2019-2020学年安徽省蚌埠市高一下学期期末数学试卷 (解析版)

合集下载

2019-2020学年内蒙古包头市高一下学期期末数学试卷 (解析版)

2019-2020学年内蒙古包头市高一下学期期末数学试卷 (解析版)

2019-2020学年内蒙古包头市高一第二学期期末数学试卷一、选择题(共12小题).1.与直线3x﹣4y+5=0关于坐标原点对称的直线方程为()A.3x+4y﹣5=0B.3x+4y+5=0C.3x﹣4y+5=0D.3x﹣4y﹣5=0 2.下列不等式中成立的是()A.若a>b>0,则ac2>bc2B.若a>b>0,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则<3.用斜二测画法画水平放置的平面图形直观图时,下列结论中正确的个数是()①平行的线段在直观图中仍然平行;②相等的线段在直观图中仍然相等;③相等的角在直观图中仍然相等;④正方形在直观图中仍然是正方形.A.1B.2C.3D.44.点P(x,y)在直线x+y﹣2=0上,O是坐标原点,则|OP|的最小值是()A.1B.C.2D.25.已知{a n}为等比数列,下面结论中正确的是()A.若a1=a3,则a1=a2B.若a2>a1,则a3>a2C.a1+a3≥2a2D.a12+a32≥2a226.在△ABC中,sin A:sin B:sin C=7:3:5,那么这个三角形的最大角是()A.B.C.D.7.某几何体的三视图如图所示,该几何体由平面将正方体截去一部分后所得,则截去几何体的体积与剩余几何体的体积比值为()A.B.C.D.8.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为线段AB,DD1的中点,则异面直线B1P与CQ所成角的大小为()A.B.C.D.9.已知点A(﹣4,0),B(3,﹣1),若直线y=kx+2与线段AB恒有公共点,则k的取值范围是()A.[﹣1,]B.[﹣,1]C.(﹣∞,﹣]∪[1,+∞)D.(﹣∞,﹣1]∪[,+∞)10.已知0<a<1,0<b<1,则+++的最小值为()A.2B.2C.2D.411.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,且三棱锥A﹣BCD的四个顶点都在一个正方体的顶点上,则该正方体的表面积为()A.12B.18C.24D.3612.已知函数y=f(x)满足f(x)+f(1﹣x)=1,若数列{a n}满足a n=f(0)+f()+f ()+…+f()+f(1),则数列{a n}的前10项和为()A.B.33C.D.34二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上对应题的横线上.13.已知实数x,y满足,则z=x+2y的最小值为.14.关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,则实数m的取值范围是.15.《莱因德纸草书》(RhindPapyus)是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使得每个人所得成等差数列,且较大的三份之和的是较小的两份之和,则最大的1份为.16.设三棱锥S﹣ABC的底面和侧面都是全等的正三角形,P是棱SA的中点.记直线PB 与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则a,β,γ中最大的是,最小的是.三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.已知x>y>0,z>0,求证:(1)<;(2)(x+y)(x+z)(y+z)>8xyz.18.已知sinα=,α∈(,π),cosβ=﹣,β是第三象限角.(1)求cos(α+β)的值;(2)求tan(α﹣β)的值.19.△ABC的内角A,B,C的对边分别为a,b,c.已知a=2,b=,B=2A.(1)求sin A;(2)求△ABC的面积.20.已知A(﹣3,0),B(1,0),C(0,3),试求点D的坐标,使四边形ABCD为等腰梯形.21.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n═2a n+1.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.22.如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,B1E⊥EC.(1)证明:B1E⊥平面EBC;(2)若点E为棱AA1的中点,AB=2;(i)求四棱锥E﹣BB1C1C的体积;(ii)求直线EC1与平面BB1C1C所成角的正弦值.参考答案一、选择题(共12小题).1.与直线3x﹣4y+5=0关于坐标原点对称的直线方程为()A.3x+4y﹣5=0B.3x+4y+5=0C.3x﹣4y+5=0D.3x﹣4y﹣5=0解:设直线3x﹣4y+5=0点Q(x1,y1)关于点M(0,0)对称的直线上的点P(x,y),∵所求直线关于点M(0,0)的对称直线为3x﹣4y+5=0,∴由中点坐标公式得=0,=0;解得x1=﹣x,y1=﹣y代入直线3x﹣4y+5=0,得3(﹣x)﹣4(﹣y)+5=0,整理得:3x﹣4y﹣5=0,即所求直线方程为:3x﹣4y﹣5=0.故选:D.2.下列不等式中成立的是()A.若a>b>0,则ac2>bc2B.若a>b>0,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则<解:A.c=0时不成立;B.成立.C.a<b<0,则a2>ab>b2.因此不成立.D.a<b<0,则>.因此不成立.故选:B.3.用斜二测画法画水平放置的平面图形直观图时,下列结论中正确的个数是()①平行的线段在直观图中仍然平行;②相等的线段在直观图中仍然相等;③相等的角在直观图中仍然相等;④正方形在直观图中仍然是正方形.A.1B.2C.3D.4解:用斜二测画法画水平放置的平面图形直观图时,对于①,平行的线段在直观图中仍然是平行线段,所以①正确;对于②,相等的线段在直观图中不一定相等,如平行于x轴的线段,长度不变,平行于y轴的线段,变为原来的,所以②错误;对于③,相等的角在直观图中不一定相等,如直角坐标系内两个相邻的直角,在斜二测画法内是45°和135°,所以③错误;对于④,正方形在直观图中不是正方形,是平行四边形,所以④错误;综上知,正确的命题序号是①,共1个.故选:A.4.点P(x,y)在直线x+y﹣2=0上,O是坐标原点,则|OP|的最小值是()A.1B.C.2D.2解:∵点P(x,y)在直线x+y﹣2=0上,O是坐标原点,∴|OP|的最小值是点O到直线x+y﹣2=0的距离,∴则|OP|的最小值是d==.故选:B.5.已知{a n}为等比数列,下面结论中正确的是()A.若a1=a3,则a1=a2B.若a2>a1,则a3>a2C.a1+a3≥2a2D.a12+a32≥2a22解:根据题意,依次分析选项:对于A,若q=﹣1,则有a1=a3,但a1=﹣a2,A错误;对于B,若a1<0,且q=﹣1,则有a2>0>a1,但a3<0<a2,B错误;对于C,若a1<0,且q<0时,a1+a3<0,a2>0,则有a1+a3<2a2,C错误;对于D,由基本不等式的性质可得:a12+a32≥2a1a3=2a22,D正确;故选:D.6.在△ABC中,sin A:sin B:sin C=7:3:5,那么这个三角形的最大角是()A.B.C.D.解:设三角形的三边长分别为a,b,c,根据正弦定理化简已知的等式得:a:b:c=7:3:5,设a=7k,b =3k,c=5k,可得a为最大边,A为三角形最大角,根据余弦定理得cos A===﹣,∵A∈(0,π),∴A=.则这个三角形的最大角为.故选:B.7.某几何体的三视图如图所示,该几何体由平面将正方体截去一部分后所得,则截去几何体的体积与剩余几何体的体积比值为()A.B.C.D.解:设正方体的棱长为a,由几何体的三视图得到截去的部分为三棱锥,作出几何体的直观图如图所示,∴截去几何体的体积V1=,剩余几何体的体积为V2=a3﹣V1==,∴截去几何体的体积与剩余几何体的体积比值为:==.故选:C.8.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为线段AB,DD1的中点,则异面直线B1P 与CQ所成角的大小为()A.B.C.D.解:取AA1中点E,AE中点F,连结BE,PF,FC1,设正方体ABCD﹣A1B1C1D1中棱长为4,∵点P,Q分别为线段AB,DD1的中点,∴PF∥BF∥CQ,∴∠FPB1是异面直线B1P与CQ所成角(或所成角的补角),PF==,PB1==2,FC1==5,∴PF2+B1P2=FB12,∴异面直线B1P与CQ所成角为.故选:A.9.已知点A(﹣4,0),B(3,﹣1),若直线y=kx+2与线段AB恒有公共点,则k的取值范围是()A.[﹣1,]B.[﹣,1]C.(﹣∞,﹣]∪[1,+∞)D.(﹣∞,﹣1]∪[,+∞)解:直线y=kx+2经过定点M(0,2),点A(﹣4,0),B(3,﹣1),直线MA的斜率为=,直线MB的斜率为=﹣1,∵直线y=kx+2与线段AB恒有公共点,故k≥,或k≤﹣1,故选:D.10.已知0<a<1,0<b<1,则+++的最小值为()A.2B.2C.2D.4解:如图,令O(0,0),C(0,1),A(1,0),B(1,1),可得+++=|PO|+|PC|+|PA|+|PB|,又|PO|+|PC|+|PA|+|PB|≥|AC|+|OB|=2.则+++的最小值为2.故选:B.11.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,且三棱锥A﹣BCD的四个顶点都在一个正方体的顶点上,则该正方体的表面积为()A.12B.18C.24D.36解:若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,如图所示:所以CD=,所以S表面积=6×2×2=24.故选:C.12.已知函数y=f(x)满足f(x)+f(1﹣x)=1,若数列{a n}满足a n=f(0)+f()+f ()+…+f()+f(1),则数列{a n}的前10项和为()A.B.33C.D.34解:∵a n=f(0)+f()+f()+…+f()+f(1),∴a n=f(1)+f()+f()+…+f()+f(0),又f(x)+f(1﹣x)=1,∴+…+=n+1,∴.∴数列{a n}的首项a1=1,公差为d=.则数列{a n}的前10项和为.故选:A.二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上对应题的横线上.13.已知实数x,y满足,则z=x+2y的最小值为﹣3.解:由约束条件作出可行域如图,联立,解得A(﹣1,﹣1).化z=x+2y为y=,由图可知,当直线y=过A时,直线在y轴上的截距最小,z有最小值为﹣1+2×(﹣1)=﹣3.故答案为:﹣3.14.关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,则实数m的取值范围是(﹣∞,﹣1)∪().解:由于关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,故它的判别式△=(1﹣m)2﹣4m•m<0,且m≠0,求得m>或m<﹣1,故m的范围为(﹣∞,﹣1)∪().故答案为:(﹣∞,﹣1)∪().15.《莱因德纸草书》(RhindPapyus)是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使得每个人所得成等差数列,且较大的三份之和的是较小的两份之和,则最大的1份为.解:设每人分得的数量构成等差数列{a n},d>0,则a5+a4+a3=7(a1+a2),S5=100,所以,解可得,a1=,d=,∴a5==.故答案为:16.设三棱锥S﹣ABC的底面和侧面都是全等的正三角形,P是棱SA的中点.记直线PB 与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则a,β,γ中最大的是α,最小的是β.解:如图,取BC中点D,作SO⊥平面ABC于点O,由题意知O在AD上,且AO=2OD,作PE∥AC,PE∩SC=E,作PF⊥AD于F,则PF⊥平面ABC,取AC中点M,连结BM,SM,设SM交PE于点H,连结BH,由题意知BH⊥PE,作PG⊥AC于点G,连结FG,由面面垂直的性质定理可得FG⊥AC,作FN⊥BM于点N,由作图知平面PGF∥平面SMB,PH∥FN,∴PH=FN,∴直线PB与直线AC所成角α=∠BPE,直线PB与平面ABC所成角β=∠PBF,二面角P﹣AC﹣B的平面角γ=∠PGF,cosα==cosβ,∵α,β∈[0,],∴α>β,∵tanγ=>=tanβ,且γ∈[0,],∴γ>β,设AB=2,则PH=,PB=BH=SN=BM==,PG==,GF===,BH==,cosα==<cosγ===,∴α>γ.∴a,β,γ中最大的是α,最小的是β.故答案为:α;β.三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.已知x>y>0,z>0,求证:(1)<;(2)(x+y)(x+z)(y+z)>8xyz.【解答】证明:(1)因为x>y>0,∴,∴,∴,又z>0,∴<.(2)∵x>y>0,z>0,∴,∴,当且仅当x=y=z时,等号成立,∵x>y,∴上式中等号不能同时取得,∴(x+y)(x+z)(y+z)>8xyz.18.已知sinα=,α∈(,π),cosβ=﹣,β是第三象限角.(1)求cos(α+β)的值;(2)求tan(α﹣β)的值.解:(1)已知sinα=,α∈(,π),所以,由于cosβ=﹣,β是第三象限角.所以.故:cos(α+β)=.(2)由于,,故=19.△ABC的内角A,B,C的对边分别为a,b,c.已知a=2,b=,B=2A.(1)求sin A;(2)求△ABC的面积.解:(1)由正弦定理知,=,因为B=2A,所以=,所以cos A=,因为A∈(0,π),所以sin A==.(2)由余弦定理知,a2=b2+c2﹣2bc cos A,所以,整理得,2c2﹣5c+2=0,解得c=2或.当c=2=a时,有A=C,因为B=2A,所以A=C=,所以sin A=,与(1)中结论相矛盾,不符合题意,故c=.所以△ABC的面积==.20.已知A(﹣3,0),B(1,0),C(0,3),试求点D的坐标,使四边形ABCD为等腰梯形.解:∵A(﹣3,0),B(1,0),C(0,3),设D(x,y),若AB∥DC,则,解得,或(此时,ABCD为平行四边形,故舍去).若AD∥BC,则,求得,或(此时,ABCD为平行四边形,故舍去).当AC∥BD时,根据四边形ABCD字母顺序可得,它根本不会是梯形,不满足条件.综上,点D的坐标为(﹣2,3)、(﹣,).21.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n═2a n+1.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.解:(1)由题意,设等差数列{a n}的公差为d,则,整理,得,解得,∴a n=1+2(n﹣1)=2n﹣1,n∈N*.(2)由题意,令b n=,则b n==,则T n=b1+b2+b3+…+b n=1+++…+,T n=++…++,两式相减,可得T n=1+++…+﹣=1+(1++…+)﹣=1+﹣=3﹣,∴T n=6﹣.22.如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,B1E⊥EC.(1)证明:B1E⊥平面EBC;(2)若点E为棱AA1的中点,AB=2;(i)求四棱锥E﹣BB1C1C的体积;(ii)求直线EC1与平面BB1C1C所成角的正弦值.解:(1)证明:由长方体的性质可知,BC⊥平面ABB1A1,∵B1E⊂平面ABB1A1,∴BC⊥B1E,∵B1E⊥EC,BC∩EC=C,BC、EC⊂平面EBC,∴B1E⊥平面EBC.(2)(i)由(1)知,∠BEB1=90°,由题设可知,Rt△ABE≌Rt△A1B1E,∴∠AEB=∠A1EB1=45°,∴AE=AB=2,AA1=2AE=4,∵在长方体ABCD﹣A1B1C1D1中,AA1∥平面BB1C1C,E∈AA1,AB⊥平面BB1C1C,∴点E到平面BB1C1C的距离d=AB=2,∴四棱锥E﹣BB1C1C的体积V=•d•==.(ii)取棱BB1的中点F,连接EF、C1F,则EF∥AB,EF=AB=2,∵AB⊥平面BB1C1C,∴EF⊥平面BB1C1C,则∠EC1F为直线EC1与平面BB1C1C所成的角.在Rt△FB1C1中,FC1===,∴tan∠EC1F===,∴sin∠EC1F=.故直线EC1与平面BB1C1C所成角的正弦值为.。

安徽省淮北市重点中学2019-2020学年高一下学期期末2份数学达标检测试题

安徽省淮北市重点中学2019-2020学年高一下学期期末2份数学达标检测试题

一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC 2.已知实数x ,y 满足1x >,1y >,且1ln 4x ,14,ln y 成等比数列,则xy 有( ) A .最大值e B .最大值e C .最小值e D .最小值e3.已知在ABC ∆中,P 为线段AB 上一点,且3BP PA =,若CP xCA yCB =+,则2x y +=( ) A .94 B .74 C .54 D .344.ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2,sin sin sin sin 1cos2b ac A B B C B =+=-,则角B =( )A .4πB .3πC .6πD .512π 5.某个算法程序框图如图所示,如果最后输出的S 的值是25,那么图中空白处应填的是( )A .4?i <B .5?i <C .6?i <D .7?i < 6.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)7.如图是函数sin()(0,0,)y A ax A a ϕϕπ=+>><的部分图象2,则该解析式为( )A .2sin 233y x π⎛⎫=+ ⎪⎝⎭B .2sin 324x y π⎛⎫=+ ⎪⎝⎭C .2sin 33y x π⎛⎫=- ⎪⎝⎭D .22sin 233y x π⎛⎫=+ ⎪⎝⎭ 8.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“至少有一个红球”C .“恰好有一个黑球”与“恰好有两个黑球”D .“至少有一个黑球”与“都是红球”9.用斜二测画法画一个边长为2的正三角形的直观图,则直观图的面积是:A .3B .34C .64D .6210.某学校高一、高二、高三年级的学生人数分别为1200、1200、1600人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高三年级抽取的学生人数为( )A .16B .24C .32D .4011.若三个球的半径的比是1:2:3,则其中最大的一个球的体积是另两个球的体积之和的( )倍. A . B . C . D .12.已知数列{}n a 的前n 项和为n S ,且满足22n n S a =+,则2016a =( )A .1B .1-C .2-D .2016二、填空题:本题共4小题13.已知数列{}n a 满足11a =,121n n a a +=+(*n N ∈),则5a =________.14.已知等差数列{}n a 的前n 项和为n S ,若2163S =,则71115a a a ++=_______.15.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.16.一艘海轮从A 出发,沿北偏东75︒方向航行1) n mile 后到达海岛B ,然后从B 出发沿北偏东30︒方向航行 mile 后到达海岛C ,如果下次直接从A 沿北偏东θ方向到达C ,则θ=______.三、解答题:解答应写出文字说明、证明过程或演算步骤。

2019-2020学年辽宁省辽阳市高一下学期期末数学试卷 (解析版)

2019-2020学年辽宁省辽阳市高一下学期期末数学试卷 (解析版)

2019-2020学年辽宁省辽阳市高一第二学期期末数学试卷一、选择题(共12小题).1.sin(﹣480°)等于()A.﹣B.C.﹣D.2.一个几何体有6个顶点,则这个几何体可能是()A.三棱柱B.四棱锥C.四棱柱D.五棱台3.已知复数z满足z(1+i)=2i8,则z的虚部为()A.1B.i C.﹣1D.﹣i4.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b═3,c=2,A=,则a=()A.5B.C.29D.5.平面向量=(1,m),=(﹣1,),且|﹣|=||,则||=()A.B.C.D.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,B=,a=2,则△ABC的面积为()A.B.9﹣3C.D.3+97.如图,在直三棱柱ABC﹣A1B1C1中,四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,则异面直线AC1与BC所成角的余弦值为()A.B.C.D.8.下列函数中,周期为π的奇函数是()A.y=cos B.y=sin(2x+3π)C.y=cos(π+2x)D.y=|cos(x﹣)|9.如图,在△ABC中,=3,=3,则=()A.+B.+C.+D.+10.已知直线x=是函数f(x)=sin2+sinωx﹣(0<ω≤8)图象的一条对称轴,则ω=()A.2B.4C.6D.811.已知正方形ABCD的边长是4,将△ABC沿对角线AC折到△AB'C的位置,连接B'D.在翻折过程中,给出以下结论:①AB'⊥平面B'CD恒成立;②三棱锥B'﹣ACD的外接球的表面积始终是32π;③当二面角B'﹣AC﹣D为时,B'D=4;④三棱锥B'﹣ACD体积的最大值是.其中结论正确的个数是()A.1B.2C.3D.412.将函数y=sin x的图象向右平移个单位长度,再将横坐标缩短为原来的(ω>0)得到函数y=f(x)的图象,若y=f(x)在[0,]上的最大值为,则ω的取值个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡中的横线上. 13.已知扇形的半径与面积都为2,则这个扇形的圆心角的弧度数是.14.在复平面内,复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是.15.已知点P(1,3)是角α终边上的一点,则tan(α+)=.16.已知O为△ABC内一点,且满足+3+5=,延长AO交BC于点D.若=λ,则λ=.三、解答题:本题共6小题,共70分要求写出必要的文字说明和解题过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,在①b cos A cos C=a sin B sin C﹣b;②b sin B cos C+c sin2B=a cos B;③+a=2c这三个条件中任选一个,补充在下面问题中,并作答.已知D是BC上的一点,BC=2BD>AB,AD=2,AB=6,若____,求△ACD的面积.注:如果选择多个条件分别解答,按第一个解答计分.18.如图,在长方体ABCD﹣A1B1C1D1中,BC=CC1,E,F,G,H分别是棱AB,AA1,CC1,C1D1的中点.(1)证明:C1E⊥B1C.(2)证明:平面DEF∥平面B1GH.19.已知单位向量,的夹角为,向量=λ﹣,向量=2+3.(1)若∥,求λ的值;(2)若⊥,求||.20.已知向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•.(1)求f(x)的最大值;(2)若f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,且α∈(0,π),求+及t的值.21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=2,AD=4,E是PB的中点,AF⊥PC,垂足为F.(1)证明:PD∥平面ACE.(2)求三棱锥A﹣CEF的体积.22.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求A,ω和φ的值;(2)求函数y=f(x)在[1,2]上的单调递减区间;(3)若函数y=f(x)在区间[a,b]上恰有2020个零点,求b﹣a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin(﹣480°)等于()A.﹣B.C.﹣D.【分析】所求式子中的角度变形后,利用诱导公式化简即可得到结果.解:sin(﹣480°)=﹣sin480°=﹣sin(360°+120°)=﹣sin120°=﹣.故选:C.2.一个几何体有6个顶点,则这个几何体可能是()A.三棱柱B.四棱锥C.四棱柱D.五棱台【分析】通过棱锥,棱柱,棱台的顶点个数,判断选项即可.解:三棱柱上下两个平面都是三角形,有6个顶点,满足题意,A正确;四棱锥5个顶点,B不正确;四棱柱,有8的顶点,C不正确;五棱台有10个顶点,D不正确;故选:A.3.已知复数z满足z(1+i)=2i8,则z的虚部为()A.1B.i C.﹣1D.﹣i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由z(1+i)=2i8=2,得z=,∴z的虚部为﹣1.故选:C.4.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b═3,c=2,A=,则a=()A.5B.C.29D.【分析】直接利用余弦定理求出结果.解:已知b═3,c=2,A=,利用余弦定理:a2=b2+c2﹣2bc cos A=9+8﹣,解得a=.故选:B.5.平面向量=(1,m),=(﹣1,),且|﹣|=||,则||=()A.B.C.D.【分析】本题先对|﹣|=||两边进行平方,转化成向量进行计算,化简整理可得,然后根据向量内积的坐标运算可解出m的值,即可计算出||的值.解:依题意,由|﹣|=||,可得|﹣|2=||2,即(﹣)2=()2,化简整理,得,∴1×(﹣1)+m×=0,解得m=,∴=(1,),∴||==.故选:A.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,B=,a=2,则△ABC的面积为()A.B.9﹣3C.D.3+9【分析】由已知利用正弦定理可得b的值,根据两角和的正弦函数公式,三角形的面积公式即可计算得解.解:∵A=,B=,a=2,∴由正弦定理,可得b===3,∴S△ABC=ab sin C=ab sin(A+B)=ab(sin cos+cos sin)=()=.故选:C.7.如图,在直三棱柱ABC﹣A1B1C1中,四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,则异面直线AC1与BC所成角的余弦值为()A.B.C.D.【分析】由BC∥B1C1,得∠AC1B1是异面直线AC1与BC所成角(或所成角的补角),连结AB1,推导出B1C1⊥A1B1,B1C1⊥BB1,从而得到B1C1⊥平面ABB1A1,B1C1⊥AB1,由此能求出异面直线AC1与BC所成角的余弦值.解:在直三棱柱ABC﹣A1B1C1中,∵BC∥B1C1,∴∠AC1B1是异面直线AC1与BC所成角(或所成角的补角),如图,连结AB1,∵四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,∴B1C1⊥A1B1,B1C1⊥BB1,∵A1B1∩BB1=B1,∴B1C1⊥平面ABB1A1,∴B1C1⊥AB1,AB1==2,AC1==6,∴cos∠AC1B1=,∴异面直线AC1与BC所成角的余弦值为.故选:C.8.下列函数中,周期为π的奇函数是()A.y=cos B.y=sin(2x+3π)C.y=cos(π+2x)D.y=|cos(x﹣)|【分析】根据题意,依次分析选项中函数的奇偶性与周期性,综合即可得答案.解:根据题意,依次分析选项:对于A,y=cos=﹣sin,是奇函数,周期T==4π,不符合题意;对于B,y=sin(2x+3π)=﹣sin2x,是奇函数,周期T==π,符合题意;对于C,y=cos(π+2x)=cos x,是偶函数,不符合题意;对于D,y=|cos(x﹣)|=|sin x|,是偶函数,不符合题意;故选:B.9.如图,在△ABC中,=3,=3,则=()A.+B.+C.+D.+【分析】根据条件=,结合=3,代入化简可得=,再由向量加法法则可得答案解:因为=3,即有=,因为=3,所以=,则==()=,所以==,故选:A.10.已知直线x=是函数f(x)=sin2+sinωx﹣(0<ω≤8)图象的一条对称轴,则ω=()A.2B.4C.6D.8【分析】首先通过三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.解:函数f(x)=sin2+sinωx﹣=ωx)+ωx﹣=sin (ωx﹣),令:ω﹣=(k∈Z),解得ω=4+(k∈Z),由于0<ω≤8,所以ω=4.故选:B.11.已知正方形ABCD的边长是4,将△ABC沿对角线AC折到△AB'C的位置,连接B'D.在翻折过程中,给出以下结论:①AB'⊥平面B'CD恒成立;②三棱锥B'﹣ACD的外接球的表面积始终是32π;③当二面角B'﹣AC﹣D为时,B'D=4;④三棱锥B'﹣ACD体积的最大值是.其中结论正确的个数是()A.1B.2C.3D.4【分析】对于①,若AB′⊥平面B′CD,则AB′⊥CD,推导出平面AB′D⊥平面ACD,在翻折过程中,B′始终在BD正上方,平面AB′D⊥平面ACD不成立;对于②,取AC中点O,推导出三棱锥B′﹣ACD的外接球半径R=2,其表面积S =32π;对于③,当二面角B′﹣AC﹣D为时,OB′⊥OD,从而B′D=4;对于④,当平面B′AC⊥平面ACD时,三棱锥B′﹣ACD的体积取最大值.解:对于①若AB′⊥平面B′CD,则AB′⊥CD,∵CD⊥AD,∴CD⊥平面AB′D,∵CD⊂平面ACD,∴平面AB′D⊥平面ACD,∵在翻折过程中,B′始终在BD正上方,不可能在AD正上方,∴平面AB′D⊥平面ACD不成立,故①错误;对于②,取AC中点O,∵ABCD是正方形,∴OA=OB=OB′=OC=OD=2,则三棱锥B′﹣ACD的外接球半径R=2,其表面积S=4πR2=32π,故②正确;对于③,当二面角B′﹣AC﹣D为时,OB′⊥OD,∴B′D=,故③正确;对于④,当平面B′AC⊥平面ACD时,三棱锥B′﹣ACD的体积取最大值,最大值为×42×=,故④正确.故选:C.12.将函数y=sin x的图象向右平移个单位长度,再将横坐标缩短为原来的(ω>0)得到函数y=f(x)的图象,若y=f(x)在[0,]上的最大值为,则ω的取值个数为()A.1B.2C.3D.4【分析】利用函数图象的平移与伸缩变换求得f(x)的解析式,再由x的范围求得ωx ﹣的范围,结合y=f(x)在[0,]上的最大值为,分类求解得答案.解:将函数y=sin x的图象向右平移个单位长度,可得y=sin(x﹣)的图象.再将横坐标缩短为原来的(ω>0)得到函数y=f(x)=sin(ωx﹣)的图象,∵x∈[0,]上,∴ωx﹣∈[﹣,π],当π≥,即ω≥4时,则=1,求得ω=5.当π<,即0<ω<4时,由题意可得sinπ=,作出函数y=sin[(x﹣1)]与y=的图象如图:由图可知,此时函数y=sin[(x﹣1)]与y=的图象有唯一交点,则sinπ=有唯一解.综上,ω的取值个数为2.故选:B.二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡中的横线上. 13.已知扇形的半径与面积都为2,则这个扇形的圆心角的弧度数是1.【分析】设扇形的圆心角为α,由此求出弧长和面积,列方程求得α的值.解:设扇形的圆心角为α,则弧长l=2α,所以扇形的面积为:S=rl=×2×2α=2,解得α=1.故答案为:1.14.在复平面内,复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是.【分析】把复数2i直接乘以旋转复数cos+i sin得答案.解:复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得复数为2i(cos+i sin)=2i()=﹣+i.故答案为:+i.15.已知点P(1,3)是角α终边上的一点,则tan(α+)=﹣2.【分析】直接利用三角函数的定义和和角公式的运用求出结果.解:点P(1,3)是角α终边上的一点,所以tanα=3,则:=﹣2.故答案为:﹣216.已知O为△ABC内一点,且满足+3+5=,延长AO交BC于点D.若=λ,则λ=.【分析】条件可整理为=+,结合=λ,得到=+,设=k,列出关于λ,k的方程组,解之即可.解:因为+3+5=,所以+5()=,所以9=3+5,则=+,因为=λ,即﹣=λ(),所以=+,设=k=+,则,解得,故答案为:.三、解答题:本题共6小题,共70分要求写出必要的文字说明和解题过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,在①b cos A cos C=a sin B sin C﹣b;②b sin B cos C+c sin2B=a cos B;③+a=2c这三个条件中任选一个,补充在下面问题中,并作答.已知D是BC上的一点,BC=2BD>AB,AD=2,AB=6,若____,求△ACD的面积.注:如果选择多个条件分别解答,按第一个解答计分.【分析】若选择①,利用正弦定理,两角差的余弦函数公式化简已知等式,结合sin B≠0,可求cos B=,结合范围B∈(0,π),可求B=;若选择②,利用三角函数恒等变换的应用化简已知等式,结合sin A≠0,可求tan B=,结合范围B∈(0,π),可求B=;若选择③,利用两角和的正弦函数公式化简已知等式,结合sin C≠0,可得cos B=,结合范围B∈(0,π),可求B=,在△ABD中,由余弦定理可得BD的值,进而根据三角形的面积公式即可计算求解.解:若选择①,则sin B cos A cos C=sin A sin B sin C﹣sin B,因为sin B≠0,所以cos A cos C﹣sin A sin C=﹣,即cos(A+C)=﹣,因为B=π﹣(A+C),所以cos(A+C)=﹣cos B=﹣,即cos B=,因为B∈(0,π),所以B=.若选择②,则sin2B cos C+sin C sin2B=sin A cos B,即sin2B cos C+sin C sin B cos B=sin A cos B,可得sin B sin(B+C)=sin A cos B,可得sin B sin A=sin A cos B,因为sin A≠0,可得sin B=cos B,可得tan B=,因为B∈(0,π),所以B=.若选择③,则sin B cos A+sin A cos B=2sin C cos B,即sin(B+A)=2sin C cos B,可得sin C =2sin C cos B,因为sin C≠0,可得cos B=,因为B∈(0,π),所以B=,在△ABD中,由余弦定理可得AD2=AB2+BD2﹣2AB•BD•cos B,可得28=36+BD2﹣2×,解得BD=4,或2,因为BC=2BD>AB=6,所以BD=4,所以BC=2BD=8,所以S△ACD=S△ABD=AB•BD•sin B==6.18.如图,在长方体ABCD﹣A1B1C1D1中,BC=CC1,E,F,G,H分别是棱AB,AA1,CC1,C1D1的中点.(1)证明:C1E⊥B1C.(2)证明:平面DEF∥平面B1GH.【分析】(1)连接BC1,可证四边形BCC1B1为正方形,得B1C⊥BC1,再由AB⊥平面BCC1B1,得AB⊥B1C,利用直线与平面垂直的判定可得B1C⊥平面BEC1,从而得C1E ⊥B1C;(2)由E,F,G,H分别是AB,AA1,CC1,C1D1的中点,可得EF∥GH,ED∥B1H,由直线与平面平行的判定可得EF∥平面B1GH,同理可证ED∥平面B1GH,由平面与平面平行的判定可得平面DEF∥平面B1GH.【解答】证明:(1)连接BC1,EC1,在长方体ABCD﹣A1B1C1D1中,∵BC=CC1,∴四边形BCC1B1为正方形,则B1C⊥BC1,又AB⊥平面BCC1B1,∴AB⊥B1C,∵AB∩BC1=B,AB,BC1⊂平面BEC1,∴B1C⊥平面BEC1,而C1E⊂平面BEC1,∴C1E⊥B1C;(2)∵E,F,G,H分别是AB,AA1,CC1,C1D1的中点,∴可得EF∥GH,ED∥B1H,∵EF⊄平面B1GH,GH⊂平面B1GH,∴EF∥平面B1GH,同理可证ED∥平面B1GH,∵ED∩EF=E,ED,EF⊂平面DEF,∴平面DEF∥平面B1GH.19.已知单位向量,的夹角为,向量=λ﹣,向量=2+3.(1)若∥,求λ的值;(2)若⊥,求||.【分析】(1)由题意利用两个向量共线的性质,求出λ的值.(2)由题意利用两个向量垂直的性质,求出λ的值,可得,从而求出||.解:(1)∵单位向量,的夹角为,∴与不共线.∵向量=λ﹣,向量=2+3,若∥,则=,∴λ=﹣.(2)若⊥,∵•=1×1×cos=﹣.∴•=(λ﹣)•(2+3)=2λ+(3λ﹣2)•﹣3=2λ+(3λ﹣2)•(﹣)﹣3=0,求得λ=4,∴=4﹣,∴||====.20.已知向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•.(1)求f(x)的最大值;(2)若f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,且α∈(0,π),求+及t的值.【分析】(1)通过向量的数量积以及两角和与差的三角函数化简函数的解析式,结合三角函数的最值求解即可.(2)利用方程的根,推出三角函数关系式,然后转化求解表达式的值即可.解:(1)向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•=cos(x﹣)﹣sin(x﹣)=2cos(x﹣+)=2cos x,所以函数f(x)的最大值为2.(2)f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,即2cosα与2sinα,α∈(0,π),是关于x的方程25x2﹣10x+t=0的两根,所以2cosα+2sinα=,4cosαsinα=,因为(cosα+sinα)2=1+2cosαsinα,所以,解得t=﹣48.所以+==sinα+cosα=.21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=2,AD=4,E是PB的中点,AF⊥PC,垂足为F.(1)证明:PD∥平面ACE.(2)求三棱锥A﹣CEF的体积.【分析】(1)连结BD,交AC于H,连结EH,推导出EH∥PD,由此能证明PD∥平面ACE.(2)推导出PA⊥BC,BC⊥AB,BC⊥平面PAB,BC⊥AE,AE⊥PB,PC⊥平面AEF,由此能求出三棱锥A﹣CEF的体积.解:(1)证明:连结BD,交AC于H,连结EH,∵四边形ABCD是矩形,∴H是BD的中点,∵E是PB的中点,∴EH∥PD,∵EH⊂平面ACE,PD⊄平面ACE,∴PD∥平面ACE.(2)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,∴PA⊥BC,BC⊥AB,又PA∩AB=A,∴BC⊥平面PAB,∵AE⊂平面PAB,∴BC⊥AE,∵PA=AB=2,且E是PB的中点,∴AE⊥PB,且AE=,∵AF⊥PC,且AE∩AF=A,∴PC⊥平面AEF,在Rt△PAC中,PA=2,AC==2,则PC==2,∵AF⊥PC,∴AF===,则EF==,CF==,∴三棱锥A﹣CEF的体积:V===.22.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求A,ω和φ的值;(2)求函数y=f(x)在[1,2]上的单调递减区间;(3)若函数y=f(x)在区间[a,b]上恰有2020个零点,求b﹣a的取值范围.【分析】(1)有图象可得A=1,T=2,进而求得ω=π,令x=,则π+φ=+2kπ(k∈Z),结合|φ|<,可求得φ;(2)由(1)求得f(x)解析式,令+2kπ≤πx﹣≤+2kπ,k∈Z,解之即可;(3)条件转化为f(x)在[)上有两个零点,即可得b﹣a取值范围.解:(1)由题可得A=1,T=2()=2,则=π,当x=时,f(x)取得最大值,则π+φ=+2kπ(k∈Z),所以φ=﹣+2kπ(k∈Z),又因为|φ|<,故φ=﹣;(2)由(1)可知f(x)=sin(πx﹣),令+2kπ≤πx﹣≤+2kπ,k∈Z,则≤x≤,k∈Z,故f(x)的单调递减区间为[,](k∈Z),则f(x)在[1,2]上的单调递减区间为[1,];(3)令f(x)=sin(πx﹣)=0,则πx﹣=kπ,解得x=k+,k∈Z,所以f(x)在[)上有两个零点,因为f(x)周期为2,若函数y=f(x)在区间[a,b]上恰有2020个零点,则1009×2+1≤b﹣a<1010×2,解得b﹣a的取值范围为[2019,2020).。

2019-2020学年辽宁省锦州市高一下学期期末数学试卷 (解析版)

2019-2020学年辽宁省锦州市高一下学期期末数学试卷 (解析版)

2019-2020学年辽宁省锦州市高一第二学期期末数学试卷一、选择题(共10小题).1.求值:sin150°=()A.B.C.﹣D.﹣2.已知复数z满足z(l+i)=2﹣i,则复数z在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.在△ABC中,角A,B,C的对边为a,b,c且有a cos A=b cos B,则此三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形4.已知=(﹣1,2),=(3,m),若,则m=()A.4B.3C.D.5.在△ABC中,内角A,B,C的对边分别为a,b,c,a=2,c=2,A=30°,则角C 为()A.60°B.60°或120°C.45°D.45°或135°6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为()A.f(x)=2sin(2x﹣)B.f(x)=2sin(2x﹣)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)8.定义运算:=ad﹣bc.已知α,β都是锐角,且cosα=,=﹣,则cosβ=()A.B.C.D.9.在正三棱柱ABC﹣A1B1C1中,若AB=,则AB1与C1B所成的角的大小为()A.60°B.90°C.75°D.105°10.已知函数f(x)满足f(x)=f(x+π),当0≤x≤时,f(x)=4sin2x;当≤x <π时,f(x)=x﹣4,若函数g(x)=f(x)﹣ax在[0,2π)上有五个零点,则a 的最小值为()A.B.C.D.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分.11.将函数f(x)=cos(2x+)﹣1的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是()A.最小正周期为πB.图象关于点(,0)对称C.图象关于y轴对称D.在区间(,π)上单调递增12.已知m,n是两条不同直线,α,β是两个不同平面,则下列选项正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊥α,则m∥nC.若α⊥β,m⊥α,则m∥βD.若n∥α,n⊥β,则α⊥β三、填空题:本大题共4小题,每小题5分,共20分.13.已知角θ的终边经过点P(﹣1,3),则cosθ=,cos2θ=.14.复数范围内关于x的方程x2+x+1=0的解集为.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶D在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.16.在三棱锥P﹣ABC中,AB=BC=5,AC=6,P在底面ABC内的射影D位于直线AC 上,且AD=2CD,PD=4,则三棱锥P﹣ABC的外接球的表面积为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知||=4,||=3,(2)=61,求:(1)向量与的夹角θ;(2)||.18.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,E,F,G分别为BB1,AC,AA1的中点.(1)求证:平面BFG∥平面A1EC;(2)求证:BF⊥平面ACC1A1.19.在ABC中,内角A,B,C的对边分别为a,b,c,a2+c2=b2+ac.(1)求角B的大小:(2)求cos A+cos C的最大值.20.如图,摩天轮上一点P在t时刻距离地面高度满足y=A sin(ωt+φ)+b,φ∈[﹣π,π],已知某摩天轮的半径为50米,点O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处.(1)根据条件写出y(米)关于t(分钟)的解析式;(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85米?21.已知四棱锥P﹣ABCD,底面ABCD为正方形,且PA⊥底面ABCD,过AB的平面与侧面PCD的交线为EF,且满足S△PEF:S四边形CDEF=1:3(S△PEF表示△PEF的面积).(1)证明:PB∥平面ACE;(2)当PA=2AD=2时,求点F到平面ACE的距离.22.已知△ABC的三个内角分别为A,B,C,且sin C sin(B+)=sin A.(1)求的值;(2)已知函数f(B)=k(sin B+cos B)+sin B cos B(k∈R),若函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,求函数f(B)的值域.参考答案一、单项选择题(共10小题).1.求值:sin150°=()A.B.C.﹣D.﹣解:sin150°=sin(180°﹣30°)=sin30°=.故选:A.2.已知复数z满足z(l+i)=2﹣i,则复数z在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限解:复数z满足(1+i)z=2﹣i,∴(1﹣i)(1+i)z=(1﹣i)(2﹣i),∴2z=1﹣3i,∴z=i.则复数z在复平面内对应的点在第四象限.故选:D.3.在△ABC中,角A,B,C的对边为a,b,c且有a cos A=b cos B,则此三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形解:在△ABC中,由a cos A=b cos B,利用正弦定理可得sin A cos A=cos B sin B,即sin2A=sin2B,∴2A=2B或2A+2B=π,即A=B或A+B=.若A=B,则△ABC为等腰三角形,若A+B=,则C=,△ABC为直角三角形,故选:D.4.已知=(﹣1,2),=(3,m),若,则m=()A.4B.3C.D.解:∵,又∵,∴=0即﹣1×3+2m=0即m=故选:D.5.在△ABC中,内角A,B,C的对边分别为a,b,c,a=2,c=2,A=30°,则角C 为()A.60°B.60°或120°C.45°D.45°或135°解:由正弦定理得得=得sin C=,∵c>a,∴C>A,得C=60°或120°,故选:B.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.7.函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为()A.f(x)=2sin(2x﹣)B.f(x)=2sin(2x﹣)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)解:根据函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2,•=+,∴ω=2.再根据五点法作图,可得2×+φ=,∴φ=﹣,故f(x)=2sin(2x﹣),故选:A.8.定义运算:=ad﹣bc.已知α,β都是锐角,且cosα=,=﹣,则cosβ=()A.B.C.D.解:∵α,β都是锐角,且cosα=,=﹣,∴sinα==,∴=sinαcosβ﹣cosαsinβ=cosβ﹣sinβ=﹣.∴cosβ﹣=﹣.整理得10cos2β+4cosβ﹣1=0,解得cosβ=或cosβ=﹣(舍),故选:B.9.在正三棱柱ABC﹣A1B1C1中,若AB=,则AB1与C1B所成的角的大小为()A.60°B.90°C.75°D.105°解:不妨设BB1=1,则AB=,•=()•()=+++=0+cos60°﹣12+0=0∴直线AB1与C1B所成角为90°故选:B.10.已知函数f(x)满足f(x)=f(x+π),当0≤x≤时,f(x)=4sin2x;当≤x <π时,f(x)=x﹣4,若函数g(x)=f(x)﹣ax在[0,2π)上有五个零点,则a 的最小值为()A.B.C.D.解:函数g(x)=f(x)﹣ax在[0,2π)上有五个零点等价于方程f(x)﹣ax=0在[0,2π)有五个不同的实数根,即函数y=f(x)与函数y=ax的图象在[0,2π)有五个交点,结合图象可得,当直线y=ax过点(2π,4)时,a取得最小值,此时,.故选:A.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分.11.将函数f(x)=cos(2x+)﹣1的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是()A.最小正周期为πB.图象关于点(,0)对称C.图象关于y轴对称D.在区间(,π)上单调递增解:将函数f(x)=cos(2x+)﹣1 的图象向左平移个单位长度,可得y=cos(2x+π)﹣1=﹣cos2x﹣1 的图象,再向上平移1个单位长度,得到函数g(x)=﹣cos2x的图象.关于函数g(x),它的最小正周期为=π,故A正确;令x=,求得g(x)=0,可得它的图象关于点(,0)对称,故B正确;由于它是偶函数,故它的图象关于y轴对称,故C正确;在区间(,π)上,2x∈(π,2π),y=cos2x单调递增,故g(x)=﹣cos2x单调递减,故D错误,故选:ABC.12.已知m,n是两条不同直线,α,β是两个不同平面,则下列选项正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊥α,则m∥nC.若α⊥β,m⊥α,则m∥βD.若n∥α,n⊥β,则α⊥β解:由m,n是两条不同直线,α,β是两个不同平面,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊥α,n⊥α,由线面垂直的性质定理得m∥n,故B正确;对于C,若α⊥β,m⊥α,则m∥β或m⊂β,故C错误;对于D,若n∥α,n⊥β,由线面平行的性质定理和面面垂直的判定定理得α⊥β,故D 正确.故选:BD.三、填空题:本大题共4小题,每小题5分,共20分.13.已知角θ的终边经过点P(﹣1,3),则cosθ=﹣,cos2θ=.解:角θ的终边上的点P(﹣1,3)到原点的距离为:r==,由任意角的三角函数的定义得cosθ==﹣.可得cos2θ=1﹣2sin2θ=1﹣2×(﹣)2=.故答案为:﹣,.14.复数范围内关于x的方程x2+x+1=0的解集为{﹣+i,﹣﹣i}.解:x2+x+1=0,即为x2+x+=﹣1+,可得(x+)2=﹣,即x+=±i,解得x=﹣+i或﹣﹣i,则解集为{﹣+i,﹣﹣i}.故答案为:{﹣+i,﹣﹣i}.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶D在西偏北75°的方向上,仰角为30°,则此山的高度CD=100m.解:由题意可得AB=600,∠BAC=30°,∠ABC=180°﹣75°=105°,∴∠ACB=45°,在△ABC中,由正弦定理可得:,即=,∴BC=300,在Rt△BCD中,∠CBD=30°,∴tan30°==,∴DC=100.故答案为:100.16.在三棱锥P﹣ABC中,AB=BC=5,AC=6,P在底面ABC内的射影D位于直线AC 上,且AD=2CD,PD=4,则三棱锥P﹣ABC的外接球的表面积为.解:因为AB=BC,所以△ABC外接圆的圆心M在BO上,设此圆的半径为r,因为BO=4,所以(4﹣r)2+32=r2,解得,因为OD=OC﹣CD=3﹣2=1,所以,设QM=a,易知QM⊥平面ABC,则QM∥PD,因为QP=QB,所以,即,解得a=1,所以球Q的半径,表面积.故答案为:.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知||=4,||=3,(2)=61,求:(1)向量与的夹角θ;(2)||.解:(1)∵||=4,||=3,∵(2)=4||2﹣3||2﹣4•=37﹣4•=61∴•=||•||•cos<,>=﹣6∴cos<,>=﹣∴<,>=120°∵向量与的夹角θ=120°…(2)∵||2=||2+||2﹣2•=16+9+12=37∴||=…18.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,E,F,G分别为BB1,AC,AA1的中点.(1)求证:平面BFG∥平面A1EC;(2)求证:BF⊥平面ACC1A1.【解答】证明:(1)在△AA1C中,点F为AC的中点,G为AA1的中点,∴GF∥A1C,在直三棱柱ABC﹣A1B1C1中,∵E是BB1的中点,G为AA1的中点,∴A1G∥BE,且A1E=BE,∴四边形A1GBE是平行四边形,∴A1E∥GB,∵GB∩GF=G,∴平面BFG∥平面A1EC.(2)在直三棱柱ABC﹣A1B1C1中,∵AB=BC,点F为AC的中点,∴BF⊥AC,又AA1⊥底面ABC,BF⊂底面ABC,∴AA1⊥BF,又AA1,AC⊂平面ACC1A1,AA1∩AC=A,∴BF⊥平面ACC1A1.19.在ABC中,内角A,B,C的对边分别为a,b,c,a2+c2=b2+ac.(1)求角B的大小:(2)求cos A+cos C的最大值.解:(1)在△ABC中,a2+c2=b2+ac.所以,由于0<B<π,所以B=.(2)由(1)得:A+C=,所以==.由于,所以当时,cos A+cos C的最大值为1.20.如图,摩天轮上一点P在t时刻距离地面高度满足y=A sin(ωt+φ)+b,φ∈[﹣π,π],已知某摩天轮的半径为50米,点O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处.(1)根据条件写出y(米)关于t(分钟)的解析式;(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85米?解:(1)由题意,A=50,b=60,T=3;故ω=,故y=50sin(t+φ)+60;则由50sinφ+60=10及φ∈[﹣π,π]得,φ=﹣;故y50sin(t﹣)+60;(2)在第一个3分钟内求即可,令50sin(t﹣)+60>85;则sin(t﹣)>;故<t﹣<,解得,1<t<2;故在摩天轮转动的一圈内,有1分钟时间点P距离地面超过85米.21.已知四棱锥P﹣ABCD,底面ABCD为正方形,且PA⊥底面ABCD,过AB的平面与侧面PCD的交线为EF,且满足S△PEF:S四边形CDEF=1:3(S△PEF表示△PEF的面积).(1)证明:PB∥平面ACE;(2)当PA=2AD=2时,求点F到平面ACE的距离.【解答】证明:(1)由题知四边形ABCD为正方形,∴AB∥CD,又CD⊂平面PCD,AB⊄平面PCD∴AB∥平面PCD又AB⊂平面ABFE,平面ABFE∩平面PCD=EF∴EF∥AB,又AB∥CD∴EF∥CD,由S△PEF:S四边形CDEF=1:3,知E、F分别为PC、PD的中点,连接BD交AC与G,则G为BD中点,在△PBD中FG为中位线,∴EG∥PB,∵EG∥PB,EG⊂平面ACE,PB⊄平面ACE,∴PB∥平面ACE.解:(2)∵PA=2,AD=AB=1,∴,,∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD在Rt△CDE中,,在△ACE中由余弦定理知,∴,∴S△ACE=,设点F到平面ACE的距离为h,则,由DG⊥AC,DG⊥PA,AC∩PA=A,得DG⊥平面PAC,且,∵E为PD中点,∴E到平面ACF的距离为,又F为PC中点,∴S△ACF=S△ACP=,∴由V F﹣ACE=V E﹣ACF,解得,∴点F到平面ACE的距离为.22.已知△ABC的三个内角分别为A,B,C,且sin C sin(B+)=sin A.(1)求的值;(2)已知函数f(B)=k(sin B+cos B)+sin B cos B(k∈R),若函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,求函数f(B)的值域.解:(1)因为sin C sin(B+)=sin A,所以sin B•sin C+cos B•sin C=sin(B+C)=sin B•cos C+cos B•sin C,即sin B•sin C=sin B•cos C.又0<B<π,所以tan C=1,可得C=…2分可得==﹣2+,…4分(2)由题意函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,得,2cos2A ﹣cos A<0,所以0<cos A<,所以角A的范围是,由(1)知C=,所以,…6分设t=sin B+cos B=sin(B+),因为,所以t∈(1,),…8分则sin B cos B=,令y=h(t)=t2+kt﹣,t∈(1,).(i)当k≥﹣1时,h(1)=k,h()=k+,此时f(B)的值域为(k,k+),…9分(ii)当﹣≤k<﹣1时,h(﹣k)=﹣k2﹣,h()=k+,此时f(B)的值域为[﹣k2﹣,k+),…10分(iii)当﹣<k<﹣时,h(﹣k)=﹣k2﹣,h(1)=k,此时f(B)的值域为[﹣k2﹣,k),…11分(iv)当k≤﹣时,h()=k+,h(1)=k,此时f(B)的值域为(k+,k).…12分。

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。

2019-2020学年上海市金山区华东师大三附中高一(下)期末数学试卷

2019-2020学年上海市金山区华东师大三附中高一(下)期末数学试卷

2019-2020学年上海市金山区华东师大三附中高一(下)期末数学试卷1.(填空题,3分)已知P(4,-3)是角α终边上一点,则sinα=___ .2.(填空题,3分)函数y=arccos(x+2)的定义域是___ .3.(填空题,3分)设tanθ=2,则tan(θ+π4) =___ .4.(填空题,3分)已知扇形的圆心角为π6,面积为π3,则扇形的半径是___ .5.(填空题,3分)设无穷等比数列{a n}的各项和为12,则首项a1的取值范围是___ .6.(填空题,3分)函数y=cos(2x+ π4)的单调递减区间是___ .7.(填空题,3分)已知tanx=2,则sinxcosx3cos2x+sin2x+1的值为___ .8.(填空题,3分)已知数列{a n}的通项公式是a n=2n-46,那么S n达到最小值时n为___9.(填空题,3分)等差数列{a n}与{b n}的前n项和分别为S n,和T n,且S nT n = 3n+17n+3,则a9b9=___ .10.(填空题,3分)△ABC中,sin2A≤sin2B+sin2C-sinBsinC,则A的取值范围为___ .11.(填空题,3分)分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是___ .12.(填空题,3分)等比数列{a n}的公比为q,前n项积为T n,且满足a1>1,a2015•a2016>1,(a2015-1)(a2016-1)<0,给出以下四个命题:① q>1;② a2015•a2017<1;③ T2015为T n的最大值;④ 使T n>1成立的最大的正整数4031,则其中正确的命题序号为___ .13.(单选题,3分)方程√3 sinx+cosx=0的解集是()A.{x|x=kπ,k∈Z}B.{x|x=2kπ- π6,k∈Z}C.{x|x=kπ- π6,k∈Z}D.{x|x=kπ+ π6,k∈Z}14.(单选题,3分)“ac=b2”是“a、b、c成等比数列”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要15.(单选题,3分)若函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|≤π)局部图象如图所示,则函数y=f (x )的解析式为( )A. y =32sin (2x +π6) B. y =32sin (2x −π6)C. y =32sin (2x +π3)D. y =32sin (2x −π3)16.(单选题,3分)下列四个命题中正确的是( )A.若 n→∞ a n 2=A 2,则n→∞ a n =A B.若a n >0,n→∞ a n =A ,则A >0 C.若 n→∞ a n =A ,则 n→∞ a n 2=A 2D.若 n→∞ (a n -b n )=0,则 n→∞ a n = n→∞ b n17.(问答题,8分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足a <b <c ,b=2asinB .(1)求A 的大小;(2)若a=2,b=2 √3 ,求△ABC 的面积.18.(问答题,8分)已知数列{a n }中,a 1=3,a n+1=2a n -1,设b n =a n -1.(1)求证:数列{b n }是等比数列;(2)设数列{a n }的前n 项和为S n ,求满足S n >2019的n 的最小值.19.(问答题,10分)已知关于x的方程sin2x+cosx+m=0,x∈[0,2π).(1)当m=1时,解此方程(2)试确定m的取值范围,使此方程有解.20.(问答题,12分)如图,一个半圆和长方形组成的铁皮,长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪出一个等腰三角形PMN,其底边MN⊥BC,点P在边AB上,设∠MOD=θ;(1)若θ=30°,求三角形铁皮PMN的面积;(2)求剪下的三角形铁皮PMN面积的最大值.21.(问答题,14分)已知数列{a n}的前n项和S n=-n2+9n+2(n∈N*).(1)求数列{a n}的通项公式;(2)设R n=|a1|+|a2|+|a3|+…+|a n|,求R n;(n∈N*),T n=b1+b2+b3+…+b n,是否存在最小的自然数n0,使得不等(3)设b n= 1n(12−a n)对一切正整数n总成立?如果存在,求出n0;如果不存在,说明理由.式T n<n032。

浙江省杭州市第二中学2019-2020学年高一数学上学期期末考试试题(含解析)


X
3
,
所以函数
y
sin
X
在区间
3
,
3
恰好取一次最大值
1,
5
1 13
所以 2
3 2 ,解得 6
6.
1 1
综上所知 6
5.
故选:C
解法二:(特殊值法)
1
X x 2 x 5
当 2 时,令 2 3 , 3
6,
0

X
3 4
,则函数
y
sin
X
在区间
0,
3 4
上不单调,
13 且 a 为第三象限角,
cos 12
所以
13 ,
tan 5

12 .
故选 C
【点睛】本题主要考查了同角三角函数间的基本关系,属于中档题.
2.函数
y
sin
2x
3
的图像(

A.
关于点
6
,
0
对称
B.
关于点 3
,
0
对称
x C. 关于直线 6 对称
x D. 关于直线 3 对称
【答案】B 【解析】 【分析】
x1 2x2 的取值范围是( )
A. [2, )
B. (2, )
C. [3, )
D. (3, )
【答案】D
【解析】
【分析】
解法一:(图象法)根据题意可知
x1 ,
x2
分别为
y
ax

y
1 x

y
loga
x

y
1 x
交点的横
x1
坐标,,再根据同底数的指数对数函数互为反函数,有

2019-2020学年山东省菏泽市高一下学期期末数学试卷(A卷) (解析版)

2019-2020学年山东省菏泽市高一第二学期期末数学试卷(A卷)一、选择题(共8小题).1.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为()A.0.45 0.45B.0.5 0.5C.0.5 0.45D.0.45 0.52.复数z=的虚部为()A.2B.﹣2C.﹣3D.﹣3i3.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A、B两样本的下列数字特征对应相同的是()A.平均数B.标准差C.众数D.中位数4.如图是一个正方体的表面展开图,则图中“有”在正方体中所在的面的对面上的是()A.者B.事C.竟D.成5.加强体育锻炼是青少年生活学习中非常重要的组成部分.某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60°,每只胳膊的拉力大小均为400N,则该学生的体重(单位:kg)约为()(参考数据:取重力加速度大小为g=10m/s2,≈1.732)A.63B.69C.75D.816.已知向量=(2,3),=(﹣1,2),若m+与﹣2共线,则m的值为()A.﹣2B.2C.D.7.如图所示是一样本的频率分布直方图,样本数据共分3组,分别为[5,10),[10,15),[15,20].估计样本数据的第60百分位数是()A.14B.15C.16D.178.已知正方体ABCD﹣A1B1C1D1棱长为4,P是AA1中点,过点D1作平面α,满足CP⊥平面α,则平面α与正方体ABCD﹣A1B1C1D1的截面周长为()A.4B.12C.8D.8二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得3分,有选错的得0分.9.给出如图所示的三幅统计图,则下列命题中正确的有()A.从折线图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C.2050年亚洲人口比其他各洲人口的总和还要多D.从1957年到2050年各洲中北美洲人口增长速度最慢10.在△ABC中,角A、B、C所对的边分别为a、b、c,下列结论正确的是()A.若b2+c2﹣a2>0,则△ABC为锐角三角形B.若A>B,则sin A>sin BC.若b=3,A=60°,三角形面积S=3,则a=D.若a cos A=b cos B,则△ABC为等腰三角形11.在△ABC中,D,E,F分别是边BC,AC,AB中点,下列说法正确的是()A.B.C.若点P是线段AD上的动点,且满足=+,则λ+2μ=1D.若△ABC所在平面内一点P满足=λ()(λ≥0),则点P的轨迹一定通过△ABC的内心12.如图,正方体ABCD﹣A1B1C1D1的棱长为1,动点E在线段A1C1上,F、M分别是AD、CD的中点,则下列结论中正确的是()A.FM∥A1C1B.BM⊥平面CC1FC.存在点E,使得平面BEF∥平面CC1D1DD.三棱锥B﹣CEF的体积为定值三、填空题:本大题共4小题,每小题5分,共20分。

人教版数学高三期末测试精选(含答案)3


【答案】A
15.设 Sn 为等差数列an 的前 n 项和,若 3S3 S2 S4 , a1 2 ,则 a5
A. 12
B. 10
C.10
D.12
【来源】2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)
【答案】B
16.若圆的半径为 4,a、b、c 为圆的内接三角形的三边,若 abc=16 2 ,则三角形的
b
c
a
A.都大于 2
B.都小于 2
C.至少有一个不大于 2
D.至少有一个不小于 2
【来源】2015-2016 湖南常德石门一中高二下第一次月考文科数学卷(带解析)
【答案】D
5. ABC 中, A 、 B 、 C 的对边的长分别为 a 、 b 、 c ,给出下列四个结论: ①以 1 、 1 、 1 为边长的三角形一定存在;
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中, a 2 3 0°或150
B. 60 或120
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等边三角形
【来源】2013-2014 学年河南省郑州一中高二上学期期中考试文科数学试卷(带解析)
【答案】C
21.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于 ( )
2
A.
3
B. 2 3
【答案】D
10.在锐角 ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,a b cosC 3 c sin B , 3

山东省菏泽市2019-2020学年高一下学期期末考试数学试题(B卷)(含解析)

山东省菏泽市 2019-2020 学年高一第二学期期末考试
数学试卷(B 卷)
一、选择题(共 8 小题).
1.若复数 z 满足 z=1+2i,则|z|=( )
A.
B.
C.3
D.5
2.数据 1,2,3,4,5,6 的 60%分位数为( )
A.3
B.3.5
C.3.6
D.4
3.设 D 为△ABC 所在平面内一点,
(2)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层
抽样的方法抽取 10 户居民,则月平均用电量在[240,260)的用户中应抽取多少户?
20.如图,在三棱柱 ABC﹣A1B1C1 中,侧面 BCC1B1 是矩形,平面 ACC1A1⊥平面 BCC1B1, M 是棱 CC1 的中点,CC1=AC=2,∠ACC1=60°. (1)求证:AM⊥BB1; (2)若 N 是 AB 的中点,求证:CN∥平面 AB1M.
(1)若 ⊥ ,求 x;
(2)若< , >=30°,求 x.
19.某城市 100 户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),
[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直
方图如图.
(1)求直方图中 x 的值;
C.3.6
解:由 6×60%=3.6,
所以数据 1,2,3,4,5,6 的 60%分位数是第 4 个数,为 4.
A.存在某个位置,使 DE⊥A1C
B.存在点 M,使得 BM⊥平面 A1DC 成立
C.存在点 M,使得 MB∥平面 A1DE 成立
D.四棱锥 A1﹣BCDE 体积最大值为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年安徽省蚌埠市高一第二学期期末数学试卷

一、选择题(共12小题). 1.已知实数a,b满足a<b,则下列不等式一定成立的是( )

A.> B.a2<b2 C.ac<bc D.a﹣c<b﹣

c

2.求值:cos75°cos45°﹣sin75°sin45°=( )

A. B. C.﹣ D.﹣

3.某校高一年级共有800名学生,随机编号为001,002,003,……,800,现拟对他们高

二文理分科的意向进行调查,抽取编号尾数为3的80名学生作为样本.这种抽样方法是( ) A.分层抽样 B.系统抽样 C.随机数法 D.抽签法

4.七巧板是古代中国劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基

本定型,明、清两代在中国民间广泛流传.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )

A. B. C. D.

5.甲、乙两名篮球运动员在8场比赛中的单场得分用茎叶图表示(如图一),茎叶图中甲

的得分有部分数据丢失,但甲得分的折线图(如图二)完好,则下列结论正确的是( )

A.甲得分的极差是11 B.乙得分的中位数是18.5 C.甲有3场比赛的单场得分超过20 D.甲的单场平均得分比乙高 6.在△ABC中,∠A,∠B,∠C所对的边长分别为a,b,c,如果acosB=bcosA,那么

△ABC一定是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形

7.执行如图所示的程序框图,输出的结果是( )

A.4 B.7 C.10 D.13 8.设x,y满足约束条件,则z=2x+y的最大值是( ) A.10 B.5 C.4 D.2 9.某工厂的每月各项开支x与毛利润y(单位:万元)之间有如表关系,y与x的线性回归

方程,则a=( ) x 2 4 5 6 8 y 30 40 60 50 70 A.17.5 B.17 C.15 D.15.5

10.已知等差数列{an}的前n项和为Sn,等差数列{bn}的前n项和为Tn,若=,

则=( ) A. B. C. D.

11.从一批产品中随机抽取3件产品进行质量检测,记“3件产品都是次品”为事件A.“3件产品都不是次品”为事件B,“3件产品不都是次品”为事件C,则下列说法正确的是( ) A.任意两个事件均互斥 B.任意两个事件均不互斥

C.事件A与事件C对立 D.事件A与事件B对立

12.已知x+1>y>0,则x++的最小值为( )

A.﹣1 B. C.2﹣1 D.3﹣1 二、填空题(共4小题). 13.在等比数列{an}中,a2=4,a5=,则公比q= .

14.已知tanα=2,则cos2α+sin2α= . 15.不等式>0的解集为 .

16.△ABC中,角A,B,C所对的边长分别为a,b,c.若a,b,c成等差数列,则+的最小值为 . 三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤. 17.已知<β<α<,cos(α﹣β)=,sin(α+β)=﹣.

(1)求sin(α﹣β)和cos(α+β); (2)求角α. 18.已知袋中装有5个小球,其中3个黑球记为A,B,C,2个红球记为a,b,现从中随

机摸出两个球. (1)写出所有的基本事件; (2)求两个球中恰有一个黑球的概率; (3)求两个球中至少有一个黑球的概率. 19.已知函数f(x)=x2﹣(a+b)x+a. (1)若关于x的不等式f(x)<0的解集为{x|1<x<2},求a,b的值; (2)当b=1时,解关于x的不等式f(x)>0. 20.如图,在平面四边形ABCD中,若∠ADC=90°,sinA=,AB=8,BD=6.

(1)求∠ADB; (2)若DC=2,求BC. 21.某校为了解高一年级学生的数学学科发展状况,随机抽取了100名学生,列出他们的

高一第二学期期中考试数学成绩的频率分布直方图如图,其中成绩的分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中a的值; (2)利用样本估计总体的方法,估计该校高一年级此次期中考试的平均分(同一分组的成绩用该组区间的中点值做代表); (3)若将分数从高分到低分排列,取前20%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中考试“优秀”档次的分数线.

22.已知正项数列{an}的前n项和为Sn,满足an2+an﹣2Sn=0(n∈N*).

(1)求数列{an}的通项公式; (2)记数列{bn}的前n项和为Tn,若bn=(2an﹣7)•2n,求Tn; (3)求数列{Tn}的最小项. 参考答案 一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的A.B,C,D的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卡上. 1.已知实数a,b满足a<b,则下列不等式一定成立的是( )

A.> B.a2<b2 C.ac<bc D.a﹣c<b﹣

c

【分析】根据条件,取a=﹣1,b=0,c=0,则可排除错误选项. 解:由实数a,b满足a<b,取a=﹣1,b=0,c=0,则ABC不成立. 故选:D. 2.求值:cos75°cos45°﹣sin75°sin45°=( )

A. B. C.﹣ D.﹣

【分析】逆用两角和的余弦公式,即可求解. 解:cos75°cos45°﹣sin75°sin45° =cos(75°+45°) =cos120° =﹣cos60° =﹣. 故选:C. 3.某校高一年级共有800名学生,随机编号为001,002,003,……,800,现拟对他们高

二文理分科的意向进行调查,抽取编号尾数为3的80名学生作为样本.这种抽样方法是( ) A.分层抽样 B.系统抽样 C.随机数法 D.抽签法

【分析】根据系统抽样的定义可得到结论. 解:高一年级共有800名学生,随机编号为001,002,003,……,800, 抽取编号尾数为3的80名学生作为样本. 则分成80组,间距10,每组10人,抽取编号尾数为3的学生即003,013,023,033,043……,按照间距抽取满足系统抽样的定义,

故选:B. 4.七巧板是古代中国劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基

本定型,明、清两代在中国民间广泛流传.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )

A. B. C. D.

【分析】根据几何概型的概率公式求出对应区域的面积,即可得到结论. 解:设正方形的边长为2,则阴影部分由2个小等腰直角三角形构成, 则正方形的对角线长为2 ,则等腰直角三角形的边长为=, 对应每个小等腰三角形的面积S=××=. 则阴影部分的面积为2×=, 又正方形的面积为4,

∴该点取自图中阴影部分的概率是 =. 故选:A.

5.甲、乙两名篮球运动员在8场比赛中的单场得分用茎叶图表示(如图一),茎叶图中甲

的得分有部分数据丢失,但甲得分的折线图(如图二)完好,则下列结论正确的是( )

A.甲得分的极差是11 B.乙得分的中位数是18.5 C.甲有3场比赛的单场得分超过20 D.甲的单场平均得分比乙高

【分析】根据茎叶图,折线图整合数据,判断选项. 解:甲的极差为28﹣9=19,故A选项不符合题意. 乙的中位数为=16.5,故选项B不符合题意. 甲得分的折线图可知甲运动员得分有2次超过20,故选项C不符合题意. 故选:D. 6.在△ABC中,∠A,∠B,∠C所对的边长分别为a,b,c,如果acosB=bcosA,那么

△ABC一定是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形

【分析】根据图形得,在直角△ACD和直角△BCD中,两次利用正弦定理得到bsinA=asinB,又因为bcosA=acosB,所以得到tanA=tanB,而∠A和∠B为锐角,所以∠A=∠B,所以三角形为等腰三角形. 【解答】 解法1:过C作CD⊥AB,垂足为D, 在直角△ACD中,根据正弦定理得:=, 解得CD=bsinA, 在直角△BCD中,根据正弦定理得:=, 解得CD=asinB, 所以bsinA=asinB, 又因为bcosA=acosB 两个等式联立得:tanA=tanB, 而∠A和∠B为锐角,所以∠A=∠B, 所以三角形为等腰三角形; 解法2:∵acosB=bcosA, ∴=,又根据正弦定理=, ∴=,即sinBcosA﹣sinAcosB=0,

相关文档
最新文档