自动控制的基本控制方式
自动控制原理及其应用试卷与答案

21.一线性系统,当输入是单位脉冲函数时,其输出象函数与传递函数相同。
22.输入信号和反馈信号之间的比较结果称为偏差。
23.对于最小相位系统一般只要知道系统的 开环幅频特性 就可以判断其稳定性。
24.设一阶系统的传递G(s)=7/(s+2),其阶跃响应曲线在t=0处的切线斜率为2。
25.当输入为正弦函数时,频率特性G(j ω)与传递函数G(s)的关系为s=j ω。
26.机械结构动柔度的倒数称为动刚度。
27.当乃氏图逆时针从第二象限越过负实轴到第三象限去时称为正穿越。
28.二阶系统对加速度信号响应的稳态误差为1/K 。
即不能跟踪加速度信号。
29.根轨迹法是通过开环传递函数直接寻找闭环根轨迹。
30.若要求系统的快速性好,则闭环极点应距虚轴越远越好。
21.对控制系统的首要要求是系统具有.稳定性。
22.在驱动力矩一定的条件下,机电系统的转动惯量越小,其.加速性能越好。
23.某典型环节的传递函数是21)(+=s s G ,则系统的时间常数是 0.5 。
24.延迟环节不改变系统的幅频特性,仅使相频特性发生变化。
25.二阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为2ζ/?n 。
26.反馈控制原理是检测偏差并纠正偏差的原理。
27.已知超前校正装置的传递函数为132.012)(++=s s s G c ,其最大超前角所对应的频率=m ω 1.25。
28.在扰动作用点与偏差信号之间加上积分环节能使静态误差降为0。
29.超前校正主要是用于改善稳定性和快速性。
30.一般讲系统的加速度误差指输入是静态位置误差系数所引起的输出位置上的误差。
21.“经典控制理论”的内容是以传递函数为基础的。
22.控制系统线性化过程中,变量的偏移越小,则线性化的精度越高。
23.某典型环节的传递函数是21)(+=s s G ,则系统的时间常数是 0.5 。
24.延迟环节不改变系统的幅频特性,仅使相频特性发生变化。
25.若要全面地评价系统的相对稳定性,需要同时根据相位裕量和幅值裕量来做出判断。
自动控制原理_详解

df y |x0 x k x ,简记为 y=kx。 可得 dx 若非线性函数由两个自变量,如z=f(x,y),则在 平衡点处可展成(忽略高次项)
f f z |( x0 , y0 ) x |( x0 , y0 ) y xv y
经过上述线性化后,就把非线性关系变成了线性 关系,从而使问题大大简化。但对于如图(d)所示为 强非线性,只能采用第七章的非线性理论来分析。对于 线性系统,可采用叠加原理来分析系统。
返回子目录
6.掌握由系统微分方程组建立动态结构图的方 法。 7.掌握用动态结构图等效变换求传递函数和用 梅森公式求传递函数的方法。 8.掌握系统的开环传递函数、闭环传递函数, 对参考输入和对干扰的系统闭环传递函数及误 差传递函数的概念。
北京航空航天大学
分析和设计任何一个控制系统,首要任务是 建立系统的数学模型。 系统的数学模型是描述系统输入、输出变量 以及内部各变量之间关系的数学表达式。 建立数学模型的方法分为解析法和实验法
北京航空航天大学
解析法:依据系统及元件各变量之间所遵 循的物理、化学定律列写出变量间的数学表 达式,并实验验证。
实验法:对系统或元件输入一定形式的信 号(阶跃信号、单位脉冲信号、正弦信号 等),根据系统或元件的输出响应,经过数 据处理而辨识出系统的数学模型。
北京航空航天大学
总结: 解析方法适用于简单、典型、常 见的系统,而实验方法适用于复杂、非常 见的系统。实际上常常是把这两种方法结 合起来建立数学模型更为有效。
下面根据不同的信号源来分析自动控制的几种基本控制方式
• 开环控制 – 按给定值操纵的开环控制 – 按干扰补偿的开环控制 • 按偏差调节的闭环控制 • 复合控制
一、按给定值操纵的开环控制
自动控制原理知识点总结1~3章

自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程.2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。
3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。
4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
6、负反馈:反馈信号与输人信号相减,其差为偏差信号。
7、负反馈控制原理:检测偏差用以消除偏差.将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
8、自动控制系统的两种常用控制方式是开环控制和闭环控制。
9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础。
(2)、快速性:动态过程时间要短,振荡要轻.(3)、准确性:稳态精度要高,误差要小. 12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。
第二章1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。
2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。
对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数.4、结构图的变换与化简化简方框图是求传递函数的常用方法。
自动控制原理典型环节

自动控制原理典型环节自动控制原理是现代工业控制系统的核心,涉及到多种典型环节。
下面将详细介绍几个典型的自动控制原理环节。
1. 比例控制环节比例控制是最简单的一种自动控制方式,它通过调整输出信号与输入信号之间的比例关系来实现对被控对象的控制。
在比例控制中,输出信号与输入信号之间存在一个比例系数Kp,该系数可以根据被控对象的特性进行调整。
当输入信号变化时,输出信号也会相应地发生变化,从而实现对被控对象的调节。
2. 积分控制环节积分控制是一种具有良好稳定性和抗干扰能力的自动控制方式。
在积分控制中,输出信号与时间积分后的误差信号之间存在一个积分系数Ki。
当被控对象存在静态误差时,积分作用可以消除这种误差,并且能够快速响应外部扰动。
3. 微分控制环节微分控制是一种能够有效抑制瞬时干扰和快速响应变化的自动控制方式。
在微分控制中,输出信号与误差信号的微分值之间存在一个微分系数Kd。
当被控对象存在瞬时干扰时,微分作用可以快速响应并抑制这种干扰。
4. PID控制环节PID控制是一种综合了比例、积分和微分控制的自动控制方式。
在PID 控制中,输出信号与比例、积分和微分三个环节的加权和之间存在一个PID系数。
通过调整PID系数,可以实现对被控对象的快速响应、稳定性和抗干扰能力等多方面的要求。
5. 开环控制环节开环控制是一种不考虑反馈信息的自动控制方式。
在开环控制中,输入信号直接作用于被控对象,输出信号不受反馈信息的影响。
开环控制具有简单、高效、低成本等优点,但也容易受到外界干扰和系统参数变化等因素的影响。
6. 闭环控制环节闭环控制是一种基于反馈信息进行自动调节的自动控制方式。
在闭环控制中,输出信号经过传感器测量后与输入信号进行比较,并根据误差信号进行调整。
闭环控制具有良好的稳定性和抗干扰能力,但也存在响应速度较慢、成本较高等缺点。
综上所述,自动控制原理涉及到多种典型的控制环节,每种环节都有其特点和适用范围。
在实际应用中,需要根据被控对象的特性和要求选择合适的控制方式,并进行相应的参数调整和优化。
自动控制基本知识

四、典型环节的动态特性
1.比例环节
1、定义:输出能够按一定比例,无迟延、无惯性的复现输入 信号。
2、微分方程: y(t) K p x(t)
Kp—环节的传递系数或比例系数。
3、传递函数为:W
(s)
Y (s) X (s)
KP
4、阶跃响应曲线:
2、积分环节
1、定义:输出与输入的积分成比例关系。 输出的变化速度与输入成比例关系。
Y s W1 s X1 s X 2 s
X2 s W2 sY s
W总 s
Y s X1 s
W1 s 1W1 sW2
s
第三节 调节器的调节规律
一、概念: 调节器的输出信号与输入信号之间的关系。 PID调节的优点:
(1)原理简单,使用方便。 (2)适应性强。广泛应用于化工、热工、冶金、冶炼、造纸等。 (3)鲁棒性强。即控制品质对被控对象特性的变化不太敏感。
(三)术语 测量变送器: 调节器: 执行器: 执行机构 调节机构 被控对象:指被控制的生产设备或生产过程。 被调量:表征生产过程是否正常而需要控制的物理量。 给定值:根据生产工艺要求,被控量应该达到的数值。 调节量:由控制作用来改变,以控制被控量的变化, 使被控量恢复为给定值的物理量。 扰动:引起被控量偏离其给定值的各种原因。 基本扰动:调节量 干扰:
b1
dx(t) dt
b0 x(t)
(n≥m)
2、传递函数 -微分运算转为代数运算,分析综合方便
定义:线性定常系统在零初始条件下,系统(或环节)输出信号的拉普拉 斯变换与输入信号的拉普拉斯变换之比。
W
(s)
Ly(t) Lx(t)
Y (s) X (s)
设线性定常系统(或环节)的微分方程如上式,在初始条件为零的情况 下,对上式进行拉普拉斯变换,得:
自动控制系统的基本原理与技术

自动控制系统的基本原理与技术自动控制系统是一种能够自主调节、控制和监测的系统,广泛应用于各个领域,包括工业生产、交通运输、通信网络、航空航天等。
它通过感知、决策和执行三个步骤,实现对被控对象的精确控制。
在本文中,我们将介绍自动控制系统的基本原理与技术,并探讨其在现代社会中的应用。
一、自动控制系统的基本原理自动控制系统的基本原理可以总结为反馈控制和前馈控制两种方式。
1. 反馈控制反馈控制是根据被控对象的实际状态与期望状态之间的差异进行调整的一种控制方式。
它通过传感器获取被控对象的输出信号,并将其与预期输出进行对比。
差异信号经过控制器的处理后,通过执行器对被控对象的输入进行调整,使实际输出逐渐趋向于期望输出。
反馈控制可以实现对系统的稳定性和精确性的控制,常用于对动态系统的调节。
2. 前馈控制前馈控制是根据被控对象的输入信号与期望输入信号之间的差异进行调整的一种控制方式。
它通过控制器对期望输入信号进行处理,并将处理后的信号直接作用于被控对象的输入端,以抵消外部扰动对系统的影响。
前馈控制可以提前对系统进行补偿,有效地减小了反馈控制的误差,常用于对静态系统的调节。
二、自动控制系统的基本技术自动控制系统的实现涉及多种基本技术,包括传感器、控制器和执行器等。
1. 传感器传感器是自动控制系统中用于感知被控对象状态的装置。
它可以将物理量、化学量或其他特定量转化为电信号,并传输给控制器。
常见的传感器包括温度传感器、压力传感器、光电传感器等。
传感器的准确性和响应速度直接影响着控制系统的性能。
2. 控制器控制器是自动控制系统中用于处理输入信号并生成控制信号的核心组件。
它根据传感器获取的信息和预设的控制策略,计算出对被控对象的调节量,并将调节信号发送给执行器。
常见的控制器有PID控制器、模糊控制器、模型预测控制器等。
控制器的设计和调节方法直接影响着控制系统的性能表现。
3. 执行器执行器是自动控制系统中用于执行控制信号的装置。
自动控制原理知识点

自动控制原理知识点自动控制原理是探讨如何利用各种力量和手段来控制和调节物体或者系统的运行状态的学科。
它是现代科学技术以及工程实践的重要基础,广泛应用于机械、电气、化工、航空航天等领域。
下面将详细介绍自动控制原理的几个重要知识点。
1.控制系统的组成和基本原理控制系统由输入、处理器、输出和反馈四个基本部分组成。
输入是所要控制的物理量或信号,处理器是处理输入信号的部分,输出是系统输出的目标物理量或信号,反馈将输出信号与输入信号进行比较并反馈给处理器进行调节。
控制系统的基本原理是通过调节输入信号,通过反馈来使系统的输出达到期望值。
2.传递函数和状态空间法传递函数是描述线性系统输入输出关系的函数,它是一个复变量的函数。
通过传递函数可以对系统的动态特性进行分析和设计。
状态空间法是一种描述系统行为的方法,用状态向量和状态方程来描述系统的动态特性和稳定性。
3.PID控制器PID控制器是最常见的一种控制器,它由比例(P)、积分(I)和微分(D)三个部分组成。
比例部分使控制器的输出与误差成正比,积分部分用于处理系统的静差,微分部分用于预测系统未来的状态。
通过调节PID控制器的参数,可以实现系统的稳定性和响应速度的优化。
4.反馈控制反馈控制是将系统的输出信号反馈给系统的输入端进行调节的一种控制方式。
反馈控制可以使系统对扰动具有一定的鲁棒性,能够提高系统的稳定性和减小误差。
5.系统稳定性和瞬态响应系统稳定性是指当系统输入和参数在一定范围内变化时,系统输出是否会有无穷大的增长。
常用的判断系统稳定性的方法有稳定判据和根轨迹法。
瞬态响应是系统在调节过程中输出的变化过程,包括超调量、调节时间、稳态误差等指标。
6.系统优化和自适应控制系统优化是指通过调节系统参数使系统达到最佳性能的过程。
自适应控制是指系统能够根据外部环境和内部参数的变化自主调整控制策略的过程。
优化和自适应控制可以使系统具有更好的鲁棒性和适应能力。
7.数字控制系统数字控制系统是利用数字计算和逻辑运算进行控制的一种控制方式。
控制工程(自动控制)第二讲 基本概念

执行元件:直接推动被控对象,使其被控量发生变 化; 校正元件:也叫补偿元件,它是结构或参数便于调 整的元部件,用串联或反馈连接在系统中,以改善 系统的性能。
自动控制系统基本控制方式
开环控制方式 控制装置与被控对象之间只有顺向作用而没有反向 联系的控制过程,其特点是系统的输出量不会对 系统的控制作用发生影响。
电炉
给定电压
-
+
热电偶
+
+ 电压 放大 功率 放大
+
SM
220V ~
电阻丝
扰动 给定电压 热电偶 电压 放大 功率 放大 伺服 电动机 减速器 调压器 电炉 温度T
执行机构 放大元件 恒温箱自动控制系统方块图
被控对象 测量元件
反馈控制系统组成
输入量 比较元件 串联补偿元件 反馈补偿元件 局部反馈 比较元件 放大元件 执行元件
控制工程基础
主 讲 陈 青 林
本次课的主要内容
1、自动控制的基本概念 2、自动控制与自动控制系统 3、开环控制系统 4、△闭环控制系统 5、△闭环控制系统的组成与工作原理 6、自动控制系统的分类 7、△对自动控制系统的基本要求
第一章 自动控制的一般概念
1-1 自动控制的基本原理与方式
3、程序控制系统
系统的输入量按预定规律随时间变化,要求被控 量迅速、准确地加以复现。
其它分类方法
按时间概念分:定常系统、时变系统 按输入输出信号的数量分:单输入单输出系统、多 输入多输出系统 按控制方式分:开环控制系统、闭环控制系统、复 合控制系统 按系统功用分类:温度控制系统、位置控制系 统…… 按元件类型分类:机电系统、气动系统、液压系统、 生物系统……
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制的基本控制方式
自动控制的基本控制方式
(1)反馈控制方式
如前所述,反馈控制方式是按偏差进行控制的,其特点是不论什幺原因使被控量偏离期望值而出现偏差时,必定会产生一个相应的控制作用去减小或消除这个偏差,使被控量与期望值趋于一致。
可以说,按反馈控制方式组成的反馈控制系统,具有抑制任何内、外扰动对被控量产生影响的能力,有较高的控制精度。
但这种系统使用的元件多,结构复杂,持别是系统的性能分析和设计也较麻烦。
尽管如此,它仍是一种重要的并被广泛应用的控制方式,自动控制理论主要的研究对象就是用这种控制方式组成的系统。
(2)开环控制方式
开环控制方式是指控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统,其特点是系统的输出量不会对系统的控制作用发生影响。
开环控制系统可以按给定量控制方式组成,也可以按扰动控制方式组成。
按给定量控制的开环控制系统,其控制作用直接由系统的输入量产。