江苏省苏州市2020届高三上学期期末考试 数学 Word版含答案

合集下载

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

湖南省长沙市长郡中学2020届高三上学期第5次月考数学(文)试题Word版含答案

湖南省长沙市长郡中学2020届高三上学期第5次月考数学(文)试题Word版含答案

品为三级品.现用两种新配方(分别称为
A 配方和 B 配方)做实验,各生产了 100 件这种
产品,并测量了每件产品的质量指标值,得到下面试验结果:
A 配方的频数分布表
B 配方的频数分布表
(1)从 A 配方生产的产品中按等级分层抽样抽取 求恰好取到 l 件二级品的频率;
5 件产品,再从这 5 件产品中任取 3 件,
16.几位大学生响应国家的创业号召,开发出一款应用软件.为激发大家学习数学的兴趣, 他们推出了 “解数学题获取软件激活码” 的活动. 这款软件的激活码为下面数学问题的答案: 已知数列 1, 1, 2, 1,2, 4,1, 2,4,8, 1,2, 4,8.16,…,其中第一项是 20,接下来 的两项是 20,21,再接下来的三项是 20,21,22,依此类推,求满足如下条件的最小整数 N:
4.记 Sn 为等差数列 {a n} 的前 n 项和,若 a1+a5=24 , S6=48,则 {a n} 的公差为
A . 1 B. 2 C. 4 D. 8
5.两数 f(x) 在( -∞, +∞)单调递减,且为奇函数,若 的 x 的取值范围是
f(1)=-1 ,则满足一 1≤ _f(x-2 )≤ 1
A.[-2,2]
N>100 且该数列的前 N 项和为 2 的整数幂,那么该款软件的激活码是 ____.
三、解答题:本大题共 70 分.解答应写出文字说明、证明过程或演算步考生都必须作答,第
22、 23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
17.(本小题满分 12 分) △ ABC 的内角 A , B, C 的对边分别为 a, b,c,已知 2cosC(acosB+bcosA)=c. (l) 求角 C 的值;

上海市华东师范大学二附中2020届高三上学期暑假测试数学试题 Word版含解析

上海市华东师范大学二附中2020届高三上学期暑假测试数学试题 Word版含解析

2019-2020学年上海市浦东新区华师大二附中高三(上)8月月考数学试卷一.填空题1.(3分)(2014秋•崇川区校级期中)i 是虚数单位,3(1)1i i i +=- .2.(3分)(2019秋•浦东新区校级月考)5(x-的展开式中,2x 的系数是 .3.(3分)(2019秋•浦东新区校级月考)“a b >”是“22a b >”的 条件4.(3分)(2016•上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 (米).5.(3分)(2008•天津)一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 . 6.(3分)已知函数10()1x x f x x x -+<⎧=⎨-⎩…,则不等式(1)(1)1x x f x +++„的解集是 . 7.(3分)已知数列{}n a 中,11111,(*)3n n n a a a n N ++=-=∈,则lim n n a →∞= .8.(3分)已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于 . 9.(3分)(2008•天津)设1a >,若仅有一个常数c 使得对于任意的[x a ∈,2]a ,都有[y a ∈,2]a 满足方程log log a a x y c +=,这时a 的取值的集合为 .10.(3分)(2019秋•浦东新区校级月考)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 .11.(3分)(2016•上海)如图,在平面直角坐标系xOy 中,O 为正八边形128A A A ⋯的中心,1(1,0)A 任取不同的两点i A ,j A ,点P 满足0i j OP OA OA ++=u u u r u u u r u u u u r r,则点P 落在第一象限的概率是 .12.(3分)(2019秋•浦东新区校级月考)设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数;③若()()f x g x +、()()f x h x +、()()g x h x +均为奇函数,则()f x 、()g x 、()h x 均是奇函数;④若()()f x g x +、()()f x h x +、()()g x h x +的值域均是R ,则()f x 、()g x 、()h x 均是值域为R 的函数,其中所有正确的命题是 .二.选择题13.(3分)(2008•天津)设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,//b β,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,//b β,αβ⊥14.(3分)(2008•天津)设函数22()cos ()sin (),44f x x x x R ππ=+-+∈,则函数()f x 是()A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 15.(3分)(2008•天津)设函数()1)f x x =<…的反函数为1()f x -,则( )A .1()f x -在其定义域上是增函数且最大值为1B .1()f x -在其定义域上是减函数且最小值为0C .1()f x -在其定义域上是减函数且最大值为1D .1()f x -在其定义域上是增函数且最小值为016.(3分)(2019秋•浦东新区校级月考)下列命题中正确的命题有几个( )(1)1423a a a a +=+是1a ,2a ,3a ,4a 依次构成等差数列的必要非充分条件. (2)若{}n a 是等比数列,212k k k b a a -=+,*k N ∈,则{}k b 也是等比数列. (3)若a ,b ,c 依次成等差数列,则a b +,a c +,b c +也依次成等差数列.(4)数列{}n a 所有项均为正数,则数列1{}(n n n n b b a a +=,*)n N ∈构成等比数列的充要条件是{}n a 构成等比数列. A .1个 B .2个 C .3个 D .4个三.解答题17.(2019秋•浦东新区校级月考)如图,四边形ABCD 与BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =,AC 与BD 交于O 点.(1)求证:FO ⊥平面ABCD ; (2)求二面角A FC B --的余弦值.18.(2011•无锡模拟)如图所示:一吊灯的下圆环直径为4m ,圆心为O ,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)OB 为2m ,在圆环上设置三个等分点1A ,2A ,3A .点C 为OB 上一点(不包含端点O 、)B ,同时点C 与点1A ,2A ,3A ,B 均用细绳相连接,且细绳1CA ,2CA ,3CA 的长度相等.设细绳的总长为ym . (1)设1()CAO rad θ∠=,将y 表示成θ的函数关系式; (2)请你设计θ,当角θ正弦值的大小是多少时,细绳总长y 最小,并指明此时BC 应为多长.19.(2019•北京)已知抛物线2:2C x py =-经过点(2,1)-.(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2008•浦东新区一模)由函数()y f x =确定数列{}n a ,()n a f n =,若函数()y f x =的反函数1()y f x -=能确定数列{}n b ,1()n b f n -=,则称数列{}n b 是数列{}n a 的“反数列”.(1)若函数()f x ={}n a 的反数列为{}n b ,求{}n b 的通项公式;(2)对(1)中{}n b ,1log (12)2a a -对任意的正整数n 恒成立,求实数a 的取值范围;(3)设()()()()111132122nn c n λλλ+---=⋅+⋅-为正整数,若数列}{n c 的反数列为{}n d ,{}n ð与{}n d 的公共项组成的数列为{}n t ,求数列{}n t 前n 项和n S .21.(2019秋•浦东新区校级月考)若函数()f x 定义在区间A 上时存在反函数,那么就称区间A 为函数()f x 的“单射区间”,如果不存在单射区间B ,使得A B ⊂,那么就称A 为函数()f x 的“极大单射区间”,例如[1,2]是函数2()f x x =的“单射区间”, [0,)+∞是函数2()f x x =的“极大单射区间”.(1)求()sin g x x =的所有极大单射区间(k k A A 表示包含k π的区间,)k Z ∈; (2)求()sin g x x =的所有极大单射区间k A 上的反函数1()k g x -,用arcsin x 表示;(3)判断1((2019))kg g -,1((2019))k g g -是否有意义,若有意义,求出它的值,若没有意义,请说明理由.2019-2020学年上海市浦东新区华师大二附中高三(上)8月月考数学试卷参考答案与试题解析一.填空题1.(3分)(2014秋•崇川区校级期中)i 是虚数单位,3(1)1i i i +=- 1- .【解答】解:3(1)(1)(1)(1)211(1)(1)(1)2i i i i i i i i i i +-+----====----+--.故答案为:1-.2.(3分)(2019秋•浦东新区校级月考)5(x-的展开式中,2x 的系数是 40【解答】解:根据题意,5(x的展开式的通项为515((2)rrr rr T C x-+=⨯⨯=-10325r r C x-,令10322r-=,解可得2r =, 则有21(2)r T +=-222540C x x =,即2x 的系数是40, 故答案为:40.3.(3分)(2019秋•浦东新区校级月考)“a b >”是“22a b >”的 既不充分也不必要 条件【解答】解:当0a =,1b =-时,满足a b >,但22a b <;当2a =-,1b =-时,满足22a b >,但a b <,所以a b >是22a b >的充分也不必要条件. 故答案为:既不充分也不必要.4.(3分)(2016•上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 1.76 (米).【解答】解:6Q 位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77, 从小到大排列为:1.69,1.72,1.75,1.77,1.78,1.80, 位于中间的两个数值为1.75,1.77,∴这组数据的中位数是:1.75 1.771.762+=(米). 故答案为:1.76.5.(3分)(2008•天津)一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 24 .【解答】解:设球的半径为R ,由343R π=得R = 所以2a =,表面积为2624a =. 故答案为:246.(3分)(2010秋•承德期末)已知函数1()1x x f x x x -+<⎧=⎨-⎩…,则不等式(1)(1)1x x f x +++„的解集是 (1] .【解答】解:由题意22,1(1)(1)2,1x x x x f x x x x ⎧-<-+++=⎨+-⎩…当0x <时,有21x -„恒成立,故得0x <当0x …时,221x x +„,解得11x 剟,故得01x -剟综上得不等式(1)(1)1x x f x +++„的解集是(1]-∞-故答案为(-∞1].7.(3分)(2008•天津)已知数列{}n a 中,11111,(*)3n n n a a a n N ++=-=∈,则lim n n a →∞= 76 . 【解答】解:因为11221112111()()()1333n n n n n n n a a a a a a a a ----=-++++-+=++⋯++ 所以n a 是一个等比数列的前n 项和,所以11n n q a q -=-,且13q =.代入,所以2173lim 11613n n a →∞=+=-.所以答案为768.(3分)(2016•上海)已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于. 【解答】解:可设ABC ∆的三边分别为3a =,5b =,7c =,由余弦定理可得,222925491cos 22352a b c C ab +-+-===-⨯⨯,可得sin C =可得该三角形的外接圆半径为2sin cC==.9.(3分)(2008•天津)设1a >,若仅有一个常数c 使得对于任意的[x a ∈,2]a ,都有[y a ∈,2]a 满足方程log log a a x y c +=,这时a 的取值的集合为 {2} .【解答】解:log log a a x y c +=Q , log a xy c ∴=c xy a ∴=得c a y x =,单调递减,所以当[x a ∈,2]a 时,11[,]2c c a y a --∈所以1122c c a a a a --⎧⎪⎨⎪⎩…„⇒223a c log c +⎧⎨⎩…„,因为有且只有一个常数c 符合题意,所以2log 23a +=,解得2a =,所以a 的取值的集合为{2}.故答案为:{2}10.(3分)(2019秋•浦东新区校级月考)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 1248【解答】解:根据题意,分2步进行分析:①,要求3行中仅有中间行的两张卡片上的数字之和为5,则中间行的数字只能为1,4或2,3,共有12224C A =种排法, ②,然后确定其余4个数字,其排法总数为46360A =,其中不合题意的有:中间行数字和为5,还有一行数字和为5,有4种排法, 余下两个数字有2412A =种排法,所以此时余下的这4个数字共有360412312-⨯=种方法; 则有43121248⨯=种不同的排法, 故答案为:1248.11.(3分)(2016•上海)如图,在平面直角坐标系xOy 中,O 为正八边形128A A A ⋯的中心,1(1,0)A 任取不同的两点i A ,j A ,点P 满足0i j OP OA OA ++=u u u r u u u r u u u u r r,则点P 落在第一象限的概率是528.【解答】解:从正八边形128A A A ⋯的八个顶点中任取两个,基本事件总数为2828C =.满足0i j OP OA OA ++=u u u r u u u r u u u u r r,且点P 落在第一象限,对应的i A ,j A ,为:4(A ,7)A ,5(A ,8)A ,5(A ,6)A ,6(A ,7)A ,5(A ,7)A 共5种取法.∴点P 落在第一象限的概率是528P =, 故答案为:528. 12.(3分)(2019秋•浦东新区校级月考)设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数;③若()()f x g x +、()()f x h x +、()()g x h x +均为奇函数,则()f x 、()g x 、()h x 均是奇函数;④若()()f x g x +、()()f x h x +、()()g x h x +的值域均是R ,则()f x 、()g x 、()h x 均是值域为R 的函数,其中所有正确的命题是 ②③【解答】解:①,可举反例:2,1()3,1x x f x x x ⎧=⎨->⎩„.23,0()3,012,1x x g x x x x x +⎧⎪=-<<⎨⎪⎩„…,,0()2,0x x h x x x -⎧=⎨>⎩„.均不是增函数,但43,0()()3,0x x f x g x x x +⎧+=⎨+>⎩„、,0()()4,013,1x x f x h x x x x x ⎧⎪+=<<⎨⎪+⎩„…、3,1()()4,1x x g x h x x x +<⎧+=⎨⎩…均为增函数,故①错误;②()()()()f x g x f x T g x T +=+++Q ,()()()()f x h x f x T h x T +=+++,()()()()h x g x h x T g x T +=+++,前两式作差可得:()()()()g x h x g x T h x T -=+-+,结合第三式可得:()()g x g x T =+,()()h x h x T =+,同理可得:()()f x f x T =+,因此②正确.③若()()f x g x +、()()f x h x +、()()g x h x +均是奇函数,()()()()[()f x g x f x h x g x +++-、()]2()h x f x =是奇函数,即()f x 是奇函数,同理()g x 、()h x 均是奇函数,故③正确;④,由①可得()()f x g x +、()()f x h x +、()()g x h x +的值域均是R ,但()f x 、()g x 、()h x 值域均不为R 的函数,故④错误.故答案为:②③. 二.选择题13.(3分)(2008•天津)设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,//b β,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,//b β,αβ⊥【解答】解:A 、B 、D 的反例如图.故选:C .14.(3分)(2008•天津)设函数22()cos ()sin (),44f x x x x R ππ=+-+∈,则函数()f x 是()A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 【解答】解:22()cos ()sin ()44f x x x ππ=+-+1cos(2)1cos(2)2222x x ππ++-+=-sin 2x =-所以T π=,且为奇函数. 故选:A .15.(3分)(2008•天津)设函数()1)f x x =<…的反函数为1()f x -,则( )A .1()f x -在其定义域上是增函数且最大值为1B .1()f x -在其定义域上是减函数且最小值为0C .1()f x -在其定义域上是减函数且最大值为1D .1()f x -在其定义域上是增函数且最小值为0【解答】解:Q 1y =为减函数,由复合函数单调性知()f x 为增函数,1()f x -∴单调递增,排除B 、C ;又1()f x -的值域为()f x 的定义域,1()f x -∴最小值为0故选:D .16.(3分)(2019秋•浦东新区校级月考)下列命题中正确的命题有几个( )(1)1423a a a a +=+是1a ,2a ,3a ,4a 依次构成等差数列的必要非充分条件. (2)若{}n a 是等比数列,212k k k b a a -=+,*k N ∈,则{}k b 也是等比数列. (3)若a ,b ,c 依次成等差数列,则a b +,a c +,b c +也依次成等差数列.(4)数列{}n a 所有项均为正数,则数列1{}(n n n n b b a a +=,*)n N ∈构成等比数列的充要条件是{}n a 构成等比数列. A .1个B .2个C .3个D .4个【解答】解:若1a ,2a ,3a ,4a 依次构成等差数列,则1423a a a a +=+,但11a =,22a =,34a =,45a =时,1423a a a a +=+,但1a ,2a ,3a ,4a 依次不构成等差数列,故1423a a a a +=+是1a ,2a ,3a ,4a 依次构成等差数列的必要非充分条件,即(1)正确; 若{}n a 是等比数列,公比为1-,则若21{}k a -和2{}k a 是也是等比数列,公比均为1,但对应项相反.则2120k k k b a a -=+=,可得{}k b 不是等比数列,即(2)不正确.若a ,b ,c 依次成等差数列,2b a c =+,则22()()()b a c a c a b b c ++=+=+++,即a b +,a c +,b c +也依次成等差数列.故(3)正确.(4)若{}n a 为等比数列,则数列{}n b 显然也是等比数列,但若{}n a 是所有奇数项均相等,所有偶数项也均相等的摆动数列,则{}n b 显然也是等比数列,故数列1{}(n n n n b b a a +=,*)n N ∈构成等比数列的充分为必要条件是{}n a 构成等比数列.故(4)正确. 三.解答题17.(2019秋•浦东新区校级月考)如图,四边形ABCD 与BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =,AC 与BD 交于O 点.(1)求证:FO ⊥平面ABCD ; (2)求二面角A FC B --的余弦值.【解答】解:(1)证明:连结DF ,OF ,Q 四边形ABCD 与BDEF 均为菱形,60DAB DBF ∠=∠=︒,FD FB ∴=,FA FC =Q ,AC 与BD 交于O 点,O ∴是AC 中点,且O 是BD 中点,FO AC ∴⊥,FO BD ⊥,AC BD O =Q I ,FO ∴⊥平面ABCD .(2)解:以O 为的点,OA ,OB ,OF 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设2AB =,则平面AFC 的法向量(0n =r,1,0),(0F ,0,(0B ,1,0),(C ,0,0), (0FB =u u u r ,1,,(FC =u u u r,,设平面FBC 的法向量(m x =r,y ,)z ,则00m FB y m FC ⎧==⎪⎨==⎪⎩u u u r r g u u u r r g ,取1x =,得(1m =r,1)-, 设二面角A FC B --的平面角为θ,则||cos ||||m n m n θ===r rg r r g∴二面角A FC B --.18.(2011•无锡模拟)如图所示:一吊灯的下圆环直径为4m ,圆心为O ,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)OB 为2m,在圆环上设置三个等分点1A ,2A ,3A .点C 为OB 上一点(不包含端点O 、)B ,同时点C 与点1A ,2A ,3A ,B 均用细绳相连接,且细绳1CA ,2CA ,3CA 的长度相等.设细绳的总长为ym . (1)设1()CAO rad θ∠=,将y 表示成θ的函数关系式; (2)请你设计θ,当角θ正弦值的大小是多少时,细绳总长y 最小,并指明此时BC 应为多长.【解答】解:(1)在1Rt COA ∆中,12cos CA θ=,2tan CO θ=,⋯(2分)122(3sin )3322tan 2(0)cos cos 4y CA CB θπθθθθ-=+=+-=+<<⋯g (7分)(2)222cos (3sin )(sin )3sin 1/22cos cos y θθθθθθ-----==, 令0y '=,则1sin 3θ=⋯(12分)当1sin 3θ>时,0y '>;1sin 3θ<时,0y '<,sin y θ=Q 在[0,]4π上是增函数∴当角θ满足1sin 3θ=时,y 最小,最小为2;此时22BC =- ⋯(16分)19.(2019•北京)已知抛物线2:2C x py =-经过点(2,1)-.(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【解答】解:(Ⅰ)抛物线2:2C x py =-经过点(2,1)-.可得42p =,即2p =,可得抛物线C 的方程为24x y =-,准线方程为1y =;(Ⅱ)证明:抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,可得2440x kx +-=,设1(M x ,1)y ,2(N x ,2)y , 可得124x x k +=-,124x x =-,直线OM 的方程为11y y x x =,即14xy x =-, 直线ON 的方程为22y y x x =,即24xy x =-, 可得14(A x ,1)-,24(B x ,1)-,可得AB 的中点的横坐标为121142()224k k x x -+==-g , 即有AB 为直径的圆心为(2,1)k -,半径为12||144||222AB x x =-==, 可得圆的方程为222(2)(1)4(1)x k y k -++=+,化为224(1)4x kx y -++=,由0x =,可得1y =或3-.则以AB 为直径的圆经过y 轴上的两个定点(0,1),(0,3)-.20.(2008•浦东新区一模)由函数()y f x =确定数列{}n a ,()n a f n =,若函数()y f x =的反函数1()y f x -=能确定数列{}n b ,1()n b f n -=,则称数列{}n b 是数列{}n a 的“反数列”.(1)若函数()f x ={}n a 的反数列为{}n b ,求{}n b 的通项公式;(2)对(1)中{}n b ,1log (12)2a a -对任意的正整数n 恒成立,求实数a 的取值范围;(3)设()()()()111132122n n c n λλλ+---=⋅+⋅-为正整数,若数列}{n c 的反数列为{}n d ,{}n ð与{}n d 的公共项组成的数列为{}n t ,求数列{}n t 前n 项和n S .【解答】解:(1)()0)n f x x a n =⇒=…为正整数),21()(0)4x f x x -=…所以数列{}n a 的反数列为{}n b 的通项2(4n n b n =为正整数)(2分)(2)对于(1)中{}n b ,不等式化为2221log (12)..1222a a n n n ++⋯+>-++(3分)222122n T n n n=++⋯+++,1222220212(1)12122n n T T n n n n n +-=+-=->+++++, ∴数列{}n T 单调递增,(5分)所以1()1n min T T ==,要是不等式恒成立,只要11log (12)2a a >-.(6分)120a ->Q ,∴102a <<,又212,01a a a -><<所以,使不等式对于任意正整数n 恒成立的a 的取值范围是1)..(8分)(3)设公共项k p n t c d ==,k 、p 、q 为正整数,当λ为奇数时,121,(1)2n n c n d n =-=+(9分)121(1),432p p q p -=+=-,则{}{}n n b ⊂ð(表示{}n ð是{}n b 的子数列),21n t n =-所以{}n t 的前n 项和2..n S n =(11分) 当λ为偶数时,3n n =ð,3log n d n =(12分) 33log q q =,则33pq =,同样有{}{}n n b ⊂ð,3n n t =所以{}n t 的前n 项和3(31)2n n S =-(14分)21.(2019秋•浦东新区校级月考)若函数()f x 定义在区间A 上时存在反函数,那么就称区间A 为函数()f x 的“单射区间”,如果不存在单射区间B ,使得A B ⊂,那么就称A 为函数()f x 的“极大单射区间”,例如[1,2]是函数2()f x x =的“单射区间”, [0,)+∞是函数2()f x x =的“极大单射区间”.(1)求()sin g x x =的所有极大单射区间(k k A A 表示包含k π的区间,)k Z ∈;读 万 卷 书 行 万 里 路实用文档 精心整理 - 21 - (2)求()sin g x x =的所有极大单射区间k A 上的反函数1()k g x -,用arcsin x 表示;(3)判断1((2019))kg g -,1((2019))k g g -是否有意义,若有意义,求出它的值,若没有意义,请说明理由.【解答】解:(1)[,]22k A k k ππππ=-+,k Z ∈; (2)1()(1)arcsin k kg x x k π-=-+,k Z ∈; (3)1((2019))(1)(6432019)k kg g k ππ-=--+,1((2019))k g g -没意义,因为2019[1∉-,1].。

房山区2020届高三期末数学试题及答案(word版)

房山区2020届高三期末数学试题及答案(word版)

房山区2020届高三第一学期期末数 学本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分 (选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(A ){}0,1 (B ){}1,0,1- (C ){}0,1,2(D ){}1,0,1,2-(2)已知复数=z z 的虚部为(A )13 (B )3(C )13-(D )(3)等差数列{}n a 中,若1476a a a ++=,n S 为{}n a 的前n 项和,则7S =(A )28 (B )21 (C )14(D )7(4)从2020年起,北京考生的高考成绩由语文、数学、外语3门统一高考成绩和考生选考的3门普通高中学业水平考试等级性考试科目成绩构成.等级性考试成绩位次由高到低分为A 、B 、C 、D 、E , 各等级人数所占比例依次为:A 等级15%,B 等级40%,C 等级30%,D 等级14%,E 等级1%.现 采用分层抽样的方法,从参加历史等级性考试的学生中抽取200人作为样本,则该样本中获得A 或B 等级的学生人数为 (A )55 (B )80 (C )90(D )110(5)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )23(B )43(C )2(D )4(6)若点5π5π(cos,sin )66M 在角α的终边上,则tan 2α= (7)已知双曲线C的方程为2214y x -=,点P ,Q 分别在双曲线的左支和右支上,则直线PQ 的斜率的取值范围是 (A )(2,2)-(B )11(,)22-(C )(,2)(2,)-∞-+∞U(D )11(,)(,)22-∞-+∞U(8)设a ,b 均为单位向量,则“a 与b 夹角为π3”是“||+=a b (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(9)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P的轨迹为(10)已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2.(A (B )(C (D )(A )两个点 (B )线段(C )圆的一部分(D )抛物线的一部分俯视图侧(左)视图正(主)视图1A(A )甲 (B )乙 (C )丙(D )丁第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

江苏省苏州市2020届高三上学期期期初调研英语试题+Word版含答案

江苏省苏州市2020届高三上学期期期初调研英语试题+Word版含答案

苏州市2019~2020学年第一学期高三期初调研试卷英语2019.9注意事项:1.本试卷分为第一卷(选择题)和第二卷(非选择题),满分120分。

考试时间120分钟。

2.请将第一卷的答案填涂在答题卡上,第二卷请直接在答题卡上规定的地方作答。

答题前,务必将自己的学校、姓名、考试号等相关信息写在答题卡上规定的地方。

第I卷(选择题,共85分)第一部分:听力理解(共两节,满分20分)做题时,请先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1分,满分5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What will the weather be like according to the radio?A. Sunny.B. Rainy.C. Windy.2. Who will pay the bill?A. The boss.B. Tom.C. The woman.3. How did the woman feel?A. Nervous.B. Excited.C. Upset.4. What can we learn about the man?A. He did well in spelling.B. He couldn’t spell the words.C. He was satisfied with the result.5. How much should the man pay for his room?A.150 pounds.B.110 pounds.C.100 pounds.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

浙江省宁波市2020届高三上学期期末考试数学试题Word版含解析

浙江省宁波市2020届高三上学期期末考试数学试题Word版含解析

浙江省宁波市2020届高三上学期期末考试数学试题第Ⅰ卷(选择题部分,共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.2. 已知,则条件“”是条件“”的()条件.A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件3. 若函数为偶函数,则实数的值为()A. 1B.C. 1或D. 04. 已知焦点在轴上的椭圆的离心率为,则实数等于()A. 3B.C. 5D.5. 圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为,则()A. 1B. 2C. 4D. 86. 已知,为的导函数,则的图像是()A. B. C. D.7. 一个箱子中装有形状完全相同的5个白球和个黑球.现从中有放回的摸取4次,每次都是随机摸取一球,设摸得白球个数为,若,则()A. 1B. 2C. 3D. 48. 《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,问最小1份为()A. B. C. D.9. 若函数在上的最大值为,最小值为,则()A. B. 2 C. D.10. 已知向量,,满足,,,为内一点(包括边界),,若,则以下结论一定成立的是()A. B. C. D.第Ⅱ卷(非选择部分,共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11. 已知,则__________.12. 设为虚数单位,则复数的虚部为__________,模为__________.13. 对给定的正整数,定义,其中,,则__________;当时,__________.14. 在锐角中,已知,则角的取值范围是__________,又若分别为角的对边,则的取值范围是__________.15. 已知双曲线的渐近线方程是,右焦点,则双曲线的方程为_________,又若点,是双曲线的左支上一点,则周长的最小值为__________.16. 现有红、黄、蓝、绿四个骰子,每个骰子的六个面上的数字分别为1,2,3,4,5,6.若同时掷这四个骰子,则四个骰子朝上的数字之积等于24的情形共有__________种(请用数字作答).17. 如图,在平面四边形中,,,,点为中点,分别在线段上,则的最小值为__________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18. 已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值与最小值.19. 如图,在四棱锥中,侧面底面,底面为矩形,为中点,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.20. 已知函数.(Ⅰ)若方程只有一解,求实数的取值范围;(Ⅱ)设函数,若对任意正实数,恒成立,求实数的取值范围.21. 已知抛物线的方程为,为其焦点,过不在抛物线上的一点作此抛物线的切线,为切点.且.(Ⅰ)求证:直线过定点;(Ⅱ)直线与曲线的一个交点为,求的最小值.22. 已知数列满足,.(Ⅰ)若,求证:对任意正整数均有;(Ⅱ)若,求证:对任意恒成立.浙江省宁波市2020届高三上学期期末考试数学试题参考答案第Ⅰ卷(选择题部分,共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】,,,故选A.2. 已知,则条件“”是条件“”的()条件.A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件【答案】B【解析】当时,不成立,所以充分性不成立,当时,成立,也成立,所以必要性成立,所以“”是条件“”的必要不充分条件,故选B.【方法点睛】本题通过不等式的基本性质主要考查充分条件与必要条件,属于中档题. 判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试,对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.3. 若函数为偶函数,则实数的值为()A. 1B.C. 1或D. 0【答案】C【解析】时,不是偶函数,时,二次函数的对称轴为,若为偶函数,则,得或,故选C.4. 已知焦点在轴上的椭圆的离心率为,则实数等于()A. 3B.C. 5D.【答案】D【解析】是焦点在轴上的椭圆,,离心率,得,故选D.5. 圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为,则()A. 1B. 2C. 4D. 8【答案】B【解析】由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:,又∵该几何体的表面积为16+20π,∴,解得r=2,本题选择B选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.视频6. 已知,为的导函数,则的图像是()A. B. C. D.【答案】A【解析】,为奇函数,图象关于原点对称,排除,又,可排除,故选A.【方法点晴】本题通过对多个图象的选择主要考查考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.7. 一个箱子中装有形状完全相同的5个白球和个黑球.现从中有放回的摸取4次,每次都是随机摸取一球,设摸得白球个数为,若,则()A. 1B. 2C. 3D. 4【答案】B【解析】由题意,,,,故选B.8. 《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,问最小1份为()A. B. C. D.【答案】A【解析】试题分析:设五个人所分得的面包为(其中);则由,得所以,最小的1分为.故选A.考点:等差数列的性质9. 若函数在上的最大值为,最小值为,则()A. B. 2 C. D.【答案】C【解析】,又,且时,等号成立,故只需求的最大值,由于,故,故选C.10. 已知向量,,满足,,,为内一点(包括边界),,若,则以下结论一定成立的是()A. B. C. D.【答案】B【解析】以为原点,以所在直线轴建立坐标系,设,则有,,得,又点在内,满足的关系式为,取不满足,,排除选项,取,不满足,排除选项,又,正确,故选B.【方法点睛】本题主要考查平面向量数量积以及平面向量基本定理、排除法解选择题,属于难题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前项和公式问题等等.第Ⅱ卷(非选择部分,共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11. 已知,则__________.【答案】2【解析】,,,故答案为.12. 设为虚数单位,则复数的虚部为__________,模为__________.【答案】 (1). -2 (2).【解析】,的虚部为,故答案为(1);(2). 13. 对给定的正整数,定义,其中,,则__________;当时,__________.【答案】 (1). 64 (2).【解析】,时,,故答案为(1);(2).14. 在锐角中,已知,则角的取值范围是__________,又若分别为角的对边,则的取值范围是__________.【答案】 (1). (2).【解析】锐角中,,,由,可得,,故答案为(1);(2).15. 已知双曲线的渐近线方程是,右焦点,则双曲线的方程为_________,又若点,是双曲线的左支上一点,则周长的最小值为__________.【答案】 (1). (2).【解析】双曲线的渐近线方程是,右焦点,双曲线方程为,设右焦点,由双曲线定义可得,的周长为,故答案为(1);(2).16. 现有红、黄、蓝、绿四个骰子,每个骰子的六个面上的数字分别为1,2,3,4,5,6.若同时掷这四个骰子,则四个骰子朝上的数字之积等于24的情形共有__________种(请用数字作答).【答案】52【解析】因为,对于上述四种情形掷这四个骰子,分别有种情形,综上共有种情形,故答案为.17. 如图,在平面四边形中,,,,点为中点,分别在线段上,则的最小值为__________.【答案】1..................故答案为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18. 已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值与最小值.【答案】(Ⅰ);(Ⅱ)最大值,最小值为.【解析】试题分析:(Ⅰ)根据二倍角的正弦公式、二倍角的余弦公式及辅助角公式化简,根据周期公式可得结果;(Ⅱ由,可得,结合正弦函数的图象可得时,取得最大值,时,的最小值为.试题解析:(Ⅰ),所以的最小正周期为.(Ⅱ)因为,所以.当,即时,取得最大值;当,即时,.即的最小值为.19. 如图,在四棱锥中,侧面底面,底面为矩形,为中点,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(Ⅰ)设与的交点为,连结,则为的中点,由为中点,利用三角形中位线定理可得,从而根据线面平行的判定定理可得平面;(Ⅱ)由勾股定理可得,根据线面垂直的性质定理得平面,故,再根据线面垂直的判定定理可得平面,故就是直线与平面所成的角,在直角中可得.试题解析:(Ⅰ)设与的交点为,连结.因为为矩形,所以为的中点.在中,由已知为中点,所以.又平面,平面,所以平面.(Ⅱ)在中,,,所以,即.因为平面平面,平面平面,,所以平面,故.又因为,平面,所以平面,故就是直线与平面所成的角.在直角中,,所以.即直线与平面所成角的正弦值为.【方法点晴】本题主要考查线面平行的判定定理、直线和平面成的角的定义及求法,属于难题. 证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.20. 已知函数.(Ⅰ)若方程只有一解,求实数的取值范围;(Ⅱ)设函数,若对任意正实数,恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)利用导数研究函数的单调性,可得函数在上单调递减,函数在区间上单调递增,根据单调性可得时,,时,,且,结合函数图象可得结果;(Ⅱ)由(Ⅰ)知,对任意正实数,恒成立,等价于,先排除,当时,利用导数可得,所以.试题解析:(Ⅰ)由已知.当时,,函数在上单调递减;当时,,函数在区间上单调递增.故.又当时,.且(对足够小的).又当时,.即所求的取值范围是.(Ⅱ)由(Ⅰ)知.所以对任意正实数,恒成立,等价于.∵.(1)当时,,与式矛盾,故不合题意.(2)当时,当时,,当时,,所以在上单调递增,在区间上单调递减.,所以.综合(1)(2)知实数的取值范围为.21. 已知抛物线的方程为,为其焦点,过不在抛物线上的一点作此抛物线的切线,为切点.且.(Ⅰ)求证:直线过定点;(Ⅱ)直线与曲线的一个交点为,求的最小值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(Ⅰ)设直线的方程为,设,,由消去得,根据韦达定理,结合导数的结合意义可得这两条切线的斜率分别为,.由这两切线垂直得,从而可得结论;(Ⅱ)设,则,,,,,利用导数求出的最小值即可.试题解析:(Ⅰ)设直线的方程为,设,以为切点的切线方程分别为,.由消去得.则,.这两条切线的斜率分别为,.由这两切线垂直得,得.所以直线恒过定点.(Ⅱ)设,则,,当时,则,可得,当时,则,,,同样可得.所以.由.所以.令,..所以在上为减函数,在上为增函数.所以.(或当时取等号.)【方法点睛】本题主要考查直线和抛物线的位置关系、最值问题及直线过定点问题. 属于难题. 探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ②从特殊情况入手,先探求定点,再证明与变量无关.22. 已知数列满足,.(Ⅰ)若,求证:对任意正整数均有;(Ⅱ)若,求证:对任意恒成立.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)当时,根据和在均为增函数,可得,当时,由在上为减函数,得.当时,可得恒成立,从而可得结论;(Ⅱ)由第(Ⅰ)题知,令,则,可证明为递减数列,.从而.又由可得.所以.试题解析:(Ⅰ)当时,根据和在均为增函数.从而当时,必有或.当时,由在上为减函数,得.当时,,从而恒成立.综上所述,对所有满足的正整数均成立.(Ⅱ)一方面,由第(Ⅰ)题知.又.所以.另一方面,,且,令,则,即,且,.∴.由,且知为递减数列,且.所以.从而.又由.所以.所以.。

2020届高考数学(文)二轮复习专题过关检测:专题3 不等式 Word版含答案

2020届高考数学(文)二轮复习专题过关检测专题3 不等式1.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-1或x ≥92 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤92 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-92或x ≥1D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1 解析:选D 不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,所以(2x +9)(x -1)≤0,解得-92≤x ≤1.所以不等式(x +5)(3-2x )≥6的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1.故选D. 2.设a >b ,a ,b ,c ∈R ,则下列式子正确的是( ) A .ac 2>bc 2B.ab>1 C .a -c >b -cD .a 2>b 2解析:选C 若c =0,则ac 2=bc 2,故A 错;若b <0,则a b<1,故B 错;不论c 取何值,都有a -c >b -c ,故C 正确;若a ,b 都小于0,则a 2<b 2,故D 错.于是选C.3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =( )A .1B .0C .-1D .-3解析:选D 由题意得,不等式x 2-2x -3<0的解集A =(-1,3),不等式x 2+x -6<0的解集B =(-3,2).所以A ∩B =(-1,2),即不等式x 2+ax +b <0的解集为(-1,2),所以a =-1,b =-2,所以a +b =-3.4.设不等式组⎩⎪⎨⎪⎧x -2y ≤0,x -y +2≥0,x ≥0表示的可行域为Ω,则( )A .原点O 在Ω内B .Ω的面积是1C .Ω内的点到y 轴的距离有最大值D .若点P (x 0,y 0)∈Ω,则x 0+y 0≠0。

2020届高考数学大二轮刷题首选卷文数文档:第一部分+考点五+程序框图+Word版含解析

考点五程序框图一、选择题1.(2019·全国卷Ⅰ)如图是求12+12+12的程序框图,图中空白框中应填入() A.A=12+AB.A=2+1AC.A=11+2AD.A=1+12A答案A解析对于选项A,A=12+A.当k=1时,A=12+12,当k=2时,A=12+12+12,故A正确;经验证选项B,C,D均不符合题意.故选A.2.(2019·湖北八校第二次联考)如图程序中,输入x=ln 2,y=log32,z=12,则输出的结果为()A.x B.y C.z D.无法确定答案A解析图中程序的功能是输出x,y,z的最大值,因为ln 3>1,所以y=log32=ln 2ln 3<ln 2=x,x=ln 2>ln e=12=z,所以输出x.3.(2019·全国卷Ⅲ)执行如图所示的程序框图,如果输入的为0.01,则输出s的值等于()A.2-124B.2-125C.2-126D.2-127答案C解析=0.01,x=1,s=0,s=0+1=1,x=12,x<不成立;s=1+12,x=14,x<不成立;s=1+12+14,x=18,x<不成立;s=1+12+14+18,x=116,x<不成立;s=1+12+14+18+116,x=132,x<不成立;s=1+12+14+18+116+132,x=164,x<不成立;s=1+12+14+18+116+132+164,x=1128,x<成立,此时输出s=2-126.故选C.4.(2019·山东临沂三模)秦九韶,中国古代数学家,对中国数学乃至世界数学的发展做出了杰出贡献.他所创立的秦几韶算法,直到今天,仍是多项式求值比较先进的算法.用秦九韶算法将f(x)=2019x2018+2018x2017+2017x2016+…+2x+1化为f(x)=(…((2019x+2018)x+2017)x+…+2)x+1再进行运算,计算f(x0)的值时,设计了如图所示的程序框图,则在◇和▭中可分别填入()A.n≥2和S=Sx0+n B.n≥2和S=Sx0+n-1C.n≥1和S=Sx0+n D.n≥1和S=Sx0+n-1答案C解析由题意可知,当n=1时程序循环过程应该继续进行,n=0时程序跳出循环,故判断框中应填入n≥1,由秦九韶算法的递推关系可知矩形框中应填入的递推关系式为S=Sx0+n,故选C.5.(2019·河南八市重点高中联考)相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.“三分损益”包含“三分损一”和“三分益一”,用现代数学的方法解释如下,“三分损一”是在原来的长度减去一分,即变为原来的三分之二;“三分益一”是在原来的长度增加一分,即变为原来的三分之四,如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x的值为()A.6481 B.3227 C.89 D.1627答案B解析由题意,执行循环结构的程序框图,可得第1次循环:x=23,i=2,不满足判断条件;第2次循环:x=89,i=3,不满足判断条件;第3次循环:x=3227,i=4,满足判断条件,输出结果3227,故选B.6.(2019·辽宁丹东质量测试(一))计算机在数据处理时使用的是二进制,例如十进制数1,2,3,4的二进制数分别表示为1,10,11,100,二进制数…dcba化为十进制数的公式为…dcba=a·20+b·21+c·22+d·23+…,例如二进制数11等于十进制数1·20+1·21=3,又如二进制数101等于十进制数1·20+0·21+1·22=5,如图是某同学设计的将二进制数11111化为十进制数的程序框图,则判断框内应填入的条件是()A.i>4 B.i≤4 C.i>5 D.i≤5答案B解析在将二进制数11111化为十进制数的程序中循环次数由循环变量i决定,∵11111共有5位,因此要循环4次才能完成整个转换过程,∴退出循环的条件根据程序框图和答案选项,应设为i≤4,故选B.7.(2019·黑龙江哈尔滨三中二模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.i<20,S=S-1i,i=2iB.i≤20,S=S-1i,i=2iC .i <20,S =S 2,i =i +1D .i ≤20,S =S 2,i =i +1答案 D解析 根据题意可知,截取1天后S =12,所以满足S =S 2,不满足S =S -1i ,故排除A ,B ;由框图可知,计算截取20天后的剩余时,有S =S 2,且i =21,所以循环条件应该是i ≤20.故选D.8.(2019·湖北重点中学高三起点考试)美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a ,n ,ξ的值分别为8,2,0.5,每次运算都精确到小数点后两位,则输出的结果为( )A .2.81B .2.82C .2.83D .2.84答案 D解析 输入a =8,n =2,ξ=0.5,m =82=4,n =4+22=3,|4-3|=1>0.5;m=83≈2.67,n ≈2.67+32≈2.84,|2.67-2.84|=0.17<0.5,输出的结果为2.84.二、填空题9.执行如图所示的程序框图,若输出的结果为12,则输入的实数x的值是________.答案2解析因为输出的结果为12,所以有⎩⎪⎨⎪⎧log2x=12,x>1或⎩⎪⎨⎪⎧x-1=12,x≤1.解得x= 2.所以输入的实数x的值为 2.10.(2019·辽宁沈阳育才学校八模)我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与古希腊的算法——“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a =288,b=123时,输出的a=________.答案3解析解法一:按照程序框图运行程序,输入:a=288,b=123,则r=42,a=123,b=42,不满足r=0,循环;则r=39,a=42,b=39,不满足r=0,循环;则r=3,a=39,b=3,不满足r=0,循环;则r=0,a=3,b=0,满足r=0,输出a=3.解法二:程序框图的功能为“辗转相除法”求解两个正整数的最大公约数,因为288与123的最大公约数为3,所以a=3.11.(2019·安徽A10联盟最后一卷)《九章算术》中有如下问题:“今有牛、羊、马食人苗,苗主责之粟五斗,羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”翻译为:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说“我马吃的禾苗只有牛的一半”打算按此比率偿还,问:牛、马、羊的主人各应赔偿多少粟?已知1斗=10升,针对这一问题,设计程序框图如图所示,若输出k的值为2,则m=________.答案50 7解析运行该程序,第一次循环,S=50-m,k=1;第二次循环,S=50-3m,k=2;第三次循环,S=50-7m,此时要输出k的值,则50-7m=0,解得m=50 7.12.(2019·湖北七校联盟期末)设a是一个各位数字都不是0且没有重复数字的三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=746,则I(a)=467,D(a)=764),阅读如图所示的程序框图,运行相应的程序,若输入的a为123,则输出的b为________.答案495解析由程序框图,知第一次循环a=123,b=321-123=198;第二次循环a=198,b=981-189=792;第三次循环a=792,b=972-279=693;第四次循环a=693,b=963-369=594;第五次循环a=594,b=954-459=495;第六次循环a=495,b=954-459=495,满足条件a=b,跳出循环体,输出495.一、选择题1.(2019·湖南衡阳三模)著名的“3n+1猜想”是对任何一个正整数进行规定的变换,最终都会变成 1.如图的程序框图示意了“3n+1”猜想,则输出的n为()A.5 B.6 C.7 D.8答案B解析a=10是偶数,a=5,n=1,a>1,a=5是奇数,a=16,n=2,a>1,a=16是偶数,a=8,n=3,a>1,a=8是偶数,a=4,n=4,a>1,a=4是偶数,a=2,n=5,a>1,a=2是偶数,a=1,n=6,a≤1成立,输出n=6,故选B.2.(2019·福建高三检测)程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.120 B.84 C.56 D.28答案B解析i=0,n=0,S=0;i=1,n=1,S=1,i≥7,否;i=2,n=3,S=1+3,i≥7,否;i=3,n=6,S=1+3+6,i≥7,否;i=4,n=10,S=1+3+6+10,i≥7,否;…i=7,n=28,S=1+3+6+10+15+21+28,i≥7,是;输出S=84.3.(2019·湖南长沙高三统考)若正整数N除以正整数m后的余数为r,则记为N=r(mod m),例如10=2(mod 4).如图所示程序框图的算法源于我国古代数学名著《孙子算经》中的“中国剩余定理”,则执行该程序框图输出的i等于()A.3 B.9 C.27 D.81答案C解析第一次执行循环体,得i=3,N=14,此时14=2(mod 3),但14≠1(mod 7).第二次执行循环体,得i=9,N=23,此时23=2(mod 3),但23≠1(mod 7).第三次执行循环体,得i=27,N=50,此时50=2(mod 3),且50=1(mod 7),退出循环,所以输出i的值为27,故选C.4.(2019·江西九校重点中学协作体第一次联考)《九章算术》是中国古代数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”翻译成现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出更相减损术的程序图如图所示,如果输入的a=114,b=30,则输出的n为()A.3 B.6 C.7 D.8答案C解析∵a=114,b=30,满足a,b都是偶数,则a=a2=57,b=b2=15,k=2;不满足a,b都是偶数,且不满足a=b,满足a>b,则a=57-15=42,n=1,不满足a=b,满足a>b,则a=42-15=27,n=2,不满足a=b,满足a>b,则a=27-15=12,n=3,不满足a=b,不满足a>b,则c=12,a=15,b=12,则a=15-12=3,n=4,不满足a=b,不满足a>b,则c=3,a=12,b=3,则a=12-3=9,n=5,不满足a=b,满足a>b,则a=9-3=6,n=6,不满足a=b,满足a>b,则a=6-3=3,n=7,满足a=b,结束循环,输出n=7,故选C.5.(2019·江西新八校第二次联考)如图所示的程序框图所实现的功能是()A.输入a的值,计算(a-1)×32021+1B.输入a的值,计算(a-1)×32020+1C.输入a的值,计算(a-1)×32019+1D.输入a的值,计算(a-1)×32018+1答案B解析由程序框图,可知a1=a,a n+1=3a n-2,由i的初值为1,末值为2019,可知,此递推公式共执行了2019+1=2020次,又由a n+1=3a n-2,得a n+1-1=3(a n-1),得a n-1=(a-1)×3n-1,即a n=(a-1)×3n-1+1,故a2021=(a-1)×32021-1+1=(a-1)×32020+1,故选B.6.(2019·四川泸州第二次质量诊断)某班共有50名学生,其数学学业水平考试成绩记作a i(i=1,2,3,…,50),若成绩不低于60分为合格,则如图所示的程序框图的功能是()A.求该班学生数学学业水平考试的不合格人数B.求该班学生数学学业水平考试的不合格率C.求该班学生数学学业水平考试的合格人数D.求该班学生数学学业水平考试的合格率答案D解析执行程序框图,可知输入50个学生成绩a i,k表示该班学生数学成绩为该班学生数学学业水平考试的合格合格的人数,程序结束时i=51,输出的ki-1率,故选D.7.如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),且每对小兔子刚出生的前两个月没有生育能力,但从出生后的第三个月开始便能每月生一对小兔子.假定这些兔子都不发生死亡现象,现有一对刚出生的兔子,那么从这对兔子刚出生开始,到第十个月会有多少对兔子呢?同学A据此建立了一个数列模型,设F(0)=0,第n个月兔子的对数为F(n),由此得到F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).如图是同学B根据同学A的数列模型设计的程序框图,求该数列的前10项和,则在空白框内分别填入的语句是()A.P=M;n≤9? B.N=P;n≤9?C.P=M;n≤10? D.N=P;n≤10?答案B解析F(1)=1,F(2)=1,F(3)=2,F(4)=3,F(5)=5,F(6)=8,F(7)=13,F(8)=21,F(9)=34,F(10)=55,输出的S=F(0)+F(1)+F(2)+…+F(10).由程序框图可知,当n=2时,S=0+1,P=0+1=1,S=1+1,M=1,N=1;当n =3时,S=0+1+1+2,则处理框内应填入“N=P”,排除A,C;又最终输出S 时,n=10,所以判断框内应填入“n≤9?”,故选B.8.(2019·河北邯郸一模)我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S 的单位为钱,则输出的x ,y 分别为此题中好、坏田的亩数的是( )答案 B解析 由题意得,田的价值S =300x +5007y ,可排除C ,亩数x +y =100.由⎩⎨⎧ 300x +5007y =10000,x +y =100,解得⎩⎪⎨⎪⎧x =12.5,y =87.5,若初始变量x =0.5,则累加变量x =x +3满足题意,故选B. 二、填空题9.(2019·湘赣十四校第一次联考)执行如图所示的程序框图,则输出n 的值为________.答案23解析当n=7时,可知n=2×7+1=15,又i=1+1=2<3,循环;当n=15时,可知n=15-4=11,又i=2+1=3,循环;当n=11时,可知n=2×11+1=23,又i=3+1=4>3,输出n,则n=23.10.(2019·广西南宁第一次适应性考试)元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原壶中13的酒量”,即输出值是输入值的13,则输入的x=________.答案21 23解析 i =1时,x =2x -1;i =2时,x =2(2x -1)-1=4x -3;i =3时,x =2(4x-3)-1=8x -7;i =4时,退出循环.此时,8x -7=13x ,解得x =2123.11.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值 3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 值为________.(参考数据:3≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)答案 24解析 由程序框图,n ,S 值依次为:n =6,S ≈2.598;n =12,S =3;n =24,S ≈3.1056,此时满足S ≥3.10,输出n =24.12.(2019·山东德州一模)在《九章算术》中记载着一道关于“持金出关”的题目,大意是:“在古代出关要交税.一天,某人拿钱若干出关,第1关交所拿钱数的12,第2关交所剩钱数的13,第3关交所剩钱数的14,…”.现以这则故事中蕴含的数学思想,设计如图所示的程序框图,则运行此程序,输出n 的值为________.答案6解析n=1,a=72,S=0,S<60,是;S=0+11×2×72=36,n=2,S<60,是;S=36+12×3×72=48,n=3,S<60,是;S=48+13×4×72=54,n=4,S<60,是;S=54+14×5×72=57.6,n=5,S<60,是;S=57.6+15×6×72=60,n=6,S<60,否;输出n=6.。

江西省赣州市石城中学2020届高三上学期第六次周考数学(文)(A)试卷 Word版含答案

数学(文A )试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A.14B.122 22.已知全集{1,3,5,7}U =,集合{1,3}A =,}5,3{=B ,则()()U UA B ⋂=痧( )A. {3}B. {7}C. {3,7}D. {1,3,5}3.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷800个点,其中落入黑色部分的有453个点,据此可估计黑色部分的面积约为( ) A. 11B. 10C. 9D. 84.如图,用与底面成45°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为( ) 233135.一直线l 与平行四边形ABCD 中的两边,AB AD 分别交于点,E F ,且交其对角线AC 于点M ,若()2,3,,AB AE AD AF AM AC R λλ===∈u u u r u u u r u u u r u u u r u u u u r u u u rg ,则λ=( )A.12B.15C.23 D. 56.下列命题错误的是( )A. 命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B. 若p :0x ∀≥,sin 1x ≤.则p ⌝:00x ∃≥,0sin 1x >.C. 若复合命题:“p q ∧”为假命题,则p ,q 均为假命题D. “2x >”是“2320x x -+>”的充分不必要条件 7.若sin 3sin 2x x π⎛⎫=-⎪⎝⎭.则sin cos()x x π⋅+=( )A.103 B. 310-C.34D. 34-8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,其侧视图中的曲线为14圆周,则该几何体的体积为( ) A. 16πB. 6416π-C. 32643π-D. 16643π- 9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:相逢时良马比驾马多行( ) A. 1125里B. 920里C. 820里D. 540里10.已知函数()()sin 3cos 0f x x x ωωω=>的零点构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向右平移6π个单位,得到函数()g x 的图象.关于函数()g x ,下列说法正确的是( )A. 在,42ππ⎡⎤⎢⎥⎣⎦上是增函数B. 其图象关于直线2x π=对称C. 函数()g x 是偶函数D. 在区间2,63ππ⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤⎣⎦ 11.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A. 1B. -1C. -3D. 312.已知抛物线2:2(0)C y px p =>,过其焦点F 的直线l 交抛物线于,A B 两点,若3AF FB =u u u r u u u r,且抛物线C 上存在点M 与x 轴上一点(7,0)N 关于直线l 对称,则该抛物线的焦点到准线的距离为( ) A. 4B. 5C.211 D. 6二、填空题(本大题共4小题,共20.0分)13.函数()()log 322f x a x =-+(0a >且1a ≠)恒过的定点坐标为______.14.已知实数,x y满足3301010x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,则282x yzx y++=+的最小值为______.14.若曲线xxxf ln)(+=在点(1,1)处的切线与圆222ryx=+(0)r>相切,则r=__________.16.已知函数()()()31ln3ln3xxf x x⎡⎤=-⎢⎥⎢⎥⎣⎦g,且()02>-xf,则实数x的取值范围是()三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知公差不为0的等差数列{}n a的前n项和为n S,且426S=,1a,3a,11a成等比数列.(1)求数列{}n a的通项公式;(2)若数列1nS n⎧⎫⎨⎬+⎩⎭的前n项和为n T,证明:23nT<.18.为推进“千村百镇计划”,某新能源公司开展“电动新余绿色出行”活动,首批投放200台P型新能源车到新余多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对P型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为100分).最后该公司共收回600份评分表,现从中随机抽取40份(其中男、女的评分表各20份)作为样本,经统计得到如下茎叶图:(1)求40个样本数据的中位数m;(2)已知40个样本数据平均数80a=,记m与a的较大值为M.该公司规定样本中试用者的“认定类型”:评分不小于M的为“满意型”,评分小于M的为“需改进型”.① 请根据40个样本数据,完成下面22⨯列联表:认定类型满意型需改进型合计性别女性20男性20合计40并根据22⨯列联表判断能否有99%的把握认为“认定类型”与性别有关?② 为做好车辆改进工作,公司先从样本“需改进型”的试用者中按性别用分层抽样的方法,从中抽取8人进行回访.根据回访意见改进车辆后,再从这8人中随机抽取2人进行二次试用,求这2人中至少有一位女性的概率是多少?附:22()()()()()n ad bcKa b c d a c b d-=++++19.如图,在三棱锥ABCP-中,PA AC⊥,AB BC⊥,2==BCPA,22==ACPB,D为线段AC的中点,将CBD∆折叠至EBD∆,使得ABCEDB平面平面⊥且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥EBCP-的体积.2()P K k…0.050 0.010 0.001k 3.841 6.635 10.82820.在平面直角坐标系xOy ,已知椭圆2222:1xy C a b+=(0)a b >>的离心率21=e ,直线:10l x my --=)(R m ∈过椭圆C 的右焦点F ,且交椭圆C 于A ,B 两点.(1)求椭圆C 的标准方程: (2)已知点5,02D ⎛⎫⎪⎝⎭,连结BD ,过点A 作垂直于y 轴的直线1l ,设直线1l 与直线BD 交于点P ,试探索当m 变化时,是否存在一条定直线2l ,使得点P 恒在直线2l 上?若存在,请求出直线2l 的方程;若不存在,请说明理由.21.已知函数()11ln 12f x x mx x=---. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()()1g x xf x =+存在两个极值点()1212,x x x x <,并且212121ln ln ax x x x x ->-恒成立,求实数a 的取值范围.以下为选做题:共10分请考生从第22、23题中任选一题做答,如果多做,则按所做的第一题计分,作答时请写清题号.22.已如直线C 的参数方程为(12cos 12sin x y θθ=-+⎧⎨=+⎩(θ为参数).以原点O 为极点.x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程:(2)若直线:l θα=([0,)απ∈,R ρ∈)与曲线C 相交于A ,B 两点,设线段AB 的中点为M ,求||OM 的最大值.23.已知函数()12,f x x x m m R =-+-∈. (1)当3m =时,解不等式()3f x ≥.(2)若存在0x 满足()0021f x x <--,求实数m 的取值范围.数学(文A )答案一选择题:C B C A B C A B D D C D 二、填空题 13.()1,214. 2 14.5()(),22,-∞+∞U 17.(1)由1a ,3a ,11a 成等比数列,得21113a a a =,即()()121114626102a d a a d a d +=⎧⎪⎨+=+⎪⎩ ,又0d ≠,解得12a =,3d =,所以()123131a n n =+-=-. (2)()()21131322222n n n n n n nS na d n --=+=+=+, ()21122113313122n n n S n n n n n n ⎛⎫===- ⎪+++⎝⎭++,2111112121 (132231313)n T n n n ⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪++⎝⎭⎝⎭. 18.(1)由茎叶图知中位数8082812m +==, (2)因为81m =,80a =,所以81M =.①由茎叶图知,女性试用者评分不小于81的有15个,男性试用者评分不小于81的有5个,根据题意得22⨯列联表:可得:2240(151555)10 6.63520202020K ⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为“认定类型”与性别有关.②由①知从样本“需改进型”的试用者中按性别用分层抽样的方法, 抽出女性2名,男性6名.记抽出的2名女性为;A ,B ;记抽出的6名男性为:a ,b ,c ,d ,e ,f 从这8人中随机抽取2人进行二次试用的情况有:(,)(,)(,)(,)(,)(,)A B A a A b A c A d A e(,)(,)(,)(,)(,)(,)(,)A f B a B b B c B d B e B f (,)(,)(,)(,)(,)(,)(,)(,)a b a d a d a c b c b d b e b f (,)(,)(,)(,)(,)(,)c d c e c f d e d f e f ,共有28种:其中2人中至少一名女性的情况有:(,)(,)(,)(,)(,)(,)(,)(,)(,)A B A a A b A c A d A e A f B a B b(,)(,)(,)(,)B c B d B e B f ,共有13种:所以2人中至少一名女性的概率是:2813=P 19.(1)证明:Q 在三棱锥P ABC -中,PA AC ⊥, 2PA =, 22AC =∴ 23PC =又Q 2,2PB BC == ∴ 222PB BC PC += 0>ω BC PB ⊥又Q AB BC ⊥ PAB BC ∴⊥平面 BC PA ∴⊥ PA AC ⊥ 0>ω PA ABC ⊥平面BD ABC ⊂Q 又平面 ,2PA BD PA AB AB ∴⊥⊥⇒=D AC Q 又为的中点 BD AC ∴⊥ BD PAC ∴⊥平面 EBD PAC 平面平面∴⊥(2)V P EBC E PBC B APCE P ABC V V V ----==- 由已知,DE ∥AP)11222222222APCE APED EDC S S S ∆∴=+==(11222222333B APCE APCE V S BD -∴=⋅==11142223323P ABC ABC V S PA -∆=⋅=⨯⨯⨯⨯=43P EBC B APCE P ABC V V V ---∴=-==20.解:(1)由题意知,112c c a =⎧⎪⎨=⎪⎩解得;12c a =⎧⎨=⎩从而3222=-=c a b ,所以椭圆C 的标准方程为:13422=+y x .(2)令0m =,则31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭或者31,2A ⎛⎫- ⎪⎝⎭,31,2B ⎛⎫ ⎪⎝⎭. 当31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭时,34,2P ⎛⎫ ⎪⎝⎭:当31,2A ⎛⎫- ⎪⎝⎭,31,2B ⎛⎫ ⎪⎝⎭时,34,2P ⎛⎫- ⎪⎝⎭,所以,满足题意的定直线2l 只能是4x =.下面证明点P 恒在直线4x =上.设()11,A x y ,()22,B x y ,由于PA 垂直于y 轴, 所以点P 的纵坐标为1y ,从而只要证明()14,P y 在直线BD 上.由2210143x my x y --=⎧⎪⎨+=⎪⎩得()2243690m y my ++-=,Q ()214410m ∆=+>,∴122643m y y m -+=+,122943y y m -=+. Q212220055541222DB DPy y y k k x my ---=-=--+-212233223322y y my my ⎛⎫-- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1212222226293433433322m y y my y m m m my my --+--++==--222664343032m mm m my ---++==-∴0DB DP k k -=,即DB DP k k =.∴点()14,P y 恒在直线BD 上,从而直线1l 、直线BD 与直线2:4l x =三线恒过同一点P ,所以存在一条定直线2:4l x =使得点P 恒在直线2l 上.21.(Ⅰ)函数()f x 的定义域为{}0x x >,()222221112222222mx x mx x f x m x x x x-++--=-+==-'. 当0m ≤时,()0f x '>,函数()f x 在()0,+∞单调递增; 当0m >时,方程2220mx x --=的两根1x =,2x =,且10x <,20x >,则当10,x m ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增;当1x m ⎛⎫+∈+∞ ⎪ ⎪⎝⎭,()0f x '<,()f x 单调递减. 综上:当0m ≤时,函数()f x 在()0,+∞单调递增;当0m >时,10,x m ⎛⎫+∈ ⎪ ⎪⎝⎭时,()f x 单调递增;当1x m ⎛⎫+∈+∞ ⎪ ⎪⎝⎭时,()f x 单调递减. (Ⅱ)()21ln 2g x x x mx x =--,()ln g x x mx ='-, ∵函数()g x 存在两个极值点1x ,2x ,∴1122lnx mx lnx mx =⎧⎨=⎩,则()2121ln ln x x m x x -=-,2121ln ln x x m x x -=-.∴()()2212121212121ln ln ln ln 2ln ln 22x x x x x x m x x x x x x --=-=-=--212121ln ln ax x x x x ->-恒成立,即()211212121ln ln 2x x ax x x x x x x -->--恒成立, 即∵210x x >>,∴212112ln x x x a x x -<令211x t x =>,则()21ln a t t <-,令()()21ln g t t t =- ()()112ln 212ln 2g t t t t t t=+-=+-',∴()2210g t t t+'=>',∴()g t '在()1,+∞单调递增. ∴()()110g t g '='>>.∴()g t 在()1,+∞单调递增,()()10g t g >=,则0a ≤.22.试题分析:(Ⅰ)利用cos ?sin x y ρθρθ==,求极坐标方程即可; (Ⅱ)设()1,A ρα、()2,B ρα,则122OM ρρ+=,联立θα=和22cos 2sin 20ρρθρθ+--=即可.试题解析:(I )曲线C 的普通方程为()()222112x y ++-=, 由{x cos y sin ρθρθ==,得22cos 2sin 20ρρθρθ+--=;(II )解法1:联立θα=和22cos 2sin 20ρρθρθ+--=, 得()22cos sin 20ρραα+--=,设()1,A ρα、()2,B ρα,则()122sin cos 4πρρααα⎛⎫+=-=-⎪⎝⎭,由122OM ρρ+=, 得4OM πα⎛⎫=-≤ ⎪⎝⎭,当34πα=时,|OM |. 23.(1)3m =时, ∴()3f x ≥的解集为17|33x x x ⎧⎫≤≥⎨⎬⎩⎭或; (2)若存在0x 满足()0021f x x <--等价于2222x x m -+-<有解, ∵2222x x m m -+-≥-,∴22m -<,解得04m <<, 实数m 的取值范围是(0,4).。

北京市东城区2020届高三第一学期期末数学试题(word版含答案)

北京市东城区2020届第一学期末统一检测 高三数学 2020.1本试卷共4页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|1}A x x =≤,()(){|210}B x x x =-+<,那么A B =I (A){|12}x x -<< (B){|11}x x -<≤ (C){|12}x x <≤(D){|11}x x -<≤(2)复数z=i(i 1)-在复平面内对应的点位于 (A)第一象限 (B) 第二象限 (C) 第三象限(D)第四象限(3)下列函数中,是偶函数,且在区间(0+)∞,上单调递增的为 (A)1y x=(B)ln y x = (C)2xy -=(D)1y x =-(4)设,a b 为实数,则“0a b >>”是“a b π>π”的 (A) 充分而不必要条件(B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件 (5)设,αβ是两个不同的平面,,m n 是两条不同的直线,则下列结论中正确的是 (A)若m α⊥,m n ⊥,则 n α∥(B) 若αβ⊥,m α⊥,n β⊥,则m n ⊥ (C)若n α∥,m n ⊥,则m α⊥(D)若αβ∥,m ⊂α,n ⊂β,则m n ∥(6)从数字1,2,3,4,5中,取出3个数字(允许重复),组成三位数,各位数字之和等于6,这样的三位数的个数为 (A)7 (B) 9(C)10(D)13(7)设αβ,是三角形的两个内角,下列结论中正确的是(A)若2αβπ+<,则sin sin αβ+<若2αβπ+<,则cos cos αβ+<(C)若2αβπ+>,则sin sin 1αβ+>(D)若2αβπ+>,则cos cos 1αβ+>(8) 用平面截圆柱面,当圆柱的轴与α所成角为锐角时,圆柱面的截线是一个椭圆.著名数学家Dandelin 创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于α的上方和下方,并且与圆柱面和α均相切.给出下列三个结论: ①两个球与α的切点是所得椭圆的两个焦点;②若球心距124O O =,球的半径为3,则所得椭圆的焦距为2; ③当圆柱的轴与α所成的角由小变大时,所得椭圆的离心率也由小变大. 其中,所有正确结论的序号是 (A) ① (B)②③ (C) ① ② (D) ① ②③第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2020届高三模拟考试试卷
数 学
(满分160分,考试时间120分钟)
2020.2
参考公式:

锥体的体积V=13Sh,其中S为锥体的底面积,h是锥体的高.

球的体积V=43πr3,其中r表示球的半径.
一、 填空题:本大题共14小题,每小题5分,共70分.
1. 已知集合A={x|x≥1},B={-1,0,1,4},则A∩B=________.
2. 已知i是虚数单位,复数z=(1+bi)(2+i)的虚部为3,则实数b的值为________.
3. 从2名男生和1名女生中任选2名参加青年志愿者活动,则选中的恰好是一男一女的
概率为________.
4. 为了了解苏州市某条道路晚高峰时段的车流量情况,随机抽查了某天单位时间内通过
的车辆数,得到以下频率分布直方图(如图).已知在[5,7)之间通过的车辆数是440辆,则在
[8,9)之间通过的车辆数是________.

(第4题)
2
(第5题)
5. 如图是一个算法流程图,若输入的x值为5,则输出的y值为________.
6. 已知等比数列{an}中,a1>0,则“a1<a2”是“a3<a5”的________条件.(填“充分
不必要”“必要不充分”“充要”或“既不充分又不必要”)

7. 在平面直角坐标系xOy中,已知点F1,F2是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦
点,点P的坐标为(0,b).若∠F1PF2=120°,则该双曲线的离心率为________.

8. 若x,y满足约束条件x≥0,x-y≤0,x+y-1≤0,则z=x+3y的最大值为________.

9. 如图,某品牌冰淇淋由圆锥形蛋筒和半个冰淇淋小球组成,其中冰淇淋小球的半径与
圆锥底面半径相同.已知圆锥形蛋筒的侧面展开图是圆心角为2π5,弧长为4π cm的扇形,
则该冰淇淋的体积是________cm3.

相关文档
最新文档