.0Ω时,报警器就会报警,用电阻箱替代热敏电阻进行调节,应把电阻箱的阻值调到650.0Ω.若接通电源后电路中的电流过大(超过20mA),报警器就会损坏,电流越小越安全,所以为了电路安全,闭合开关前滑片应置于b端.②用电阻箱替代热敏电阻进行调试,应将开关向c端闭合,开关闭合后要减小电路中的电阻,直至报警器报警.。
高考物理大一轮复习 第10单元 电磁感应 专题十 电磁感应中的电路和图像问题课件

金属框穿出磁场区域时,ab 两端电压
U3=E3-I3r=1.5 V
电流的 I-t 图像;(以逆时针方向为 I 的正方向)
由此得 U-t 图线如图乙所示.
(2)画出 ab 两端电压的 U-t 图像.
图 Z10-11
第二十三页,共四十八页。
热点题型探究
变式题 1 [2017·
南昌十校二模] 如图 Z10-12 甲所示,光滑平行金属
第三页,共四十八页。
热点题型探究
[答案] 略
[解析] 从 A1 开始进入磁场(t=0
时刻)到刚好离开磁场(t1= =0.2
内,A1 产生的感应电动势
12/9/2021
E1=BLv=0.18 V
其等效电路图如图甲所示.
由图甲知,电路的总电阻
R 总=r+ =0.5 Ω
+
1
总电流为 I= =0.36
12/9/2021
图 Z10-4
电流,根据左手定则,ab 边在匀强磁场Ⅰ
中受到水平向左的恒定的安培力;同
理, ~T
2
时间内,ab 边在匀强磁场Ⅰ中受
到水平向右的恒定的安培力,故 B 正确.
第十三页,共四十八页。
热点题型探究
变式题 (多选)如图 Z10-5 甲所示,正六边形导线框 abcdef 放在匀强磁场中静止不动,磁场
线框 abcd 固定在水平面内且处于方向竖直向下的匀强磁场 B 中.一接入电路电
阻为 R 的导体棒 PQ 在水平拉力作用下沿 ab、dc 以速度 v 匀速滑动,滑动过程
12/9/2021
PQ 始终与 ab 垂直,且与线框接触良好,不计摩擦.在 PQ 从靠近 ad 处向 bc 滑动
高考物理一轮复习 第十章 电磁感应 素养探究课(八) 科学思维——电磁感应中的电路和图象问题

素养探究课(八) 科学思维——电磁感应中的电路和图象问题电磁感应中的电路问题[学生用书P222]【题型解读】1.电磁感应电路中的五个等效问题2.电磁感应中电路知识的关系图3.“三步走”分析电路为主的电磁感应问题【跟进题组】1.(多选)如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=R 02.闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势,则( )A .R 2两端的电压为U 7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2解析:选AC.线框内产生的感应电动势E =ΔΦΔt =ΔB Δtπr 2=k πr 2,D 错误;电压表的示数U 是外电压,外电路电阻的串并联关系是R 2与滑动变阻器滑动片P 右侧电阻并联,之后与滑动片P 左侧电阻以及R 1串联,外电路总电阻为R 总=R 1+R 左+R 并=74R 0,而R 并=R 04,故R 并两端的电压为U 7,即R 2两端的电压为U 7,A 正确;根据楞次定律,线框中感应电流的方向为逆时针,电容器b 极板带正电,B 错误;设滑动变阻器右半部分的电流为I ,则R 2上的电流为I ,滑动变阻器左半部分的电流为2I ,滑动变阻器R 上的功率P =I 2R 02+(2I )2R 02=52I 2R 0,R 2上的功率P 2=I 2R 02,C 正确. 2.在同一水平面的光滑平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,质量m =1×10-14 kg 、电荷量q =-1×10-14 C 的微粒(图中未画出)悬浮于电容器两极板之间恰好静止不动.取g =10 m/s 2,在整个运动过程中金属棒与导轨接触良好,且速度保持恒定.试求:(1)匀强磁场的方向;(2)金属棒ab 两端的电压;(3)金属棒ab 运动的速度大小.解析:(1)微粒受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端相当于电源的正极,由右手定则可判断,磁场方向竖直向下.(2)微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq ,又E =U MN d,所以U MN =mgd q=0.1 V R 3两端电压与电容器两端电压相等,由欧姆定律得通过R 3的电流为I =U MN R 3=0.05 A 则ab 棒两端的电压U ab =U MN +I R 1R 2R 1+R 2=0.4 V. (3)由闭合电路欧姆定律得E =U ab +Ir =0.5 V由法拉第电磁感应定律得感应电动势E =Bl v代入数据解得v =1 m/s.答案:(1)竖直向下 (2)0.4 V (3)1 m/s电磁感应中电路问题的误区分析(1)不能正确分析感应电动势及感应电流的方向.因产生感应电动势的那部分电路为电源部分,故该部分电路中的电流应为电源内部的电流,而外电路中的电流方向仍是从高电势到低电势.(2)应用欧姆定律分析求解电路时,没有注意等效电源的内阻对电路的影响.(3)对连接在电路中电表的读数不能正确进行分析,特别是并联在等效电源两端的电压表,其示数应该是路端电压,而不是等效电源的电动势.电磁感应中的图象问题[学生用书P223]【题型解读】1.图象类型2.分析方法3.解答电磁感应中图象类选择题的两个常用方法排除法定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项函数法根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断(多选)(2019·高考全国卷Ⅲ)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab 以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是()[解析]棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到方向与v0方向相反的安培力的作用而做变减速运动,棒cd 受到方向与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动时不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02,A、C正确,B、D均错误.[答案]AC【迁移题组】迁移1 磁感应强度变化的图象问题1.将一段导线绕成如图甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab 边置于垂直纸面向里的匀强磁场 Ⅰ 中.回路的圆环区域内有垂直纸面的磁场 Ⅱ ,以向里为磁场 Ⅱ 的正方向,其磁感应强度B 随时间t 变化的图象如图乙所示.用F 表示ab 边受到的安培力,以水平向右为F 的正方向,能正确反应F 随时间t 变化的图象是( )解析:选B.根据B -t 图象可知,在0~T 2时间内,B -t 图线的斜率为负且为定值,根据法拉第电磁感应定律E =n ΔB ΔtS 可知,该段时间圆环区域内感应电动势和感应电流是恒定的,由楞次定律可知,ab 中电流方向为b →a ,再由左手定则可判断ab 边受到向左的安培力,且0~T 2时间内安培力恒定不变,方向与规定的正方向相反;在T 2~T 时间内,B -t 图线的斜率为正且为定值,故ab 边所受安培力大小仍恒定不变,但方向与规定的正方向相同.综上可知,B 正确.迁移2 导体切割磁感线的图象问题2.(多选)如图所示,边长为L 、总电阻为R 的正方形线框abcd 放置在光滑水平桌面上,bc 边紧靠磁感强度为B 、宽度为2L 、方向竖直向下的有界匀强磁场的边缘.现使线框以初速度v 0匀加速通过磁场,选项图中能定性反映线框从进入到完全离开磁场的过程中感应电流变化情况的是( )解析:选AD.根据楞次定律得到,线框完全处于磁场时无感应电流,进磁场和出磁场过程感应电流方向相反.设线框的加速度为a ,线框中产生的感应电动势e =BL v ,感应电流i =e R =BL v R =BL (v 0+at )R,B 、L 、v 0、R 一定,i 与t 是线性关系.由于线框做匀加速运动,线框出磁场时感应电流比进磁场时大,且进入磁场的时间比离开磁场时间长,故A 正确,B 错误;由v 2-v 20=2ax 得到i =BL v 20+2ax R,可见i 与x 是非线性关系,且进入磁场的位移与离开磁场的位移相等,故C 错误,D 正确.迁移3 电磁感应中双电源问题与图象的综合3.(多选)(2019·高考全国卷Ⅱ)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场时开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图象可能正确的是( )解析:选AD.根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,若释放两导体棒的时间间隔足够长,在PQ 通过磁场区域一段时间后MN 进入磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知流过PQ 的电流随时间变化的图象可能是A ;由于两导体棒从同一位置释放,两导体棒进入磁场时产生的感应电动势大小相等,MN 进入磁场区域切割磁感线产生感应电动势,回路中产生的感应电流不可能小于I 1,B 错误;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于I 1,受到安培力作用,由于安培力与速度成正比,则MN所受的安培力一定大于MN的重力沿斜面方向的分力,所以MN一定做减速运动,回路中感应电流减小,流过PQ的电流随时间变化的图象可能是D,C错误.[学生用书P224]电磁感应中的图象问题分析【对点训练】1.(多选)如图甲所示,在水平面上固定一个匝数为10匝的等边三角形金属线框,总电阻为3 Ω,边长为0.4 m.金属框处于两个半径为0.1 m的圆形匀强磁场中,顶点A恰好位于左边圆的圆心,BC边的中点恰好与右边圆的圆心重合.左边磁场垂直纸面向外,右边磁场垂直纸面向里,磁感应强度的变化规律如图乙所示,则下列说法中正确的是(π取3)()A.线框中感应电流的方向是顺时针方向B.t=0.4 s时,穿过线框的磁通量为0.005 WbC.经过t=0.4 s,线框中产生的热量为0.3 JD.前0.4 s内流过线框某截面的电荷量为0.2 C解析:选CD.根据楞次定律和安培定则,线框中感应电流的方向是逆时针方向,A错误;0.4 s 时穿过线框的磁通量Φ=Φ1-Φ2=12πr 2·B 1-16πr 2·B 2=0.055 Wb ,B 错误;由图乙知ΔB 1Δt=5 T -1 T 0.4 s =10 T/s ,根据法拉第电磁感应定律,感应电动势E =n ΔΦΔt =n ·12πr 2·ΔB 1Δt=1.5 V ,感应电流I =E R=0.5 A ,0.4 s 内线框中产生的热量Q =I 2Rt =0.3 J ,C 正确;前0.4 s 内流过线框某截面的电荷量q =It =0.2 C ,D 正确.2.如图甲所示,一个圆形线圈的匝数n =100,线圈的面积S =200 cm 2,线圈的电阻r =1 Ω,线圈外接一个阻值R =4 Ω 的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示.下列说法中正确的是( )A .线圈中的感应电流方向为顺时针方向B .电阻R 两端的电压随时间均匀增大C .线圈电阻r 消耗的功率为4×10-4 WD .前4 s 内通过R 的电荷量为4×10-4 C解析:选C.由楞次定律,线圈中的感应电流方向为逆时针方向,A 错误;由法拉第电磁感应定律,产生的感应电动势恒定为E =nS ΔB Δt=0.1 V ,电阻R 两端的电压不随时间变化,B 错误;回路中电流I =E R +r=0.02 A ,线圈电阻r 消耗的功率为P =I 2r =4×10-4 W ,C 正确;前4 s 内通过R 的电荷量为q =It =0.08 C ,D 错误.[学生用书P375(单独成册)](建议用时:40分钟)一、单项选择题1.如图所示是两个互连的金属圆环,小金属环的电阻是大金属环电阻的二分之一,磁场垂直穿过大金属环所在区域.当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )A.12E B .13E C.23E D .E解析:选B.a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故U ab =13E ,B 正确.2.超导体的电阻为零,现有一个本来无电流的固定的超导体圆环如图所示,虚线为其轴线,在其右侧有一个条形永磁体,当永磁体从右侧远处沿轴线匀速穿过该圆环直至左侧远处的过程中,下列I -t 图所反映的电流情况合理的是(假设磁体中心刚好处于圆环中心为零时刻,从右向左看逆时针电流规定为正方向)( )解析:选A.条形磁铁从右向左插入线圈时,根据楞次定律可知,线圈中产生从右向左看逆时针电流,当线圈位于磁铁中心位置时,磁通量最大,磁通量的变化率也最大,感应电流最大;当磁铁从左边离开磁场时,根据楞次定律可知,线圈中产生从右向左看逆时针电流;故A 正确,B 、C 、D 错误.3.(2020·河北唐山检测)如图甲所示,矩形导线框abcd 固定在变化的磁场中,产生了如图乙所示的电流(电流方向abcda 为正方向).若规定垂直纸面向里的方向为磁场正方向,能够产生如图乙所示电流的磁场为( )解析:选D.由题图乙可知,0~t1内,线圈中的电流的大小与方向都不变,根据法拉第电磁感应定律可知,线圈中的磁通量的变化率相同,故0~t1内磁感应强度与时间的关系是一条斜线,A、B错误;又由于0~t1时间内电流的方向为正,即沿abcda方向,由楞次定律可知,电路中感应电流的磁场方向向里,故0~t1内原磁场方向向里减小或向外增大,D 正确,C错误.4.如图所示,PQ、MN是放置在水平面内的光滑导轨,GH是长度为L、电阻为r的导体棒,其中点与一端固定的轻弹簧连接,轻弹簧的劲度系数为k.导体棒处在方向向下、磁感应强度为B的匀强磁场中.图中E是电动势为E、内阻不计的直流电源,电容器的电容为C.闭合开关,待电路稳定后,下列选项正确的是()A.导体棒中电流为ER2+r+R1B.轻弹簧的长度增加BlEk(r+R1)C.轻弹簧的长度减少BLEk(r+R2)D.电容器带电荷量为ECrr+R1解析:选D.导体棒中的电流为I=ER1+r,故A错误;由左手定则知导体棒受的安培力向左,则弹簧长度减少,由平衡条件得BIL=kΔx,联立各式得Δx=BLEk(r+R1),故B、C错误;电容器上的电压等于导体棒两端的电压,Q=CU=CErR1+r,故D正确.5.如图所示,PN与QM两平行金属导轨相距1 m,电阻不计,两端分别接有电阻R1和R2,且R1=6 Ω,ab杆的电阻为2 Ω,在导轨上可无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度为1 T.现ab以恒定速度v=3 m/s匀速向右移动,这时ab杆上消耗的电功率与R1、R2消耗的电功率之和相等.则()A .R 2=6 ΩB .R 1上消耗的电功率为0.75 WC .a 、b 间电压为3 VD .拉ab 杆水平向右的拉力为0.75 N解析:选D.杆ab 消耗的功率与R 1、R 2消耗的功率之和相等,则R 1R 2R 1+R 2=R ab ,解得R 2=3 Ω,故A 错误;E =Bl v =3 V ,则I ab =E R 总=0.75 A ,U ab =E -I ab R ab =1.5 V ,P R 1=U 2abR 1=0.375 W ,故B 、C 错误;F 拉=F 安=BI ab l =0.75 N ,故D 正确.6.半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图甲所示.有一变化的磁场垂直于纸面,规定方向向里为正,变化规律如图乙所示.在t =0时刻平板之间中心有一重力不计,电荷量为q 的静止微粒,则以下说法正确的是( )A .第2 s 内上极板为正极B .第3 s 内上极板为负极C .第2 s 末微粒回到了原来位置D .第3 s 末两极板之间的电场强度大小为0.2πr 2d解析:选A.第2 s 内磁感应强度减小,所以圆环产生感应电动势,相当于一电源,由楞次定律知,上极板为正极,A 正确;第3 s 内磁场方向向外,磁感应强度增加,产生的感应电动势仍然是上极板为正极,B 错误;第1 s 内,上极板为负极,第2 s 内,上极板为正极,这个过程中电场强度反向,所以微粒先加速,然后减速,第2 s 末微粒速度为零,离开中心位置最远,第3 s 末圆环产生的感应电动势为ΔΦΔt=0.1πr 2,电场强度E =U d =0.1πr 2d ,C 、D错误.7.如图甲所示,光滑平行金属导轨MN 、PQ 所在平面与水平面成θ角,M 、P 两端接一电阻R ,整个装置处于方向垂直导轨平面向上的匀强磁场中.t =0时对金属棒施加一平行于导轨的外力F ,使金属棒ab 由静止开始沿导轨向上运动,导轨电阻忽略不计.已知通过电阻R 的感应电流I 随时间t 变化的关系如图乙所示.下列关于金属棒运动速度v 、闭合回路中磁通量的变化率ΔΦΔt、外力F 以及流过R 的电荷量q 随时间变化的图象正确的是( )解析:选B.设金属棒的电阻为r ,金属棒长为l ,由闭合电路欧姆定律知,通过电阻R 的感应电流I =Bl vR +r,由题图乙可知,I =kt ,由以上两式解得v =R +rBl kt ,即金属棒做匀加速运动,A 错误;由法拉第电磁感应定律得,平均感应电动势E =ΔΦΔt ,由闭合电路欧姆定律得E =I (R +r ),由题乙可知I =12kt ,由以上三式解得,ΔΦΔt =12(R +r )kt ,B 正确;金属棒做匀加速运动,由牛顿第二定律得F -mg sin θ-BIl =ma ,则F =mg sin θ+ma +BIl =mg sin θ+m (R +r )Bl k +Blkt ,C 错误;流过电阻R 的电荷量q =It =12kt 2,D 错误.二、多项选择题8.如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接着阻值R =10 Ω的电阻.一阻值R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是( )A .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1 VC .de 两端的电压为1 VD .fe 两端的电压为1 V解析:选BD.由右手定则可知ab 中电流方向为a →b ,A 错误;导体棒ab 切割磁感线产生的感应电动势E =Bl v ,ab 为电源,cd 间电阻R 为外电路负载,de 和cf 间电阻中无电流,de 和cf 间无电压,因此cd 和fe 两端电压相等,即U =E2R ×R =Bl v 2=1 V ,B 、D 正确,C 错误.9.(2020·辽宁葫芦岛一模)如图甲所示,在MN 、QP 间存在一匀强磁场,t =0时,一正方形光滑金属线框在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速运动,外力F 随时间t 变化的图线如图乙所示,已知线框质量m =1 kg 、电阻R =2 Ω,则( )A .线框的加速度为2 m/s 2B .磁场宽度为6 mC .匀强磁场的磁感应强度为 2 TD .线框进入磁场过程中,通过线框横截面的电荷量为22C 解析:选ACD.当t =0时线框的速度为零,没有感应电流,线框不受安培力,则线框的加速度为:a =F m =21 m/s 2=2 m/s 2,故A 正确;磁场的宽度等于线框在0~2 s 内的位移,为:d =12at 22=12×2×22 m =4 m ,故B 错误;设线框的边长为L ,则L 等于线框在0~1 s 内的位移,即为:L =12at 21=12×2×12 m =1 m ,当线框全部进入磁场的瞬间:F 1-F 安=ma ,而F安=BIL =B 2L 2v R =B 2L 2at R ,式中,F 1=4 N ,t =1 s ,m =1 kg ,R =2 Ω,联立得到:B = 2 T ,故C 正确;线框进入磁场过程中,通过线框横截面的电荷量为:q =I t =BL v t R=BL 2R=2×122 C =22C ,故D 正确. 10.如图所示,一金属棒AC 在匀强磁场中绕平行于磁感应强度方向的轴(过O 点)匀速转动,OA =2OC =2L ,磁感应强度大小为B 、方向垂直纸面向里,金属棒转动的角速度为 ω、电阻为r ,内、外两金属圆环分别与C 、A 良好接触并各引出一接线柱与外电阻R 相接(没画出),两金属环圆心皆为O 且电阻均不计,则( )A .金属棒中有从A 到C 的感应电流B .外电阻R 中的电流为I =3BωL 22(R +r )C .当r =R 时,外电阻消耗功率最小D .金属棒AC 间电压为3BωL 2R2(R +r )解析:选BD.由右手定则可知金属棒相当于电源且A 是电源的正极,即金属棒中有从C 到A 的感应电流,A 错误;金属棒转动产生的感应电动势为E =12Bω(2L )2-12BωL 2=3BωL 22,即回路中电流为I =3BωL 22(R +r ),B 正确;由电源输出功率特点知,当内、外电阻相等时,外电路消耗功率最大,C 错误;U AC =IR =3BωL 2R2(R +r ),D 正确.三、非选择题11.(2019·高考北京卷)如图所示,垂直于纸面的匀强磁场磁感应强度为B .纸面内有一正方形均匀金属线框abcd ,其边长为L ,总电阻为R ,ad 边与磁场边界平行.从ad 边刚进入磁场直至bc 边刚要进入的过程中,线框在向左的拉力作用下以速度v 匀速运动,求:(1)感应电动势的大小E ; (2)拉力做功的功率P ; (3)ab 边产生的焦耳热Q .解析:(1)由法拉第电磁感应定律可得,感应电动势 E =BL v .(2)线圈中的感应电流I =E R拉力大小等于安培力大小F =BIL 拉力的功率P =F v =B 2L 2v 2R.(3)线圈ab 边电阻R ab =R4时间t =Lvab 边产生的焦耳热Q =I 2R ab t =B 2L 3v4R.答案:(1)BL v (2)B 2L 2v 2R (3)B 2L 3v4R。
高三物理大一轮复习专题电磁感应中的电路和图象问题课件

【典例1】 (2013·广东卷,36)如图1(a)所示,在垂直于匀强 磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴转 动,圆心O和边缘K通过电刷与一个电路连接,电路中的P 是加上一定正向电压才能导通的电子元件,流过电流表的 电流I与圆盘角速度ω的关系如图(b)所示,其中ab段和bc 段均为直线,且ab段过坐标原点,ω>0代表圆盘逆时针 转动.已知:R=3.0 Ω,B=1.0 T,r=0.2 m.忽略圆 盘、电流表和导线的电阻.
即学即练4 如图8甲所示,垂直纸面向里的有界匀强磁场的
磁感应强度B=1.0 T,质量m=0.04 kg、高h=0.05 m、总
电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量M=
0.08 kg的小车上,小车与线圈的水平长度l相等.线圈和
小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入 磁场,线圈平面和磁场方向始终垂直.若小车运动的速度
图7
(1)金属杆在匀速运动之前做什么运动? (2)若m=0.5 kg,L=0.5 m,R=0.5 Ω,磁感应强度B为多 大? (3)由v F图线的截距可求得什么物理量?其值为多少?
解析 (1)因受外力(不变)和安培力(与 F 反向,且逐渐增大)的 作用,做变速运动(或变加速运动、加速度减小的加速运动、加 速运动). (2)感应电动势 E=Blv,感应电流 I=ER,金属杆受到安培力的 作用 F 安=BIL=B2LR2vm
时,运动中MN始终与∠bac的平分线垂直且和导轨保持良
好接触.下列关于回路中电流i与时间t的关系图线,可能
正确的是
( ).
图3
解析 设∠bac=2θ,MN 以速度 v 匀速运动,导体棒单位长度
的电阻为 R0.经过时间 t,导体棒的有效切割长度 L=2vttan θ,
2024届高考一轮复习物理教案(新教材粤教版):电磁感应中的电路及图像问题

专题强化二十三电磁感应中的电路及图像问题目标要求 1.掌握电磁感应中电路问题的求解方法.2.会计算电磁感应电路问题中电压、电流、电荷量、热量等物理量.3.能够通过电磁感应图像,读取相关信息,应用物理规律求解问题.题型一电磁感应中的电路问题1.电磁感应中的电源(1)做切割磁感线运动的导体或磁通量发生变化的回路相当于电源.电动势:E=BL v或E=n ΔΦΔt,这部分电路的阻值为电源内阻.(2)用右手定则或楞次定律与安培定则结合判断,感应电流流出的一端为电源正极.2.分析电磁感应电路问题的基本思路3.电磁感应中电路知识的关系图考向1感生电动势的电路问题例1如图所示,单匝正方形线圈A边长为0.2m,线圈平面与匀强磁场垂直,且一半处在磁场中,磁感应强度随时间变化的规律为B=(0.8-0.2t)T.开始时开关S未闭合,R1=4Ω,R2=6Ω,C=20μF,线圈及导线电阻不计.闭合开关S,待电路中的电流稳定后.求:(1)回路中感应电动势的大小;(2)电容器所带的电荷量.答案(1)4×10-3V(2)4.8×10-8C解析(1)由法拉第电磁感应定律有E =ΔB Δt S ,S =12L 2,代入数据得E =4×10-3V (2)由闭合电路的欧姆定律得I =ER 1+R 2,由部分电路的欧姆定律得U =IR 2,电容器所带电荷量为Q =CU =4.8×10-8C.考向2动生电动势的电路问题例2(多选)如图所示,光滑的金属框CDEF 水平放置,宽为L ,在E 、F 间连接一阻值为R的定值电阻,在C 、D 间连接一滑动变阻器R 1(0≤R 1≤2R ).框内存在着竖直向下的匀强磁场.一长为L 、电阻为R 的导体棒AB 在外力作用下以速度v 匀速向右运动.金属框电阻不计,导体棒与金属框接触良好且始终垂直,下列说法正确的是()A .ABFE 回路的电流方向为逆时针,ABCD 回路的电流方向为顺时针B .左右两个闭合区域的磁通量都在变化且变化率相同,故电路中的感应电动势大小为2BL vC .当滑动变阻器接入电路中的阻值R 1=R 时,导体棒两端的电压为23BL vD .当滑动变阻器接入电路中的阻值R 1=R2时,滑动变阻器的电功率为B 2L 2v 28R 答案AD解析根据楞次定律可知,ABFE 回路电流方向为逆时针,ABCD 回路电流方向为顺时针,故A 正确;根据法拉第电磁感应定律可知,感应电动势E =BL v ,故B 错误;当R 1=R 时,外电路总电阻R 外=R 2,因此导体棒两端的电压即路端电压应等于13BL v ,故C 错误;该电路电动势E =BL v ,电源内阻为R ,当滑动变阻器接入电路中的阻值R 1=R2时,干路电流为I =3BL v 4R ,滑动变阻器所在支路电流为23I ,容易求得滑动变阻器电功率为B 2L 2v 28R,故D 正确.例3(多选)如图所示,ab 为固定在水平面上的半径为l 、圆心为O 的金属半圆弧导轨,Oa间用导线连接一电阻M .金属棒一端固定在O 点,另一端P 绕过O 点的轴,在水平面内以角速度ω逆时针匀速转动,该过程棒与圆弧接触良好.半圆弧内磁场垂直纸面向外,半圆弧外磁场垂直纸面向里,磁感应强度大小均为B ,已知金属棒由同种材料制成且粗细均匀,棒长为2l 、总电阻为2r ,M 阻值为r ,其余电阻忽略不计.当棒转到图中所示的位置时,棒与圆弧的接触处记为Q 点,则()A .通过M 的电流方向为O →aB .通过M 的电流大小为Bl 2ω6r C .QO 两点间电压为Bl 2ω4D .PQ 两点间电压为3Bl 2ω2答案CD解析根据右手定则可知金属棒O 端为负极,Q 端为正极,则通过M 的电流方向从a →O ,A 错误;金属棒转动产生的电动势为E =Bl ·ωl2,则有I =E R 总=Bl 2ω4r ,B 错误;由于其余电阻忽略不计,则QO 两点间电压,即电阻M 上的电压,根据欧姆定律有U =Ir =Bl 2ω4,C 正确;金属棒PQ 转动产生的电动势为E ′=Bl 2lω+lω2=3Bl 2ω2,由于PQ 没有连接闭合回路,则PQ 两点间电压,即金属棒PQ 转动产生的电动势,为3Bl 2ω2,D 正确.题型二电磁感应中电荷量的计算计算电荷量的导出公式:q =nΔФR 总在电磁感应现象中,只要穿过闭合回路的磁通量发生变化,闭合回路中就会产生感应电流,设在时间Δt 内通过导体横截面的电荷量为q ,则根据电流定义式I =qΔt 及法拉第电磁感应定律E =n ΔΦΔt ,得q =I Δt =E R 总Δt =n ΔΦR 总Δt Δt =n ΔΦR 总,即q =n ΔΦR 总.例4在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1m 2,线圈电阻为1Ω.规定线圈中感应电流I 的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B 随时间t 的变化规律如图乙所示.以下说法正确的是()A .在0~2s 时间内,I 的最大值为0.02AB .在3~5s 时间内,I 的大小越来越小C .前2s 内,通过线圈某横截面的总电荷量为0.01CD .第3s 内,线圈的发热功率最大答案C解析0~2s 时间内,t =0时刻磁感应强度变化率最大,感应电流最大,I =E R =ΔB ·SΔtR=0.01A ,A 错误;3~5s 时间内电流大小不变,B 错误;前2s 内通过线圈的电荷量q =ΔΦR =ΔB ·S R=0.01C ,C 正确;第3s 内,B 没有变化,线圈中没有感应电流产生,则线圈的发热功率最小,D 错误.例5(2018·全国卷Ⅰ·17)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于()A.54B.32C.74D .2答案B解析在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B (12πr 2-14πr 2)Δt 1,根据闭合电路的欧姆定律,有I 1=E 1R ,且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2R,q 2=I 2Δt 2又q1=q2,即B(12πr2-14πr2)R=(B′-B)12r2R所以B′B=32,故选B.题型三电磁感应中的图像问题1.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.2.解题步骤(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;对切割磁感线产生感应电动势和感应电流的情况,还常涉及E-x图像和i-x图像;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路的欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像.3.常用方法(1)排除法:定性地分析电磁感应过程中物理量的正负,增大还是减小,以及变化快慢,来排除错误选项.(2)函数法:写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断.考向1感生问题的图像例6(多选)(2023·广东湛江市模拟)如图甲所示,正方形导线框abcd放在范围足够大的匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t =0时刻,磁感应强度B的方向垂直纸面向外,感应电流以逆时针为正方向,cd边所受安培力的方向以垂直cd边向下为正方向.下列关于感应电流i和cd边所受安培力F随时间t变化的图像正确的是()答案BD解析设正方形导线框边长为L ,电阻为R ,在0~2s ,垂直纸面向外的磁场减弱,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =ΔBS Δt ·R =2B 0S2R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由2F 0=2B 0iL 减小到零.2~3s 内,垂直纸面向里的磁场增强,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,由零变化到-F 0=-B 0iL .3~4s 内垂直纸面向里的磁场减弱,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由F 0=B 0iL 减小到零.4~6s 内垂直纸面向外的磁场增强,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由零变化到-2F 0=-2B 0iL ,由以上分析计算可得A 、C 错误,B 、D 正确.考向2动生问题的图像例7如图所示,将一均匀导线围成一圆心角为90°的扇形导线框OMN ,圆弧MN 的圆心为O 点,将O 点置于直角坐标系的原点,其中第二和第四象限存在垂直纸面向里的匀强磁场,其磁感应强度大小为B ,第三象限存在垂直纸面向外的匀强磁场,磁感应强度大小为2B .t =0时刻,让导线框从图示位置开始以O 点为圆心沿逆时针方向做匀速圆周运动,规定电流方向ONM 为正,在下面四幅图中能够正确表示电流i 与时间t 关系的是()答案C解析在0~t 0时间内,线框沿逆时针方向从题图所示位置开始(t =0)转过90°的过程中,产生的感应电动势为E 1=12BωR 2,由闭合电路的欧姆定律得,回路中的电流为I 1=E 1r =BR 2ω2r ,根据楞次定律判断可知,线框中感应电流方向为逆时针方向(沿ONM 方向).在t 0~2t 0时间内,线框进入第三象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 2=12Bω·R 2+12·2BωR 2=32BωR 2=3E 1,感应电流为I 2=3I 1.在2t 0~3t 0时间内,线框进入第四象限的过程中,回路中的电流方向为逆时针方向(沿ONM 方向),回路中产生的感应电动势为E 3=12Bω·R 2+12·2Bω·R 2=32BωR 2=3E 1,感应电流为I 3=3I 1,在3t 0~4t 0时间内,线框出第四象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 4=12BωR 2,回路电流为I 4=I 1,故C 正确,A 、B 、D 错误.例8(2023·广东珠海市模拟)图中两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场方向垂直纸面向里.abcd 是位于纸面内的直角梯形线圈,ab 与dc 间的距离也为L .t =0时刻,ab 边与磁场区域边界重合(如图).现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域.取沿a →d →c →b →a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是()答案A解析线圈移动0~L ,即在0~Lv时间内,线圈进磁场,垂直纸面向里通过线圈的磁通量增大,线圈中产生逆时针方向的感应电流(正),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR 均匀增大;线圈移动L ~2L ,即在L v ~2L v 时间内,线圈出磁场,垂直纸面向里通过线圈的磁通量减少,线圈中产生顺时针方向的感应电流(负),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR均匀增大,因此A 正确,B 、C 、D 错误.课时精练1.如图所示是两个相互连接的金属圆环,小金属环的电阻是大金属环电阻的二分之一,匀强磁场垂直穿过大金属环所在区域,当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为()A.12EB.13EC.23E D .E答案B解析a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故a 、b 间电势差为U=13E ,选项B 正确.2.如图甲所示,在线圈l 1中通入电流i 1后,在l 2上产生的感应电流随时间变化的规律如图乙所示,l 1、l 2中电流的正方向如图甲中的箭头所示.则通入线圈l 1中的电流i 1随时间t 变化的图像是图中的()答案D解析因为l 2中感应电流大小不变,根据法拉第电磁感定律可知,l 1中磁场的变化是均匀的,即l 1中电流的变化也是均匀的,A 、C 错误;根据题图乙可知,0~T4时间内l 2中的感应电流产生的磁场方向向左,所以线圈l 1中感应电流产生的磁场方向向左并且减小,或方向向右并且增大,B 错误,D 正确.3.(多选)(2023·广东省华南师大附中模拟)如图所示,在磁感应强度大小为B 、方向竖直向下的匀强磁场中,有两根光滑的平行导轨,间距为L ,导轨两端分别接有电阻R 1和R 2,导体棒以某一初速度从ab 位置向右运动距离x 到达cd 位置时,速度为v ,产生的电动势为E ,此过程中通过电阻R 1、R 2的电荷量分别为q 1、q 2.导体棒有电阻,导轨电阻不计.下列关系式中正确的是()A .E =BL vB .E =2BL vC .q 1=BLx R 1D.q 1q 2=R 2R 1答案AD解析导体棒做切割磁感线的运动,速度为v 时产生的感应电动势E =BL v ,故A 正确,B错误;设导体棒的电阻为r ,根据法拉第电磁感应定律得E =ΔΦΔt =BLxΔt ,根据闭合电路欧姆定律得I =Er +R 1R 2R 1+R 2,通过导体棒的电荷量为q =I Δt ,导体棒相当于电源,电阻R 1和R 2并联,则通过电阻R 1和R 2的电流之比I 1I 2=R 2R 1,通过电阻R 1、R 2的电荷量之比q 1q 2=I 1Δt I 2Δt =R2R 1,结合q =q 1+q 2,解得q 1=BLxR 2(R 1+R 2)r +R 1R 2,故C 错误,D 正确.4.(多选)如图甲所示,单匝正方形线框abcd 的电阻R =0.5Ω,边长L =20cm ,匀强磁场垂直于线框平面向里,磁感应强度的大小随时间变化规律如图乙所示,则下列说法中正确的是()A .线框中的感应电流沿逆时针方向,大小为2.4×10-2AB .0~2s 内通过ab 边横截面的电荷量为4.8×10-2CC .3s 时ab 边所受安培力的大小为1.44×10-2ND .0~4s 内线框中产生的焦耳热为1.152×10-3J 答案BD解析由楞次定律判断感应电流为顺时针方向,由法拉第电磁感应定律得电动势E =SΔB Δt=1.2×10-2V ,感应电流I =E R=2.4×10-2A ,故选项A 错误;电荷量q =I Δt ,解得q =4.8×10-2C ,故选项B 正确;安培力F =BIL ,由题图乙得,3s 时B =0.3T ,代入数值得:F =1.44×10-3N ,故选项C 错误;由焦耳定律得Q =I 2Rt ,代入数值得Q =1.152×10-3J ,故D 选项正确.5.在水平光滑绝缘桌面上有一边长为L 的正方形线框abcd ,被限制在沿ab 方向的水平直轨道上自由滑动.bc 边右侧有一正直角三角形匀强磁场区域efg ,直角边ge 和ef 的长也等于L ,磁场方向竖直向下,其俯视图如图所示,线框在水平拉力作用下向右以速度v 匀速穿过磁场区,若图示位置为t =0时刻,设逆时针方向为电流的正方向.则感应电流i -t 图像正确的是(时间单位为L v)()答案D 解析bc 边的位置坐标x 从0~L 的过程中,根据楞次定律判断可知线框中感应电流方向沿a →b →c →d →a ,为正值.线框bc 边有效切线长度为l =L -v t ,感应电动势为E =Bl v =B (L-v t )·v ,随着t 均匀增加,E 均匀减小,感应电流i =E R,即知感应电流均匀减小.同理,x 从L ~2L 的过程中,根据楞次定律判断出感应电流方向沿a →d →c →b →a ,为负值,感应电流仍均匀减小,故A 、B 、C 错误,D 正确.6.如图所示,线圈匝数为n ,横截面积为S ,线圈电阻为R ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k ,磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值均为2R .下列说法正确的是()A .电容器上极板带负电B .通过线圈的电流大小为nkS 2RC .电容器所带的电荷量为CnkS 2D .电容器所带的电荷量为2CnkS 3答案D解析由楞次定律和右手螺旋定则知,电容器上极板带正电,A 错误;因E =nkS ,I =E 3R =nkS 3R,B 错误;又U =I ×2R =2nkS 3,Q =CU =2CnkS 3,C 错误,D 正确.7.如图甲所示,一长为L 的导体棒,绕水平圆轨道的圆心O 匀速顺时针转动,角速度为ω,电阻为r ,在圆轨道空间存在有界匀强磁场,磁感应强度大小为B .半径小于L 2的区域内磁场竖直向上,半径大于L 2的区域内磁场竖直向下,俯视图如图乙所示,导线一端Q 与圆心O 相连,另一端P 与圆轨道连接给电阻R 供电,其余电阻不计,则()A .电阻R 两端的电压为BL 2ω4B .电阻R 中的电流方向向上C .电阻R 中的电流大小为BL 2ω4(R +r )D .导体棒的安培力做功的功率为0答案C 解析半径小于L 2的区域内,E 1=B L 2·ωL 22=BL 2ω8,半径大于L 2的区域,E 2=B L 2·ωL 2+ωL 2=3BL 2ω8,根据题意可知,两部分电动势相反,故总电动势E =E 2-E 1=BL 2ω4,根据右手定则可知圆心为负极,圆环为正极,电阻R 中的电流方向向下,电阻R 上的电压U =R R +r E =RBL 2ω4(R +r ),故A 、B 错误;电阻R 中的电流大小为I =E R +r =BL 2ω4(R +r ),故C 正确;回路有电流,则安培力不为零,故导体棒的安培力做功的功率不为零,故D 错误.8.(多选)如图,PAQ 为一段固定于水平面上的光滑圆弧导轨,圆弧的圆心为O ,半径为L .空间存在垂直导轨平面、磁感应强度大小为B 的匀强磁场.电阻为R 的金属杆OA 与导轨接触良好,图中电阻R 1=R 2=R ,其余电阻不计.现使OA 杆在外力作用下以恒定角速度ω绕圆心O 顺时针转动,在其转过π3的过程中,下列说法正确的是()A .流过电阻R 1的电流方向为P →R 1→OB .A 、O 两点间电势差为BL 2ω2C .流过OA 的电荷量为πBL 26RD .外力做的功为πωB 2L 418R答案AD 解析由右手定则判断出OA 中电流方向由O →A ,可知流过电阻R 1的电流方向为P →R 1→O ,故A 正确;OA 产生的感应电动势为E =BL 2ω2,将OA 当成电源,外部电路R 1与R 2并联,则A 、O 两点间的电势差为U =ER +R 2·R 2=BL 2ω6,故B 错误;流过OA 的电流大小为I =E R +R 2=BL 2ω3R ,转过π3弧度所用时间为t =π3ω=π3ω,流过OA 的电荷量为q =It =πBL 29R ,故C 错误;转过π3弧度过程中,外力做的功为W =EIt =πωB 2L 418R,故D 正确.9.(多选)(2019·全国卷Ⅱ·21)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是()答案AD 解析根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,PQ 通过磁场区域后MN 进入磁场区域,MN 同样匀速直线运动通过磁场区域,故流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,感应电动势和感应电流为零,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于刚开始仅PQ 切割磁感线时的感应电流I 1,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D.10.如图甲所示,虚线MN 左、右两侧的空间均存在与纸面垂直的匀强磁场,右侧匀强磁场的方向垂直纸面向外,磁感应强度大小恒为B 0;左侧匀强磁场的磁感应强度B 随时间t 变化的规律如图乙所示,规定垂直纸面向外为磁场的正方向.一硬质细导线的电阻率为ρ、横截面积为S 0,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.求:(1)t =t 02时,圆环受到的安培力;(2)在0~320内,通过圆环的电荷量.答案(1)3B 02r 2S 04ρt 0,垂直于MN 向左(2)3B 0rS 08ρ解析(1)根据法拉第电磁感应定律,圆环中产生的感应电动势E =ΔB Δt S 上式中S =πr 22由题图乙可知ΔB Δt =B 0t 0根据闭合电路的欧姆定律有I =ER 根据电阻定律有R =ρ2πrS 0t =12t 0时,圆环受到的安培力大小F =B 0I ·(2r )+B 02I ·(2r )联立解得F =3B 02r 2S 04ρt 0由左手定则知,方向垂直于MN 向左.(2)通过圆环的电荷量q =I ·Δt根据闭合电路的欧姆定律和法拉第电磁感应定律有I =E R ,E =ΔΦΔt在0~32t 0内,穿过圆环的磁通量的变化量为ΔΦ=B 0·12πr 2+B 02·12πr 2联立解得q =3B 0rS 08ρ.11.(2023·广东广州市模拟)在同一水平面中的光滑平行导轨P 、Q 相距L =1m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 间距离d =10mm ,定值电阻R 1=R 2=12Ω,R 3=2Ω,金属棒ab 电阻r =2Ω,其他电阻不计.磁感应强度B =1T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间、质量m =1×10-14kg 、带电荷量q =-1×10-14C 的微粒(图中未画出)恰好静止不动.取g =10m/s 2,在整个运动过程中金属棒与导轨接触良好.且运动速度保持恒定.求:(1)匀强磁场的方向;(2)ab 两端的电压;(3)金属棒ab 运动的速度大小.答案(1)竖直向下(2)0.4V (3)0.5m/s 解析(1)带负电的微粒受到重力和电场力处于静止状态,因重力竖直向下,则电场力竖直向上,故M 板带正电.ab 棒向右切割磁感线产生感应电动势,ab 棒相当于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下;(2)由平衡条件,得mg =EqE =U MNd所以MN 间的电压U MN =mgd q =1×10-14×10×10×10-31×10-14V =0.1VR 3两端电压与电容器两端电压相等,由欧姆定律得通过R 3的电流I =U MN R 3=0.12A =0.05A ab 棒两端的电压为U ab=U MN+R1R2·I=0.1V+0.05V×6V=0.4VR1+R2(3)由闭合电路欧姆定律得ab棒产生的感应电动势为E感=U ab+Ir=0.4+0.05×2V=0.5V由法拉第电磁感应定律得感应电动势E=BL v感联立解得v=0.5m/s.。
专题10电磁感应 第3讲电磁感应定律的综合应用(教学课件)-高考物理一轮复习
4.电磁感应中图像类选择题的两个常用方法
定性分析电磁感应过程中物理量的变化趋势(增大还是减小)、 排除法 变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正
负,以排除错误的选项 根据题目所给条件定量写出两个物理量之间的函数关系,然 函数法 后由函数关系对图像进行分析和判断
例2 (2020年山东卷)(多选)如图所示,平面直角坐标系的第一和第
的铜圆环,规定从上向下看时,铜环中的感应电流I,沿顺时针方向为
正方向.图乙表示铜环中的感应电流I随时间t变化的图像,则磁场B随
时间t变化的图像可能是下图中的
()
甲
乙
【答案】B
2.(2021年广东一模)(多选)如图所示,绝缘的水平面上固定有两条 平行的光滑金属导轨,导轨电阻不计,两相同金属棒a、b垂直导轨放 置,其右侧矩形区域内存在恒定的匀强磁场,磁场方向竖直向上.现两 金 属 棒 分 别 以 初 速 度 2v0 和 v0 同 时 沿 导 轨 自 由 运 动 , 先 后 进 入 磁 场 区 域.已知a棒离开磁场区域时b棒已经进入磁场区域,则a棒从进入到离 开磁场区域的过程中,电流i随时间t的变化图像可能正确的有
()
【答案】AB
【解析】a 棒以速度 2v0 先进入磁场切割磁感线产生的感应电流为 i0 =Bl·R2v0,a 棒受安培阻力做变减速直线运动,感应电流也随之减小,即 i-t 图像的斜率逐渐变小;设当 b 棒刚进入磁场时 a 棒的速度为 v1,此 时的瞬时电流为 i1=BRlv1.若 v1=v0,即 i1=BRlv0=i20,此时双棒双电源反 接,电流为零,不受安培力,两棒均匀速运动离开,i-t 图像中无电流 的图像,故 A 正确,C 错误.
【解析】导体棒向右切割磁感线,由右手定则,知电流方向为 b 指 向 a,由图像可知金属杆开始运动经 t=5.0 s 时,电压为 0.4 V,根据闭 合电路欧姆定律,得 I=UR=00..44 A=1 A,故 A 正确;根据法拉第电磁感 应定律,知 E=BLv,根据电路结构,可知 U=R+R rE,解得 v=5 m/s, 故 B 错误;
2020届高考物理一轮复习鲁科版第十章第3讲电磁感应规律的综合应用PPT课件(165张)
配套课时作业
3.误区分析 (1)不能正确根据感应电动势及感应电流的方向分析外电路中电势的高 低。因产生感应电动势的那部分电路相当于电源部分,故该部分电路中的电 流从低电势流向高电势,而外电路中电流的方向是从高电势到低电势。 (2)应用欧姆定律分析求解电路时,没有考虑到电源的内阻对电路的影 响。 (3)对连接在电路中电表的读数不能正确进行分析,例如并联在等效电源 两端的电压表,其示数是路端电压,而不是等效电源的电动势。
主干梳理 对点激活
考点细研 悟法培优
高考模拟 随堂集训
配套课时作业
解析
2. (人教版选修 3-2·P21·T3)设图中的磁感应强度 B=1 T,平行导轨宽 l =1 m,金属棒 PQ 以 1 m/s 速度贴着导轨向右运动,R=1 Ω,其他电阻不 计。
主干梳理 对点激活
考点细研 悟法培优
高考模拟 随堂集训
3.分析导体受力情况时,应做包含安培力在内的全面受力分析。 4.根据平衡条件或牛顿第二定律列方程。
主干梳理 对点激活
考点细研 悟法培优
高考模拟 随堂集训
配套课时作业
知识点
电磁感应现象中的能量问题 Ⅱ
1.电磁感应中的能量转化
闭合电路的部分导体做 □01 切割磁感线 运动产生感应电流,通有感应电流 的导体在磁场中受□02 安培力。外力□03 克服 安培力做功,将其他形式的能转
主干梳理 对点激活
考点细研 悟法培优
高考模拟 随堂电流大小和方向; (2)外力的功率; (3)从断开开关 S 到电路稳定这一过程中通过电流表的电荷量。 解题探究 (1)OA 相当于电源,哪点电势高?
提示:O 点电势高。
主干梳理 对点激活
考点细研 悟法培优
2020高考物理一轮总复习第十章电磁感应能力课1电磁感应中的电路和图象问题课件新人教版
杆中的电流
I= E ,R R并
并=RR1+1RR2 2
F 安=BIl=BR2l并2v
得 B=
2mgR并 l2v
=2
T.
(2)杆在磁场中运动产生的平均感应电动势-E =ΔΔΦt 杆中的平均电流-I =R-E并 通过杆的电荷量 Q=-I ·Δt 通过 R2 的电荷量 q=13Q=0.05 C. [答案] (1)2 T (2)0.05 C
3.在同一水平面上的光滑平行导轨 P、Q 相距 l=1 m,导轨左端接有如图所示的 电路.其中水平放置的平行板电容器两极板 M、N 相距 d=10 mm,定值电阻 R1=R2 =12 Ω,R3=2 Ω,金属棒 ab 的电阻 r=2 Ω,其他电阻不计.磁感应强度 B=0.5 T 的 匀强磁场竖直穿过导轨平面,当金属棒 ab 沿导轨向右匀速运动时,悬浮于电容器两极 板之间的质量 m=1×10-14 kg、电荷量 q=-1×10-14 C 的微粒恰好静止不动.取 g =10 m/s2,在整个运动过程中金属棒与导轨接触良好,且速度保持恒定.试求:
2.(多选)半径分别为 r 和 2r 的同心圆形导轨固定在同一水平面上,一长为 r、 电阻为 R 的均匀直导体棒 AB 置于圆导轨上面,BA 的延长线通过圆轨道中心 O.装置 的俯视图如图所示,整个装置位于一匀强磁场内,磁感应强度大小为 B,方向竖直向 下,在两环之间接阻值为 R 的定值电阻和电容为 C 的电容器.直导体棒在水平外力 作用下以角速度 ω 绕 O 逆时针匀速转动.在转动过程中始终与导轨保持良好接触, 导轨电阻不计.下列说法正确的是( )
函数法 系对图象进行分析和判断,这未必是最简捷的方法,但却是最有效的方法
|明考向| 考向一 图象的选择 【例 1】 (多选)(2019 届湖北黄冈期末)如图所示,在光滑水平面内,虚线右侧 存在匀强磁场,磁场方向垂直纸面向外,一正方形金属线框质量为 m,电阻为 R,边 长为 L,从虚线处进入磁场时开始计时,在外力作用下,线框由静止开始,以垂直于 磁场的恒定加速度 a 进入磁场区域,t1 时刻线框全部进入磁场,规定顺时针方向为感 应电流 i 的正方向,外力大小为 F,线框中电功率的瞬时值为 P,通过导体横截面的 电荷量为 q,其中 P-t 和 q-t 图象均为抛物线的一部分,则这些量随时间变化的图象 正确的是( )
2020物理高考新素养大一轮复习讲练(课件+精练):第十章 电磁感应第10章 第30讲
【自主练 2】(2019·北京房山高三一模)如图所示,在光 滑水平面上有一长为 L=0.5 m 的单匝正方形闭合导体线框 abcd,处于磁感应强度为 B=0.4 T 的有界匀强磁场中,其 ab 边与磁场的边界重合.线框由同种粗细均匀、电阻为 R =2 Ω 的导线制成.
现用垂直于线框 ab 边的水平拉力,将线框以速度 v=5 m/s 向右沿水平方向匀速拉出磁场,此过程中保持线框平面 与磁感线垂直,且 ab 边与磁场边界平行.线框被拉出磁场 的过程中,求:
电阻不计的导体棒,自圆形线框最高点由静止释放,棒在下
落过程中始终与线框保持良好接触.已知下落距离为2r时棒 的速度大小为 v1,下落到圆心 O 时棒的速度大小为 v2,忽 略摩擦及空气阻力,下列说法正确的是( )
A.导体棒下落距离为2r时,棒中感应电流的方向向右 B.导体棒下落距离为2r时,棒的加速度的大小为 g- 27B2r2v1
()
A.棒在磁场中的电流从 Q 流到 P B.位置 b 时棒的速度为v20 C.棒运动的加速度大小相等 D.a 到 b 棒的动能减少量大于 b 到 c 棒的动能减少量 答案 ABD
解析 根据右手定则可知,棒在磁场中的电流从 Q 流到 P,选项 A 正确;金属棒在运动过程中,通过棒截面的电量 q=-I t=-ER t=BLR-v t=BRLx,从 a 到 b 的过程中与从 b 到 c 的过程中,棒的位移 x 相等,B、R 相等,因此通过棒横截 面的电荷量相等,根据动量定理 F安 t=B-I Lt=BLq=mΔv, 则金属棒从 a 到 b 和从 b 到 c 速度的变化相同,可知位置 b 时棒的速度为v20,选项 B 正确;
2.等效电路:内电路是 __切__割__磁__感__线__的__导__体__或__磁__通__量__发__生__变__化__的__线__圈____;外电路由 __电__阻____、__电__容____等电学元件组成.在外电路中,电流从 __高____电势处流向__低____电势处;在内电路中,电流则从 __低____电势处流向__高____电势处.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第三讲 电磁感应中的电路和图象问题 热点一 电磁感应中的电路问题 (师生共研) 1.电磁感应中电路知识的关系图
2.解决电磁感应中的电路问题三部曲 [典例1] 如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感应强度大小为B0,导轨上端连接一阻值为R的电阻和开关S,导轨电阻不计,两金属棒a和b的电阻都为R,质量分别为ma=0.02 kg和mb=0.01 kg,它们与导轨接触良好,并可沿导轨无摩擦地运动.若将b棒固定,开关S断开,用一竖直向上的恒力F拉a棒,稳定后a棒以v1=10 m/s的速度向上匀速运动,此时再释放b棒,b棒恰能保持静止.(g取10 m/s2)
(1)求拉力F的大小; 2
(2)若将a棒固定,开关S闭合,让b棒自由下滑,求b棒滑行的最大速度v2的大小; (3)若将a棒和b棒都固定,开关S断开,使磁感应强度从B0随时间均匀增加,经0.1 s后磁感应强度增大到2B0时,a棒受到的安培力大小正好等于a棒的重力,求两棒间的距离. 解析:(1)法一:a棒做切割磁感线运动,产生的感应电动势为E=B0Lv1,a棒与b棒构成串
联闭合电路,电流为I=E2R,a棒、b棒受到的安培力大小为Fa=ILB0,Fb=ILB0 依题意,对a棒有F=Fa+Ga 对b棒有Fb=Gb 所以F=Ga+Gb=0.3 N. 法二:a、b棒都是平衡状态,所以可将a、b棒看成一个整体,整体受到重力和一个向上的力F,所以F=Ga+Gb=0.3 N.
(2)a棒固定、开关S闭合后,当b棒以速度v2匀速下滑时,b棒滑行速度最大,b棒做切割磁感线运动,产生的感应电动势为E1=B0Lv2,等效电路图如图所示.
所以电流为I1=E11.5R
b棒受到的安培力与b棒的重力平衡,有Gb=B20L2v21.5R
由(1)问可知Gb=Fb=B20L2v12R 联立可得v2=7.5 m/s. (3)当磁场均匀变化时,产生的感应电动势为E2=ΔB·LhΔt,回路中电流为I2=E22R 依题意有Fa2=2B0I2L=Ga,代入数据解得h=1 m. 答案:(1)0.3 N (2)7.5 m/s (3)1 m [反思总结] 电磁感应中电路问题的题型特点 闭合电路中磁通量发生变化或有部分导体做切割磁感线运动,在回路中将产生感应电动势和感应电流.从而考题中常涉及电流、电压、电功等的计算,也可能涉及电磁感应与力学、电磁感应与能量的综合分析. 3
1-1.[E=nΔΦΔt在电路中的应用] (多选)在如图甲所示的电路中,螺线管匝数n=1 500匝,横截面积S=20 cm2.螺线管导线电阻r=1 Ω,R1=4 Ω,R2=5 Ω,C=30 μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化,则下列说法中正确的是( )
A.螺线管中产生的感应电动势为1.2 V B.闭合S,电路中的电流稳定后电容器上极板带正电 C.电路中的电流稳定后,电阻R1的电功率为5×10-2 W D.S断开后,通过R2的电荷量为1.8×10-5 C
解析:由法拉第电磁感应定律可知,螺线管内产生的电动势为E=nΔBΔtS=1 500×0.82
×20×10-4 V=1.2 V,故A正确;根据楞次定律,当穿过螺线管的磁通量增加时,螺线管下部可以看成电源的正极,则电容器下极板带正电,故B错误;电流稳定后,电流为I=ER1+R2+r=1.24+5+1 A=0.12 A,电阻R1上消耗的功率为P=I2R1=0.122×4 W=5.76×10-2 W,
故C错误;开关断开后通过电阻R2的电荷量为Q=CU=CIR2=30×10-6×0.12×5 C=1.8×10-5 C,故D正确.
答案:AD 1-2.[E=Blv在电路中的应用] (2017·江苏卷)如图所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻.质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下.当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v.导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求: 4
(1)MN刚扫过金属杆时,杆中感应电流的大小I; (2)MN刚扫过金属杆时,杆的加速度大小a; (3)PQ刚要离开金属杆时,感应电流的功率P.
解析:(1)感应电动势E=Bdv0感应电流I=ER,
解得I=Bdv0R. (2)安培力F=BId牛顿第二定律F=ma 解得a=B2d2v0mR. (3)金属杆切割磁感线的速度v′=v0-v,则 感应电动势E=Bd(v0-v),电功率P=E2R
解得P=B2d2v0-v2R. 答案:(1)I=Bdv0R (2)a=B2d2v0mR (3)P=B2d2v0-v2R
热点二 电磁感应中的图象问题 (师生共研) 1.图象问题的求解类型
类型 据电磁感应 过程选图象 据图象分析判断 电磁感应过程
求解 流程
2.解题关键 弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键. 3.解决图象问题的一般步骤 (1)明确图象的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等; 5
(2)分析电磁感应的具体过程; (3)用右手定则或楞次定律确定方向的对应关系; (4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等知识写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画图象或判断图象. 4.电磁感应中图象类选择题的两个常用方法
排除法 定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项.
函数法 根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断.
1.F安-t图象 [典例2] 将一段导线绕成图甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图象是( ) 6
解析:0~T2时间内,根据法拉第电磁感应定律及楞次定律可得回路的圆环形区域产生大小恒定的、顺时针方向的感应电流,根据左手定则,ab边在匀强磁场Ⅰ中受到水平向左的恒定的安培力;同理可得T2~T时间内,ab边在匀强磁场Ⅰ中受到水平向右的恒定的安培力,故B正确. 答案:B 2.v-t图象 [典例3] 如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气阻力影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律( )
A B C D 解析:由题意可知,线框先做自由落体运动,最终做匀加速直线运动.若ab边刚进入磁场7
时,速度较小,线框内产生的感应电流较小,线框所受安培力小于重力,则线圈进入磁场的过程做加速度逐渐减小的加速运动,图象C有可能;若线框进入磁场时的速度较大,线框内产生的感应电流较大,线框所受安培力大于重力,则线框进入磁场时做加速度逐渐减小的减速运动,图象B有可能;若线框进入磁场时的速度合适,线框所受安培力等于重力,则线框匀速进入磁场,图象D有可能;由分析可知选A. 答案:A 3.E-t图象 [典例4] 在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t按如图乙所示规律变化时,下列选项中正确表示线圈中感应电动势E变化的是( )
解析:根据楞次定律得,0~1 s内,感应电流为正方向;1~3 s内,无感应电流;3~5 s内,感应电流为负方向;再由法拉第电磁感应定律得,0~1 s内的感应电动势为3~5 s内的二倍,故A正确. 答案:A 4.i-t图象 [典例5] 如图所示,两个垂直纸面的匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度为a,一正三角形(高为a)导线框ABC从图示位置沿图示方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,线框中感应电流i与线框移动距离x的关系图是下图中的( ) 8
A B C D 解析:x在a~2a范围,线框穿过两磁场分界线时,BC、AC边在右侧磁场中切割磁感线,有效切割长度逐渐增大,产生的感应电动势E1增大,AB边在左侧磁场中切割磁感线,产生的感应电动势E2不变,两个电动势串联,总电动势E=E1+E2增大,故A错误;x在0~a范围,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值,故B错误;x在2a~3a范围,线框穿过右侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值,故C正确,D错误. 答案:C 5.综合图象 [典例6] (多选)如图所示为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向里和向外,磁场宽度均为L.在磁场区域的左侧边界处有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直.现用外力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时的磁通量Φ为正值,外力F向右为正.则以下能反映线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化规律的图象是( )