塞曼效应

塞曼效应
塞曼效应

塞曼效应

1.实验目的

1.1.掌握塞曼效应理论,测定电子的荷质比,确定能级的量子数和朗德因子,绘出跃迁的能级图。

1.2.掌握法布里—珀罗标准具的原理和使用。

1.3.观察塞曼效应现象,并把实验结果和理论结果进行比较,同时了解使用CCD及多媒体计算

进行实验图像测量的方法。

2.实验仪器

研究塞曼效应的实验仪器包括:电磁铁,汞灯,会聚透镜,偏振片,透射干涉滤光片,法布里-珀罗标准具,望远镜,CCD图像传感器及镜头,汞灯电源,磁铁电源,多媒体计算机和图像卡。将这些仪器按照图5-1组装后即可用于与实验。

图5-1 塞曼效应实验装置示意图

在本实验中,于电磁铁的两极之间放上一支水银辉光放电灯,用交流电源220v通过自耦变压器接电灯变压器点燃放电管。自耦变压器用来调节放电管的电流强度。实验中把自耦变压器调节到75V上。

电磁铁用直流稳压电源供电,电流与磁场的关系可用高斯计进行测量,使用电磁铁时要先接通冷却水,然后慢慢调节自耦变压器,使磁场电流缓慢达到5A。注意磁场电流不准超过5A,以免电磁铁电源烧坏。

多媒体计算机采用Pentium-133以上机型,加装视频多媒体组件,工作于32 位Windows 操作环境。视频多媒体组件的核心是多媒体图像采集卡,可将输入的PAL或NTSC制视频信号解码并转换为数字信息,此信息可用于在计算机显示器上同步显示所输入的电视图像,并可作进一步的分析处理。本实验中用CCD作为光探测器,通过图像卡使F- P标准具的干涉花样成像在计算机显示器上,实验者可使用本实验专用的实时图像处理软件读取实验数据。

3.实验原理

3.1.塞曼效应简介

当光源放在足够强的磁场中时,所发出的光谱线都分裂成几条,条数随能级的类别而不同,而分裂后的谱线是偏振的,这种现象被称为塞曼效应。塞曼效应证实了原子具有磁距和空间取向量子化的现象。

塞曼效应分为正常塞曼效应和反常塞曼效应。正常塞曼效应是指那些谱线分裂为三条,而

且两边的两条与中间的频率差正好等于

4eB mc

,对于这种现象,经典理论可以给予很好的解释。

但实际上大多数谱线的分裂多于三条,谱线的裂距是

4eB

mc

π的简单分数倍,这种现象被称为反常塞曼效应。下面具体讨论塞曼效应中外磁场对原子能级的作用。

3.2. 原子的总磁矩与总动量矩的关系

因为原子中的电子同时具有轨道角动量PL 和自旋角动量Ps 。相应的,它也同时具有轨道磁矩轨道微矩

L μ和自旋磁矩S μ,并且它们有如下关系。

2L L

S s e P m e P m μμ?=???

?=??

(5-1) 其中

(1)2(1)

2L s h P L L h P S S π

π?=+???

?=+??

(5-2) (5-2)式中 L,S 分别表示轨道量子数和自旋量子数。

原子核也有磁矩,但它比一个电子的磁矩要小三个数量级,故在计算单电子原子的磁矩时

可以把原予核的磁矩忽略,只计算电子的磁矩。 对于多电子原,考虑到原子总角动量和总磁矩为零,故只对其原子外层价电子进行累加。磁矩的计算可用图5-2的矢量图来进行。

图5-2 电子磁矩与角动量关系

由于μS 与Ps 的比值比μL 与P L 的比值大一倍,所以合成的原子总磁矩不在总动量矩P J 的方向上。但由于μ绕P J 运动,只有μ在P J 方向的投影μJ 对外平均效果不为零。根据图5-2可计算出有μJ 与 P J 的关系如下。

2J J e

g

P m

μ= (5-3) 上式中的g 就是郎德因子。它表征了原子的总磁矩与总角动量的关系,而且决定了能级在磁场中分裂的大小。在考虑LS 耦合的情况下,郎德因子可按下式计算。

(1)(1)(1)

12(1)

J J L L S S g J J +-+++=+

+ (5-4)

3.3. 外磁场对原子能级作用

原子的总磁矩在外磁场中受到力矩L 的作用,可按下式计算。

J L B μ=? (5-5)

力矩L 使总角动量发生旋进,角动量的改变的方向就是力矩的方向。原子受磁场作用而旋进所引起的附加能量E ?如下

cos cos 2J J e

E B g

P B m

μαβ?=-= (5-6) 其中角α和β的意义如图5-3所示。

图5-3 原子总磁矩受场作用发生的旋进

由于J μ或J P 在磁场中的取向是量子化的,也就是P J 在磁场方向的分量是量子化的,P J 的分量只能是h 的整数倍。

cos 2J h

P M

βπ

= (5-7) 其中M 称为磁量子数,M=J,(J-l),……,-J ,共有2J+1个M 值。、

将(5-7)式代到(5-6)式可得

4eh

E Mg

B m

π?= (5-8) 这样,无外磁场时的一个能级,在外磁场的作用下可以分裂成2J+1个子能级。每个子能级的附加能量由(5-8)式决定,它正比于外磁场磁感应强度B 和郎德因子g 。

3.4. 塞曼效应的选择定则

设谱线是由 E1和 E2两能级间跃迁产生的,此谱线的频率由下式确定

21h E E ν=- (5-9)

在外场作用下的能级E2和E1分别分裂为(2J2+l)和(2Jl+l)个能级,附加能量分别是ΔE2和ΔE 1,产生出新的谱线频率可由下式确定

2211()()hv E E E E '=+?-+? (5-10)

那么分裂后谱线与原谱线的频率差为

2122111()()4e

E E M g M g B h m

νννπ'?=-=

?-?=- (5-11) 引入波数v

1

v v

C λ

== 使用波数差来表示频率差

51

22112211() 4.6710()()4e

M g M g B M g M g B cm mc ν

π--?=-=?- (5-12)

跃迁必须满足以下选择定则 i.

当 M =0,垂直于磁场方向观察,产生π线,为光振动方向平行于磁场方向的线偏振光(当

J=0,M 2=0 →Ml=0 除外,如汞的4358埃谱线就有此情况)。平行于磁场方向观察不到π线,即其强度为零。

ii.

当M =±1,垂直于磁场方向观察时,可观察到σ线,为光振动方向垂直于磁场的线偏振光。沿磁场方向观察时,ΔM=1是以磁场方向为正向的右旋偏振光,ΔM=-1是以磁场方向为正向的左旋偏振光.对观察者而言,顺着磁场方向观察和对着磁场方向观察,偏振光方向是相反的。

汞546.1nm 谱线的塞曼分裂

本实验的汞原子nm 1.546谱线是由1376S S S 到2366P P S 跃迁而产生的()66762313P P S S S S →,我们以式(5-12)以及选择定则和偏振定则,可以求出垂直于磁场观察时的塞曼分裂情况。

表5-1列出13

S 和23

P 能级的各量子数L 、S 、J 、M 、g 与Mg 的值。

表5-1 13

S 和23

P 能级的各项量子数值表

13

S

23

P

L 0 1 S 1 1 J 1 2

g 2

3/2

M 1 0 -1 2 1 0 -1 -2 Mg

2 0 -2

3 3/2 0 -3/2 -3

如图(5-4),上部分表示能级分裂后可能发生的跃迁,下部分画出分裂谱线的裂距与强度,按裂距间隔排列将π成分的谱线画在线上,σ成分画在线下,各线的相对强度,如以原线强度为100,则其它线约为75,37.5,12.5等。

汞nm 1.546谱线分裂为9条等间距的谱线相邻两谱线的间距都是21个洛仑兹单位。

图(5-4) nm 1.546谱线的塞曼分裂

从横向角度观察,原汞nm 1.546光谱线将分裂成9条彼此靠近的光谱线,如图(5-4)所示,其中包括3条π分量线(中心3条)和6条σ分量线。这些条纹互相迭合而使观察困难。由于这两种成份偏振光的偏振方向是正交的,因此我们可利用偏振片将σ分量的6条条纹滤去,只让π分量条纹留下来。

4. 实验内容及步骤

1) 对整个光学系统进行共轴调节,是尽可能强的光斑落在F-P 的镜片上,用眼睛像F-P 的初设

镜片望去,可见绿光充满镜片。 2) 调节F-P 标准具,使两镜片的内表面达到严格平行。

3) 加磁场,将钠灯置于磁铁的磁极中央,旋转偏振片的偏振方向鉴别π成分和σ成分。 4) 选取π成分,利用CCD 和图像卡在计算机显示器上显示干涉圆环,并将圆环存储,再打开

塞曼效应辅助分析软件,用三点决定一圆法测量干涉圆环的半径并求出电子荷质比与实验误差。

5. 数据记录及处理

5.1. 平均磁感应强度

表5-2 平均磁感应强度

磁感应强度(mT)

1084 1047 平均值 1063 1074 1063.7

1045 1069

5.2. 电子荷质比的计算及误差

原始数据包括不同级条纹的半径记录于表5-3中

表5-3 不同级条纹及相应条纹半径

条纹级数 圆环半径

k

135.843

162.020 185.929 k-1

303.012 317.153 329.187 k-2

417.789

将原始数据代入公式

22

22

112b a

a b k k

D D h D D ννν--?=-=?- 即可算出ν? 值(见表5-4),并代入式(5-12)可得荷质比的表达式如下

()22114e c m M g M g B

πν

?=

- 其中

221112

M g M g -=

即可算出电子荷质比如表5-4所示

表5-4 实验数据处理*

干涉序 圆环半径 22

1l l R R --

2i R ?

ν?

电子的荷质比 平均值

k 161.264 74134.5

-7797.16 -26.0828 -1.90068E+11 -1.99914E+11 -8319.11 -28.0541 -2.04433E+11

k-1 316.450 74407.0

-8769.75

-29.4655 -2.14718E+11 -7778.06

-26.1334

-1.90437E+11

k-2

417.789

- - -

-

*对于表中数据的一些说明:

1) 表中的圆环半径是指每一干涉序的圆环状条纹的半径,此半径取值乃是用测量出的该干涉

序中的三道小环的半径取平均得到的。此外,2i R ?是用相邻两个小环的半径做平方差所

得。

2) 表5-4在计算电子荷质比时本应附带上不确定度,不过由于不确定度与计算结果相比太小,

所以忽略,具体计算见下

首先,由于对于圆环半径的测量是单次测量,并且实验仪器的任何情况都未知,所以只能认为对于圆环半径的测量的不确定度为0,相应ν? 的不确定度也是0,那么荷质比的不确定度就只由磁感应强度的测量引起

2

313.83610B e

m

C kg B δδ--??

==?? ???

与荷质比的计算结果相比差了14个数量级。以最后的平均值为例,如果计算结果要带上不确定度的话就应该是

()1111.999140.0000010e

C kg m

-=-±?? 所以表中计算出的荷质比都没有带上不确定度。

将几个荷质比的结果取平均并与标准值111

-1.7588196210C kg -??相比,相对误差为

13.5795%δ≈

6. 问题与讨论

6.1. 对于塞曼效应的横效应,磁感应强度的最大值和最小值由什么决定?假定F-P 标准具间隔圈

厚度h=2mm ,其最大值和最小值各是多少? 答:

由(5-12)式可知

R B ν

?∝ 也就是说找到R ν

? 的最大值和最小值即可找到磁感应强度的最大值和最小值。 1) 由F-P 标准具自由光谱区的定义可知,自由光谱区即为R ν

? 的最大值,对2h mm =而言 212.510R m ν-?=?

代回(5-12)式可知

max 10.71B T ≈

2) 由分辨本领的定义可知,R ν

? 的最小值由标准具的分辨本领决定 分辨本领的定义式是

R

F λ

λδ?=

并且如果已知F-P 玻璃板内表面的反射率R 的话,也可以用下式计算出分辨本领

1R

F R π=

-

结合

2

R

R λνλ

?=

可得

()2

2

min

1R R F R λλδπδ

νλλ

=

=-

进而

min 2

22114()mc B F e M g M g λ

δπλ=

?-

也就是说,只要知道F-P 标准具的分辨本领或标准具能分辨的最小波长差,即可求出min B 。

6.2. 实验中如何鉴别π成分和σ成分?如何观察和分辨σ成分中左旋和右旋圆偏振光? 答:

1)横向观察时,旋转偏振片,出现三条图样的为π成分,出现六条图样的即为σ成分。

2)纵向观察时,这时只有σ成分,经过1/4波片:以快轴为y 轴左旋光是在一三象限,且与快轴成45度的线偏振光;同样以快轴为y 轴右旋光是二四象限,且与快轴成45度的线偏振光。

塞曼效应实验报告完整版

塞曼效应实验报告完整版 学生姓名: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1(观察塞曼效应现象,把实验结果与理论结果进行比较。 2(学习观测塞曼效应的实验方法。 3(计算电子核质比。 二、实验仪器 WPZ—?型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级 ,,产生分裂。垂直于磁场观察时,产生线偏振光(线和线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m,电量为的电子e绕原子核转动,因此,原子具B,E有一定的磁矩,它在外磁场中会获得一定的磁相互作用能,由于原子的磁,P矩与总角动量的关系为 JJ e,,gP (1) JJ2m 其中为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整g 个原子态的角动量密切相关。因此, e,,,,,,,,coscosEBgPB (2) JJ2m

,其中是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, h (3) ,,,,,cos,,1,,,?PMMJJJJ2, 学生姓名: 刘惠文学号: 5502210039 专业班级:应物101班实验时间: 教师编号:T017 成绩: heJhM,,式中是普朗克常量,是电子的总角动量,是磁量子数。设:,B4m,称为玻尔磁子,为未加磁场时原子的能量,则原子在外在磁场中的总能量为 E0 (4) EEEEMgB,,,,,,00B 由于朗德因子与原子中所有电子角动量的耦合有关,因此,不同的角动g LS,量耦合方式其表达式和数值完全不同。在耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为、、和、、,P,PLLLSSS,它们的关系为 eeh,,,,(1),PLL (5) LL222mm, eeh,,,,(1),PSS (6) SS2mm, PPP,,设与和的夹角分别为和,根据矢量合成原理,只要将二者JLSLJSJ ,在方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关J 系: ,,,,,,,coscosJLLJSSJ ePP,,(cos2cos),,LLJSSJ2m 222222PPPPPP,,,,eJLSJLS (7) ,,(2)222mPPJJ 222PPP,,eJLSP,,(1)J2Pm22J

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

塞曼效应

1-3 塞曼效应 实验目的和要求: 了解塞曼效应的重要意义和原理;学习调节光路,学习使用高分辨气压扫描式法布里- 珀罗标准具(F-P)和光谱测量技术;观测和研究Hg 放电灯的546.1nm 光谱线在外磁场作用下的塞曼分裂现象和谱线的超精细结构;根据实验结果研究原子能级结构,获得有关分裂能级的参量。 教学内容: 1.计算Hg 灯546.1nm 光谱线在磁场作用下分裂的各子谱线的条数、偏振方向、波数变化,和相对强度,作出能级分裂图和光谱分裂示意图。 2.调节光路的准直和共轴,调节F-P 标准具的平行度;观察F-P 标准具产生的等倾干涉圆 环随F-P 内空气折射率的变化;通过气压扫描,用光电倍增管扫描测量546.1nm 光谱 线的强度随气压的变化,要求达到高分辨率,观测到超精细结构。 3.加垂直观测方向的磁场,观察F-P 后干涉圆环的分裂、分裂环的相对强度和偏振状态;用气压扫描测量546.1nm 谱线分裂出的9 条光谱,测量不同偏振状态下的光谱。4.分析塞曼分裂谱,计算各分裂子谱线的波数差和相对强度,并与理论值作比较,求荷质比;从塞曼分裂谱中分析得到原子能级的J 量子数和g 因子。 实验过程中可能涉及的问题(有的问题可用于检查学生的预习情况,有的可放在实验室说明牌上作提示,有的可在实验过程中予以引导,有的可安排为报告中要回答的问题,有的可作为进一步探索的问题。不同的学生可有不同的要求。) 塞曼效应是如何产生的?原子在外磁场下的能级分裂由哪些因素决定?根据你的理 论计算,在1T 磁场的作用下,Hg546.1nm光谱线分裂成几条谱线?分裂谱线的偏振态为什么不同?分裂谱线的相对强度是多少?分裂谱线的波数差为多少cm-1? 本实验通过什么方法分辨测量这么窄的光谱分裂?F-P 的自由光谱范围如何定义,在实验中有什么作用?用气压扫描式F-P 标准具实现高分辨光谱测量的实验条件有哪些(光路,平行度,准直,光电倍增管前加小孔光阑… )?随着F-P 内气压即空气折射率的变化,为什么可以观测到分 裂谱线重复出现?如何把实验测量结果中光强随气压的变化,标定转化为,光强随谱线波数的变化?此种标定的前提条件是什么?如何尽量减少相邻谱线的互相影响?如果谱线的裂距和强度与理论计算有偏差,可能是什么原因造成的? 实验装置说明: 1.光源及磁场:Hg 灯与电源(注意Hg 灯上高压的安全),电磁铁与电源(注意电磁铁发热效应,Hg 灯为何需置于磁场中心?) 2.光谱测量:透镜、偏振片和干涉滤光片(各起什么作用?);气压扫描式F-P 标准具、成像透镜和带小孔光阑的光电倍增管(各起什么作用,如何调节,观察到的光学 现象?) 3.控制和数据采集:气压扫描控制器(注意在升压状态下测量), 光电倍增管电源系统(注意屏蔽背景光后加高压使用),计算机数据采集(实验测量的是什么物理量?) 实验的主要内容和问题: 1.Hg 灯置于电磁铁中央,在垂直磁场方向观测光谱(平行磁场方向的塞曼分裂光谱会有什么不同?测量方案上有何不同?) 2.调节整体光路,使Hg 灯像、等倾干涉圆环的中心、以及观测点的中心达到准直、共心、共轴。(为什么有这些要求?如何逐步调节并判断?)

塞曼效应实验资料报告材料完整版

学生: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1.观察塞曼效应现象,把实验结果与理论结果进行比较。 2.学习观测塞曼效应的实验方法。 3.计算电子核质比。 二、实验仪器 WPZ —Ⅲ型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产 生分裂。垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时, 产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具 有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ?,由于原子的磁 矩J μ与总角动量J P 的关系为 2J J e g P m μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个 原子态的角动量密切相关。因此, cos cos 2J J e E B g P B m μαα?=-=-(2) 其中α是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这 种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反, 因此在外磁场方向上, cos ,,1,,2J h P M M J J J απ-==--(3)

学生: 惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。设:4B he m μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+?=+(4) 由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量 耦合方式其表达式和数值完全不同。在L S -耦合的情况下,设原子中电子轨道 运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、 S ,它们的关系为 2L L e P m μ==(5) S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在 J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系: 2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ L LJ S SJ J L S J L S J J J L S J J J e P P m P P P P P P e m P P P P P e P P m e g P m μμαμααα=+= ++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1) J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷 质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成 3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中 的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的 空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体 的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

塞曼效应

塞曼效应 摘要:本实验使用微机化的塞曼效应实验仪观察了汞光灯谱线在外加磁场时产生的分裂,即其塞曼效应,并由此计算了电子的荷质比。 关键词:塞曼效应;法布里-珀罗标准具;荷质比 1. 引言 19世纪伟大的物理学家法拉第研究电磁场对光的影响时,发现了磁场能够改变偏振光的偏振方向。1896年荷兰物理学家塞曼(Pieter Zeeman)根据法拉第的想法,探测磁场对谱线的影响,发现钠双线在强磁场中的分裂。洛伦兹根据经典电子论解释了分裂为三条谱线的正常塞曼效应。由于研究这个效应,塞曼和洛伦兹共同获得了1902年的诺贝尔物理学奖。他们这一重要研究成就,有力地支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有了更多的了解。 2. 实验目的 1.掌握塞曼效应理论,测定电子的荷质比,确定能级的量子数和朗德因子,绘出跃迁的能级图。 2.掌握法布里—珀罗标准具的原理和使用。 3.观察塞曼效应现象,并把实验结果和理论结果进行比较,同时了解使用CCD及多媒体计算进行实验图像测量的方法。 3.实验原理 3.1 塞曼效应简介 当光源放在足够强的磁场中时,所发出的光谱线都分裂成几条,条数随能级的类别而不同,而分裂后的谱线是偏振的,这种现象被称为塞曼效应。塞曼效应证实了原子具有磁距和空间取向量子化的现象。 塞曼效应分为正常塞曼效应和反常塞曼效应。正常塞曼效应是指那些谱线分裂为三条,

而且两边的两条与中间的频率差正好等于 4eB mc π,对于这种现象,经典理论可以给予很好的解释。但实际上大多数谱线的分裂多于三条,谱线的裂距是4eB mc π的简单分数倍,这种 现象被称为反常塞曼效应。下面具体讨论塞曼效应中外磁场对原子能级的作用。 3.2原子的总磁矩与总动量矩的关系 因为原子中的电子同时具有轨道角动量P L 和自旋角动量P S 。相应的,它也同时具有轨道磁矩轨道微矩 L μ和自旋磁矩S μ,并且它们有如下关系。 2L L S s e P m e P m μμ?=??? ?=?? (1) 其中 L s P P ? =??? ?=?? (2) (2)式中 L,S 分别表示轨道量子数和自旋量子数。 原子核也有磁矩,但它比一个电子的磁矩要小三个数量级,故在计算单电子原子的磁矩时可以把原予核的磁矩忽略,只计算电子的磁矩。 对于多电子原,考虑到原子总角动量和总磁矩为零,故只对其原子外层价电子进行累加。磁矩的计算可用图1的矢量图来进行。 图1电子磁矩与角动量关系 由于μS 与Ps 的比值比μL 与P L 的比值大一倍,所以合成的原子总磁矩不在总动量矩P J 的方向上。但由于μ绕P J 运动,只有μ在P J 方向的投影μJ 对外平均效果不为零。根据图5-2可计算出有μJ 与 P J 的关系如下。 2J J e g P m μ= (3) 上式中的g 就是郎德因子。它表征了原子的总磁矩与总角动量的关系,而且决定了能级在磁场中分裂的大小。在考虑LS 耦合的情况下,郎德因子可按下式计算。

塞曼效应实验报告

塞曼效应实验 实验原理 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(PJ)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能: 由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下:

2、塞曼分裂谱线与原谱线关系: (1) 基本出发点: ∴分裂后谱线与原谱线频率差 由于 定义为洛仑兹单位: 3、谱线的偏振特征: 塞曼跃迁的选择定则为:ΔM=0 时为π成份(π型偏振)是振动方向平行于磁场的线偏振光,只有在垂直于磁场方向才能观察到,平行于磁场方向观察不到;但当ΔJ=0时,M2=0到M1=0的跃迁被禁止。

当ΔM=±1时,为σ成份,σ型偏振垂直于磁场,观察时为振动垂直于磁场的线偏振光。 平行于磁场观察时,其偏振性与磁场方向及观察方向都有关:沿磁场正向观察时(即磁场方向离开观察者:) ΔM= +1为右旋圆偏振光(σ+偏振) ΔM= -1为左旋圆偏振光(σ-偏振) 也即,磁场指向观察者时:⊙ ΔM= +1为左旋圆偏振光 ΔM= -1为右旋圆偏振光 分析的总思路和总原则: 在辐射的过程中,原子和发出的光子作为整体的角动量是守恒的。 原子在磁场方向角动量为 ∴在磁场指向观察者时:⊙B 当ΔM= +1时,光子角动量为,与同向 电磁波电矢量绕逆时针方向转动,在光学上称为左旋圆偏振光。 ΔM= -1时,光子角动量为,与反向 电磁波电矢量绕顺时针方向转动,在光学上称为右旋圆偏振光。

塞曼效应实验报告完整版

学生姓名: 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1.观察塞曼效应现象,把实验结果与理论结果进行比较。 2.学习观测塞曼效应的实验方法。 3.计算电子核质比。 二、实验仪器 WPZ —Ⅲ型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ?,由于原子的磁矩J μ与总角动量J P 的关系为 2J J e g P m μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。因此, cos cos 2J J e E B g P B m μαα?=-=-(2) 其中α是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, cos ,,1,,2J h P M M J J J απ -==--L (3)

学生姓名: 刘惠文 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。设:4B he m μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+?=+(4) 由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量 耦合方式其表达式和数值完全不同。在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为 2L L e P m μ==(5) S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在 J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系: 2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ L LJ S SJ J L S J L S J J J L S J J J e P P m P P P P P P e m P P P P P e P P m e g P m μμαμααα=+= ++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1) J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在

塞曼效应72764

塞曼效应 一 实验目的 1.通过观察塞曼效应现象,了解塞曼效应是由于电子的轨道磁矩与自旋磁矩共同受到外磁场作用而产生的。证实了原子具有磁矩和空间取向量子化的现象,进一步认识原子的内部结构。并把实验结果和理论进行比较。 2.掌握法布里—珀罗标准具的原理和使用,了解使用CCD 及多媒体计算机进行实验图象测量的方法。 19世纪伟大的物理学家法拉第研究电磁场对光的影响,发现了磁场能改变偏振光的偏振方向。1896年荷兰物理学家塞曼(Pieter Zeeman )根据法拉第的想法,探测磁场对谱线的影响,发现钠双线在磁场中的分裂。 洛仑兹根据跟据经典电子论解释了分裂为三条的正常塞曼效应。由于研究这个效应,塞曼和洛仑兹共同获得了1902年的诺贝尔物理学奖。他们这一重要研究成就,有力的支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有了更多的了解。至今塞曼效应仍是研究原子能级结构的重要方法之一。 二 实验原理 当发光的光源置于足够强的外磁场中时,由于磁场的作用,使每条光谱线分裂成波长很靠近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。 正常塞曼效应谱线分裂为三条,而且两边的两条与中间的频率差正好等于mc eB π4/,可用经典理论给予很好的 解释。但实际上大多数谱线的分裂多于三条,谱线的裂矩是mc eB π4/的简单分数倍,称反常塞曼效应, 它不能用经典理论解释,只有量子理论才能得到满意的解释。 1. 原子的总磁矩与总动量距的关系 塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果。在忽略核磁矩的情况下,原子中电子的轨道磁矩L μ和自旋磁矩S μ合成原子的总磁矩μ,与电子的轨道角动量L P ,自旋 角动量 S P 合成总角动量J P 之间的关系,可用矢量图1来计算。 已知: L μ=L P m e )2/( L P π2h = )1(+L L (1) S S P m e )/(=μ s S P π 2h = )1(+S S (2) 式中L ,S 分别表示轨道量子数和自旋量子数,e ,m 分别为电子的电荷和质量。 由于L μ和L P 的比值不同于S μ和S P 的比值,因此,原子的总磁矩μ不在总角动量J P 的延长线上, 因此 μ 绕 J P 的延长线旋进。μ 只在 J P 方向上分量J μ对外的平均效果不为零,在进行矢量迭加运算后, 得到有效 J μ为:

塞曼效应

塞曼效应 1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象,后来发现,这种加宽现象实际是谱线发生了分裂。 原子谱线为什么会出现分裂现象呢?塞曼的老师、荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。洛仑兹认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,在磁场作用下能级发生分裂,因而谱线分裂成间隔相等的3条谱线。塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。 1897年12月,普雷斯顿报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。反常塞曼效应的机制在其后二十余年时间里一直没能得到合理地解释,困绕了一大批物理学家。1925年,两名荷兰学生乌仑贝克和古兹米特提出了电子自旋假设,反常塞曼效应的困惑才告一段落。[6] 十九世纪末叶,塞曼效应的发现是对光的电磁理论有力支持,特别是及时得到洛伦兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最主要的发现之一。现在学术界对塞曼效应的解释运用的是量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外

磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。 如果按照形态场假说的观点分析,经典电磁理论和量子力学关于塞曼效应的解释却是不成立的。因为在复式原子模型中,核外电子不存在轨道磁矩,且轨道角动量角量子数l为零,与之对应的原子磁矩空间量子化条件消失;所以不存在电子轨道磁矩与自旋磁矩耦合现象,原子能级分裂的假设失去了理论前提。 那么,塞曼效应又该如何解释呢?形态场假说认为,磁场中光谱线分裂现象与电磁波的偏振性和原子能级分裂两种因素有关。下面让我们来讨论第一个问题——电磁波的偏振性。 电磁波偏振方向决定于原子磁轴的方向,原子的磁场结构具体表述为:以原子核电场为轴,磁力线方向为右手旋。由史特恩-盖拉赫实验可知,在外磁场中,原子磁轴方向将产生极化现象,趋向与外磁场磁力线相垂直。极化后的原子核外电子轨道平面将与外磁场磁力线保持平行。 从垂直磁力线角度看,磁轴方向由外向里的原子(左图),核外电子顺时针绕核旋转,自旋方向与轨道运动方向相同,因此,辐射出的电磁波为左旋偏振波。同理,磁轴方向由里向外的原子(右图),核外电子逆时针绕核旋转,自旋方向与轨道运动方向相同,因此,辐射出的电磁波为右旋偏振波。

塞曼效应实验报告精选doc

实验题目:塞曼效应 实验目的:研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。 实验仪器:塞曼效应实验平台仪器,磁感应强度测量仪,底片,秒表等。 实验原理:(点击跳过实验原理) 1. 谱线在磁场中的能级分裂 对于多电子原子,角动量之间的相互作用有LS 耦合模型和JJ 耦合某型。对于LS 耦合,电子之间的轨道与轨道角动量的耦合作用及电子间自旋与自旋角动量的耦合作用强,而每个电子的轨道与自旋角动量耦合作用弱。 原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进,可以证明旋进所引起的附加能量为 B Mg E B μ=? (1) 其中M 为磁量子数,μB 为玻尔磁子,B 为磁感应强度,g 是朗德因子。朗德因子g 表征原子的总磁矩和总角动量的关系,定义为 ) 1(2)1()1()1(1++++-++=J J S S L L J J g (2) 其中L 为总轨道角动量量子数,S 为总自旋角动量量子数,J 为总角动量量子数。磁量子数M 只能取J ,J-1,J-2,…,-J ,共(2J+1)个值,也即E ?有(2J+1)个可能值。这就是说,无磁场时的一个能级,在外磁场的作用下将分裂成(2J+1)个能级。由式(1)还可以看到,分裂的能级是等间隔的,且能级间隔正比于外磁场B 以及朗德因子g 。 能级E 1和E 2之间的跃迁产生频率为v 的光, 12E E hv -= 在磁场中,若上、下能级都发生分裂,新谱线的频率v ’与能级的关系为 B g M g M hv E E E E E E E E hv B μ)()()()()('112212121122-+=?-?+-=?+-?+= 分裂后谱线与原谱线的频率差为

塞曼效应

塞曼效应 塞曼效应实验室物理学史上一个著名的实验,早在1896年,塞曼发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使其光谱发生变化,一条谱线分裂成几条偏振化的谱线,这种现象称为塞曼效应。塞曼效应的实验证实了原子具有磁矩和空间取向的量子化,并得到罗仑兹理论的解释。1902年,塞曼因为这一发现与罗仑兹共享诺贝尔物理学奖。至今,塞曼效应仍然是研究原子内部能级结构的重要方法。 【实验目的】 1.掌握塞曼效应理论,测量电子的荷质比。 2.学习光路的调节和掌握法布里-珀罗标准具的原理及使用。 3. 了解CCD器件的原理和应用。 【实验器材】 F-P标准具,CCD,电脑,电磁铁,电源,透镜,偏振片,滤波片,低压汞灯,导轨等 【实验原理】 在外磁场作用下,光源所 发射的一条光谱线被分裂成 多条光谱线的现象称为塞曼 (Zeeman)效应。塞曼效应 证实原子具有磁矩,而且其空 间取向是量子化的。在磁场 中,原子磁矩受到磁场作用,图1 使原子在原来能级上获得一附加能量。由于原子磁矩在磁场中的不同取向而获得的不同附加能量,使得原来一个能级裂成为能量不同的几个子能级。在原子发光过程中,原来两能级之间跃迁产生的一条光谱线,由于上、下能级分裂成几个能级。因此,由光源发出的一条光谱线也会分裂成若干成份。 根据理论推导,在磁场中原子附加的能量△E的表达式如下:

由汞光源发出的546.1nm光谱线在外磁场作用下产生了跃迁,如图1,而原子发光必须遵从△M=0或±1的选择定则(△M表示光谱线由于能级跃迁而产生的磁量子数的差值),而且选择定则与光的偏振有关,光的偏振状态又与观察角度有关。垂直于磁场时为线偏振光,而平行于磁场时则是圆偏振光。因此,当我们分别从垂直于磁场方向(横向)和平行于磁场方向(纵向)观察时,所得结果如表1中所列。 表1 由图1中我们可看到,由于选择定则的限制,只允许9种跃迁存在,从横向角度观察,原546.1nm光谱线将分裂成9条彼此靠近的光谱线,如图2所示,其中包括3条π分量线(中心3条)和6条σ分量线。这些条纹互相迭合而使观察困难。由于这两种成份偏振光的偏振方向是正交的,因此我们可利用偏振片将σ分量的6条条纹滤去,只让π分量条纹留下来,如图3所示。相邻谱线之间的间距非常小, 为了能准确地分析谱线的精细结构,需要一个高分辨的光谱仪,本仪器采用法布里—珀罗标准具。 图2 图3

塞曼效应实验报告

近代物理实验报告塞曼效应实验 学院 班级 姓名 学号 时间2014 年 3 月16 日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm 谱线(3S1→3P2 跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是 1896 年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成 3 条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是 19世纪末 20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取 Fabry-Perot(以下简称 F-P)标准具观察 Hg 的 546.1nm 谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴ 原子受磁场作用而旋进引起的附加能量 M 为磁量子数 g 为朗道因子,表征原子总磁矩和总角动量的关系, g 随耦合类型不同( LS 耦合和 jj 耦合)有两种解法。在 LS耦合下: 其中: L 为总轨道角动量量子数 S 为总自旋角动量量子数 J 为总角动量量子数 M 只能取 J, J-1 , J-2 …… -J(共 2J+1)个值,即Δ E 有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔 的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1)基本出发点:

Zeeman效应的理论解释

Zeeman 效应的理论解释 摘要: 关于塞曼效应的解释,可以采用经典理论、半经典半量子理论和量子理 论等多种方法进行解释.但是经典理论解释不涉及能量性质问题,也就未能反映原子内部客观本质,所以此法不宜采用.半经典半量子理论和量子理论解释塞曼效应,都反映了能量是量子化的,塞曼效应是原子能级在磁场作用下分裂,引起不同能级间(按选择定则)跃迁而发射不同频率的谱线.直接反映了原子内部本质. 关键词:经典理论,半经典半量子理论,量子理论,反常塞曼效应 1.引言:原子处在恒定外磁场中,它的光谱线常常发生复杂的分裂,且谱线间的 裂距正比于磁场强度,且谱线各分量有特殊的偏振和方向特性,这就是光谱的塞曼效应.根据谱线的分裂情况又可分为以下两种:相应于单态谱线在外磁场中的分裂称为正常塞曼效应;相应于非单态谱线在外磁场中的分裂称为反常塞曼效应. 2.塞曼效应的经典理论解释到量子理论解释 下面用经典理论,半经典半量子理论和量子理论三种方法对塞曼效应进行解释,并讨论其异同及结果的含义. 2.1.塞曼效应的经典理论 在氢原子或类氢原子中,核外电子处在磁感应强度为B 的均匀静磁场中,当它处在r 轨道时,受原子核对它的作用力为2 0=-F m r ω,这里 2 2 02 +z=0-(- )=0 d z eB dx dt m dt ω

是它在r 轨道上的固有圆频率,设电子绕核运动的速率v c ,即0eB m ω 时,并且 辐射阻尼力可略去,这时电子运动状态和它沿磁场方向和垂直于磁场方向发生的辐射的频率和偏振状态可求出. 根据电子运动过程中受核作用和磁场的作用可知,电子的运动方程为 2 2 02=-+(-e )B d r dr m m r dt dt ω? (1.1) 以电子的平衡点为原点取笛卡儿坐标系,使z 轴沿B 的方向,则上式的三个分量应为 2 2 02+x-(- )=0d x eB dy dt m dt ω (1.2) 22 02 +y-(- )=0d y eB dx dt m dt ω (1.3) 22 02 +z=0d z dt ω (1.4) 对(1.2)、(1.3)两式,我们求得下列形式的解 -=i t x ae ω (1.5) -y='i t a e ω (1.6) 式中'a ,a 是任意常数,ω为待定常数,下面先求ω,现将(1.5)和(1.6)代入(1.2)和(1.3)两式得 220(-)a+(-a')=0ieB m ωωω (1.7) 220(-)a'+=0 ieB m ω ωω (1.8) 由(1.7)和(1.8)得 2222 0(-)=(-) ieB m ωωω (1.9) 所以

塞曼效应 (7)

0506 PB05210489 熊力 塞曼效应 一.实验原理 原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进,可以证明旋进所引起的附加能量为 B Mg E B μ=? (1) 其中M 为磁量子数,μB 为玻尔磁子,B 为磁感应强度,g 是朗德因子。朗德因子g 表征原子的总磁矩和总角动量的关系,定义为 )1(2)1()1()1(1++++-++=J J S S L L J J g (2) 其中L 为总轨道角动量量子数,S 为总自旋角动量量子数,J 为总角动量量子数。磁量子数M 只能取J ,J-1,

J-2,…,-J ,共(2J+1)个值,也即E ?有(2J+1)个可能值。这就是说,无磁场时的一个能级,在外磁场的作用下将分裂成(2J+1)个能级。由式(1)还可以看到,分裂的能级是等间隔的,且能级间隔正比于外磁场B 以及朗德因子g 。 能级E 1和E 2之间的跃迁产生频率为v 的光, 12E E hv -= 在磁场中,若上、下能级都发生分裂,新谱线的频率v ’与能级的关系为 B g M g M hv E E E E E E E E hv B μ)()()()()('112212121122-+=?-?+-=?+-?+= 分裂后谱线与原谱线的频率差为 h B g M g M v v v B μ)('1122-=-=? (3) 代入玻尔磁子m eh B πμ4=,得到 B m e g M g M v π4)(1122-=? (4) 等式两边同除以c ,可将式(4)表示为波数差的形式 B mc e g M g M πσ4)(1122-=? ( 5)

塞曼效应(含思考题答案)

课程: 专业班号: 姓名: 学号: 同组者: 塞曼效应 一、实验目的 1、学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2、观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3、 利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二、实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。 而当光源处于外磁场中时,这条光谱线就会分裂成为若干条分线,每条分线波数为别为 hc B g M g M E E hc B μγγγγγ)()(112201200~1 ~~~~-+=?-?+=?+= L g M g M )(1 1220~-+=γ 所以,分裂后谱线与原谱线的频率差(波数形式)为 mc Be g M g M L g M g M πγγγ4~~~1 12211220)()(-=-=-=? (4) 式中脚标1、2分别表示原子跃迁后和跃迁前所处在的能级,L 为洛伦兹单位 (B L 7.46=),外磁场的单位为T (特斯拉),波数L 的单位为 [] 1 1--特斯拉 米。 1 2M M 、的选择定则是:0=?M 时为π 成分,是振动方向平行于磁场的线偏振光,只能在垂直于

塞曼效应实验

塞曼效应实验 作者杨桥英 指导老师杨建荣 绪论 塞曼效应实验是近代物理中的一个重要实验,它证实了原子具有磁矩和空间量子化,可由实验结果确定有关原子能级的几个量子数如M,J和g因子的值,有力地证明了电子自旋理论。对于教学和学习来说本文所讨论的实验方案的结合使用,不但可以使我们对塞曼实验的原理有更深层次的触动,加深我们对于塞曼效应原理的理解,而且可以使我们对计算机及相应的软件开发在实验中的应用有所了解。 塞曼效应是原子的光谱线在外磁场中出现分裂的现象。塞曼效应是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学、电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场[]1。 1.实验原理 1.1原子的总磁矩与总角动量的关系 原子的总磁矩由电子磁矩和核磁矩两部分组成,由于核磁矩比电子磁矩小三个数量级以上,所以可只考虑电子的磁矩这一部分。原子中的电子做轨道运动时产生轨道磁矩,做自旋运动时产生自旋磁矩。根据量子力学的结果,电子轨道角动量P L 和轨 道磁矩μ L 以及自旋角动量P S 和自旋磁矩μ S 在数值上有下列关系:

塞曼效应实验讲义

塞曼效应讲义 教学方式及时间安排 讲解与实际操作,讲解35-45分钟,操作指导20分钟,学生动手操作120分钟,共200 分钟,4个学时。 一、实验的目的: 1.过观查塞曼效应现象,了解塞曼效应是由于电子的轨道磁矩与自旋磁矩共同受到外磁 场作用而产生的。证实了原子具有磁矩和空间取向量子化的现象,进一步认识原子的内部结 构。并把实验结果和理论进行比较。 2.掌握法布里—珀罗标准具的原理和使用,了解使用CCD 及多媒体计算机进行实验图 象测量的方法。 19世纪伟大的物理学家法拉第研究电磁场对光的影响,发现了磁场能改变偏振光的偏 振方向。1896年荷兰物理学家塞曼(Pieter Zeeman )根据法拉第的想法,探测磁场对谱线 的影响,发现钠双线在磁场中的分裂。 洛仑兹跟据经典电子论解释了分裂为三条的正常塞 曼效应。由于研究这个效应,塞曼和洛仑兹共同获得了1902年的诺贝尔物理学奖。他们这 一重要研究成就,有力的支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有 了更多的了解。至今塞曼效应仍是研究能级结构的重要方法之一。 一、塞曼效应的原理 当发光的光源置于足够强的外磁场中时,由于磁场的作用,使每条光谱线分裂成波长很 靠近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。 正常塞曼效应谱线分裂为三条,而且两边的两条与中间的频率差正好等于eB/4πmc ,可用经 典理论给予很好的解释。但实际上大多数谱线的分裂多于三条,谱线的裂矩是eB/4πmc 的 简单分数倍,称反常塞曼效应,它不能用经典理论解释,只有量子理论才能得到满意的解释。 1.原子的总磁矩与总动量距的关系 塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果。在 忽略核磁矩的情况下,原子中电子的轨道磁矩μL 和自旋磁矩μS 合成原子的总磁矩μ,与电子 的轨道角动量P L ,自旋角动量P S 合成总角动量P J 之间的关系,可用矢量图1来计算。 已知: μL =(e /2m )P L P L = π 2h )1(+L L (1) μS =(e/m )p s P S =π2h )1(+S S (2) 式中L, S 分别表示轨道量子数和自旋量子数,e, m 分别为电子的电荷和质量。 由于μL 和P L 的比值不同于μS 和P S 的比值,因此,原子的总磁矩μ不在总角动量P J 的延 长线上,因此μ绕P J 的延线旋进。μ只在P J 方向上分量μJ 对外的平均效果不为零,在进行矢 量迭加运算后,得到有效μJ 为: J μ=g m e 2P J (3) 其中g 为朗德因子,对于LS 耦合情况下 g=1+ )1(2)1()1()1(++++-+J J S S L L J J (4)

相关文档
最新文档