高考数学一轮复习 第十二章算法初步、推理与证明、复数12.4直接证明与间接证明练习 理 新人教A版

合集下载

高三理科数学一轮复习讲义,复习补习资料:第十二章推理与证明算法复数12.2直接证明与间接证明(解析版)

高三理科数学一轮复习讲义,复习补习资料:第十二章推理与证明算法复数12.2直接证明与间接证明(解析版)

§12.2直接证明与间接证明考纲展示►1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解反证法的思考过程和特点.考点1 分析法分析法(1)定义:从要证明的________出发,逐步寻求使它成立的________,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等),这种证明方法叫做分析法.(2)框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.答案:(1)结论充分条件(1)[教材习题改编]命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明过程“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”应用了________.答案:综合法解析:因为证明过程是“从左往右”,即由条件到结论,所以该命题的证明过程应用了综合法.(2)[教材习题改编]用分析法证明不等式n+n+4<2n+2(n>0)时,最后推得的显然成立的最简不等式是________.答案:0<4解析:要证n+n+4<2n+2,即证2n+4+2n2+4n<4(n+2),即证n2+4n<n+2,即证n2+4n<(n+2)2,即证0<4.证明方法的两个易错点:分析法证明的书写格式.证明不等式3+7<25,是否可以把“3+7<25”作已知条件?________.(填“是”或“否”)答案:否解析:要证明不等式3+7<25,只需证明不等式(3+7)2<(25)2, 逐步推出结论成立的充分条件,不能把“3+7<25”作为已知条件使用.[典题1] (1)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b . [证明] 要证明2a 3-b 3≥2ab 2-a 2b 成立, 只需证2a 3-b 3-2ab 2+a 2b ≥0, 即2a (a 2-b 2)+b (a 2-b 2)≥0, 即(a +b )(a -b )(2a +b )≥0. ∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0, 从而(a +b )(a -b )(2a +b )≥0成立, ∴2a 3-b 3≥2ab 2-a 2b .(2)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c . 求证:1a +b +1b +c =3a +b +c. [证明] 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +cb +c=3, 也就是c a +b +ab +c=1,只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立.[点石成金] 1.利用分析法证明问题的思路先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证.2.分析法证明问题的适用范围当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.考点2 综合法综合法(1)定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的________,最后推导出所要证明的结论________,这种证明方法叫做综合法.(2)框图表示:P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (P 表示已知条件、已有的定义、定理、公理等,Q 表示所要证明的结论).答案:(1)推理论证 成立[教材习题改编]在△ABC 中,若内角A ,B ,C 成等差数列,且b =3a ,则用综合法推得△ABC 的形状是________.答案:直角三角形解析:因为A ,B ,C 成等差数列,所以2B =A +C .又A +B +C =180°,解得B =60°.又b =3a ,根据正弦定理得sin B =3sin A ,得sin A =12,所以A =30°(因为b >a ,且B =60°,所以A ≠150°),所以C =90°,即△ABC 是直角三角形.证明的两种常见方法:综合法;分析法.(1)设a =lg 2+lg 5,b =e x(x <0),证明a >b 应选用的方法是________.答案:综合法解析:∵当x <0时,b =e x,∴ 0<b <1,又∵a =lg 2+lg 5=1,∴a >b .故应选用综合法.(2)证明不等式2+7<3+6最合适的方法是________. 答案:分析法解析:要证明不等式2+7<3+6,只需证明不等式(2+7)2<(3+6)2,逐步推出结论成立的充分条件.故应选用分析法.[典题2] 设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.[点石成金] 用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围:(1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式;(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .证明:(1)因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA .又PA ⊄平面DEF ,DE ⊂平面DEF , 所以直线PA ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8, 所以DE ∥PA ,DE =12PA =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC , 又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .考点3 反证法反证法假设原命题________(即在原命题的条件下,结论不成立),经过正确的推理,最后得出________,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.答案:不成立 矛盾[教材习题改编]用反证法证明“3,5,7不可能成等差数列”时,第一步应假设________.答案:3,5,7成等差数列解析:根据反证法的特点,第一步应假设“3,5,7成等差数列”.证明方法的两个易错点:反证法的假设.用反证法证明“如果a >b ,那么3a >3b ”,假设内容应是________. 答案:假设结论不成立,将结论3a >3b 否定,即3a ≤ 3b .[典题3] 设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. (1)[解] 设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②,得(1-q )S n =a 1-a 1q n, ∴S n =a 1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1.(2)[证明] 假设{a n +1}是等比数列,则对任意的k ∈N *,(a k +1+1)2=(a k +1)(a k +2+1), 即a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1, 即a 21q 2k +2a 1q k =a 1q k -1·a 1qk +1+a 1qk -1+a 1qk +1.∵a 1≠0,∴2q k=qk -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. [点石成金] 反证法证明问题的三步骤(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1.证明:假设a ,b ,c 均小于1,即a <1,b <1,c <1, 则有a +b +c <3,而a +b +c =2x 2-2x +12+3=2⎝ ⎛⎭⎪⎫x -122+3≥3,两者矛盾,所以假设不成立,故a ,b ,c 至少有一个不小于1.[方法技巧] 分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件的关系,找到解题思路,再运用综合法证明;或两种方法交叉使用.[易错防范] 1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论出现为止.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.真题演练集训1.[2019·四川模拟]有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案:1和3解析:由丙所言可能有两种情况.一种是丙持有“1和2”,结合乙所言可知乙持有“2和3”,从而甲持有“1和3”,符合甲所言情况;另一种是丙持有“1和3”,结合乙所言可知乙持有“2和3”,从而甲持有“1和2”,不符合甲所言情况.故甲持有“1和3”.2.[2018·天津模拟]已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ; (2)设s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .(1)解:当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,可得,A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q-1)+(q -1)q +…+(q -1)qn -2-qn -1=q --q n -11-q-qn -1=-1<0,所以s <t .课外拓展阅读 反证法应用举例反证法的应用是高考的常考内容,题型为解答题,难度适中,为中高档题,考查方向主要有以下几个方面:一 证明否定性命题[典例1] 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列.(1)[解] 当n =1时,a 1+S 1=2a 1=2,则a 1=1.又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)[证明] 假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p+1.(*)又因为p <q <r ,所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立.所以假设不成立,原命题得证.[解题模板]用反证法证明问题的一般步骤二 证明存在性问题[典例2] 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由已知得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3. (2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧h a =bh b =a ,即⎩⎪⎨⎪⎧1a +2=b 1b +2=a ,解得a =b ,这与已知矛盾.故不存在.[易错警示] 利用反证法进行证明时,一定要对所要证明的结论进行否定性的假设,并以此为条件进行归谬,得到矛盾,则原命题成立.三证明唯一性命题[典例3] 已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.(1)[证明] 由已知,得SA2+AD2=SD2,∴SA⊥AD.同理SA⊥AB.又AB∩AD=A,∴SA⊥平面ABCD.(2)[解] 假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC⊄平面SAD,∴BC∥平面SAD.而BC∩BF=B,∴平面FBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.故不存在这样的点F,使得BF∥平面SAD.[方法规律] 当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.。

高考数学一轮复习 第十二章 推理与证明、算法、复数 1

高考数学一轮复习 第十二章 推理与证明、算法、复数 1

【步步高】(江苏专用)2017版高考数学一轮复习第十二章推理与证明、算法、复数 12.2 直接证明与间接证明文1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明(1)反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)反证法的步骤:①反设——假设命题的结论不成立,即假定原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( ×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ×)(3)用反证法证明结论“a>b”时,应假设“a<b”.( ×)(4)反证法是指将结论和条件同时否定,推出矛盾.( ×)(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为_______________________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,则c n 随n 的增大而减小,∴c n +1<c n .2.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________. ①假设a ,b ,c 都是偶数; ②假设a ,b ,c 都不是偶数; ③假设a ,b ,c 至多有一个偶数; ④假设a ,b ,c 至多有两个偶数. 答案 ②解析 “至少有一个”的否定为“都不是”,故②正确. 3.要证a 2+b 2-1-a 2b 2≤0只要证明________(填正确的序号). ①2ab -1-a 2b 2≤0; ②a 2+b 2-1-a 4+b 42≤0;③a +b22-1-a 2b 2≤0;④(a 2-1)(b 2-1)≥0. 答案 ④解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________三角形. 答案 等边解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.题型一 综合法的应用例1 已知数列{a n }满足a 1=12,且a n +1=a n 3a n +1(n ∈N *).(1)证明数列{1a n}是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.(1)解 由已知可得,当n ∈N *时,a n +1=a n3a n +1. 两边取倒数得,1a n +1=3a n +1a n =1a n+3,即1a n +1-1a n=3,所以数列{1a n }是首项为1a 1=2,公差为3的等差数列,其通项公式为1a n =1a 1+(n -1)×3=2+(n -1)×3=3n -1.所以数列{a n }的通项公式为a n =13n -1.(2)证明 由(1)知a n =13n -1,故b n =a n a n +1=13n -1×13n +1-1=13n -13n +2=13(13n -1-13n +2),故T n =b 1+b 2+…+b n=13×(12-15)+13×(15-18)+…+13×(13n -1-13n +2) =13(12-13n +2)=16-13×13n +2. 因为13n +2>0,所以T n <16.思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ca .由题设知(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1. 题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin x 1+x 22cos x 1cos x 2>sin x 1+x 21+cos x 1+x 2.由于x 1,x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证明f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22,即证明1212(32)(32)2x x x x -+-≥1223x x +-2·x 1+x 22,因此只要证明12332x x +-(x 1+x 2)≥1223x x +-(x 1+x 2),即证明12332x x +≥1223x x +,因此只要证明12332x x +1233x x⋅由于x 1,x 2∈R 时,1230,30xx>>,由基本不等式知12332x x +1233x x ⋅显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知a >0,求证a 2+1a 2-2≥a +1a-2.证明 要证 a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a), 只需要证4(a 2+1a2)≥2(a 2+2+1a2),即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.题型三 反证法的应用 命题点1 证明否定性命题例3 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. (1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p+1.(*)又因为p <q <r ,且p ,q ,r ∈N *,所以r -q ,r -p ∈N *. 所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证. 命题点2 证明存在性问题例4 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3. (2)假设函数h (x )=1x +2在区间[a ,b ] (a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧h a =b ,hb =a ,即⎩⎪⎨⎪⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在. 命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =ba. 假设x 1,x 2是它的两个不同的根, 即ax 1=b ,①ax 2=b ,②由①-②得a (x 1-x 2)=0, 因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误. 所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤: 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.22.反证法在证明题中的应用典例 (14分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思维点拨 (1)根据菱形对角线互相垂直平分及点B 的坐标设出点A 的坐标,代入椭圆方程求得点A 的坐标,后求AC 的长;(2)将直线方程代入椭圆方程求出AC 的中点坐标(即OB 的中点坐标),判断直线AC 与OB 是否垂直.规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1)所以设点A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[7分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m 1+4k2.所以AC 的中点为M ⎝⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[10分]因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝ ⎛⎭⎪⎫-14k =-14≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.[13分]所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[14分]温馨提醒 (1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.[方法与技巧]1.分析法的特点:从未知看需知,逐步靠拢已知. 2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.[失误与防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.A组专项基础训练(时间:45分钟)1.若a、b∈R,则下面四个式子中恒成立的是________(填序号).①lg(1+a2)>0 ②a2+b2≥2(a-b-1)③a2+3ab>2b2④ab<a+1 b+1答案②解析在②中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.2.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下正确的是________(填字母).a.①与②的假设都错误b.①与②的假设都正确c.①的假设正确;②的假设错误d.①的假设错误;②的假设正确答案 d解析反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.3.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac<3 a”索的因应是________________________________.①a-b>0 ②a-c>0③(a-b)(a-c)>0 ④(a-b)(a-c)<0答案③解析由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a 2+2ac +c 2-ac -3a 2<0⇐-2a 2+ac +c 2<0⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是____________. 答案 P <Q解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a , Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .5.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是_________________________. 答案 ③解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.6.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是____________________________.答案 a ,b 中没有一个能被5整除解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________.答案 ①③④ 解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-3,32 解析 令⎩⎪⎨⎪⎧ f -1=-2p 2+p +1≤0,f 1=-2p 2-3p +9≤0,解得p ≤-3或p ≥32, 故满足条件的p 的范围为⎝⎛⎭⎪⎫-3,32. 9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证:2a 3-b 3-2ab 2+a 2b ≥0,即2a (a 2-b 2)+b (a 2-b 2)≥0,即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,∴2a 3-b 3≥2ab 2-a 2b .10.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和.(1)求证:数列{S n }不是等比数列;(2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1·(1+q +q 2),因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0,这与公比q ≠0矛盾,所以数列{S n }不是等比数列.(2)解 当q =1时,S n =na 1,故{S n }是等差数列;当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2),得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为__________.答案 A ≤B ≤C解析 ∵a +b 2≥ab ≥2ab a +b ,又f (x )=(12)x 在R 上是减函数. ∴f (a +b 2)≤f (ab )≤f (2ab a +b ),即A ≤B ≤C . 12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则下列说法正确的是________.①△A 1B 1C 1和△A 2B 2C 2都是锐角三角形;②△A 1B 1C 1和△A 2B 2C 2都是钝角三角形;③△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形;④△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形.答案 ④解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2, 这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.13.凸函数的性质定理:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x n n ≤f (x 1+x 2+…+x n n ),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.答案 332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π).∴f A +f B +f C3≤f (A +B +C3)=f (π3), 即sin A +sin B +sin C ≤3sin π3=332, 所以sin A +sin B +sin C 的最大值为332. 14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a 与c 的大小;(3)证明:-2<b <-1.(1)证明 ∵f (x )的图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , ∴1a是f (x )=0的一个根. (2)解 假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a =0矛盾, ∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明 由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x=-b2a =x1+x22<x2+x22=x2=1a,即-b2a <1 a .又a>0,∴b>-2,∴-2<b<-1.15.已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.(1)证明由已知得SA2+AD2=SD2,∴SA⊥AD.同理SA⊥AB.又AB∩AD=A,∴SA⊥平面ABCD.(2)解假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC⊄平面SAD.∴BC∥平面SAD.而BC∩BF=B,∴平面FBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.∴不存在这样的点F,使得BF∥平面SAD.。

高考数学一轮复习 第十二章 推理与证明、算法、复数 12.2 直接证明与间接证明真题演练集训 理 新

高考数学一轮复习 第十二章 推理与证明、算法、复数 12.2 直接证明与间接证明真题演练集训 理 新

明与间接证明真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第十二章推理与证明、算法、复数12.2 直接证明与间接证明真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第十二章推理与证明、算法、复数12.2 直接证明与间接证明真题演练集训理新人教A版的全部内容。

证明与间接证明真题演练集训理新人教A版1.[2016·新课标全国卷Ⅱ]有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1",丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案:1和3解析:由丙所言可能有两种情况.一种是丙持有“1和2",结合乙所言可知乙持有“2和3”,从而甲持有“1和3",符合甲所言情况;另一种是丙持有“1和3”,结合乙所言可知乙持有“2和3",从而甲持有“1和2”,不符合甲所言情况.故甲持有“1和3".2.[2014·天津卷]已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q -1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A;(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n。

2021版高考数学一轮复习第12章推理与证明、算法、复数第2节直接证明与间接证明课件理新人教A版

2021版高考数学一轮复习第12章推理与证明、算法、复数第2节直接证明与间接证明课件理新人教A版
答案:(1)× (2)× (3)√ (4)× (5)√
二、走进教材
2.(选修 2-2P89 练习 T1 改编)对于任意角 θ,化简 cos4θ-sin4θ=( )
A.2sin θ
B.2cos θ
C.sin 2θ
D.cos 2θ
答案:D
3.(选修 2-2P89 练习 T2 改编)若 P= a+6+ a+7,Q= a+8+ a+5(a≥0),则
是高中数学的重要推理方
2.了解间接证明的一种基本方法——反证法; 法,它们是 2021 年高考的 逻辑推理
了解反证法的思考过程、特点.
考点,题型为选择题或填空
3.了解数学归纳法的原理.
题,分值为数学命题.
1
课 前 ·基 础 巩 固
‖知识梳理‖
1.直接证明
第十二章 推理与证明、算法、 复数
第二节 直接证明与 间接证明

课 前 ·基 础 巩 固 1


课 堂 ·考 点 突 破 2

3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
[核心素养]
1.了解直接证明的两种基本方法——分析法
和综合法;了解分析法和综合法的思考过程、 直接证明与间接证明
特点.
P,Q 的大小关系是( )
A.P>Q
B.P=Q
C.P<Q
D.不能确定
答案:A
三、易错自纠
4.若 a,b,c 为实数,且 a<b<0,则下列命题正确的是( )
A.ac2<bc2
B.a2>ab>b2
C.1a<1b
D.ba>ab
解析:选 B a2-ab=a(a-b),

高考数学一轮总复习第十二章算法复数推理与证明第2节直接证明与间接证明课件

高考数学一轮总复习第十二章算法复数推理与证明第2节直接证明与间接证明课件

考点三 反证法的应用
[训练 3](2018·郑州一中月考)若 f(x)的定义域为[a,b],值域为[a,b](a<b),则称函
数 f(x)是[a,b]上的“四维光军”函数.
(1)设 g(x)=12x2-x+32是[1,b]上的“四维光军”函数,求常数 b 的值; (2)是否存在常数 a,b(a>-2),使函数 h(x)=x+1 2是区间[a,b]上的“四维光军”函
∴法S一n=n(适当1+放不22缩n要,-放11、缩)便过=于头求n。2和. ;2、 S11+S12+…+S1n=112+212+…+n12
>1×12+2×13+…+n(n1+1)
(2)解 由(1)知a1n=2n-1,
=1-21+12-13+…+n1-n+1 1
考点一 综合法的应用
[训练 1] (2018·东北三省三校调研)已知 a,b,c>0,a+b+c=1.
求证: (1) a+ b+ c≤ 3; (2)3a1+1+3b1+1+3c+1 1≥32.
以上三式相加得 43a1+1+3b+1 1+3c+1 1≥9-3(a+b+c)=6, ∴3a1+1+3b1+1+3c+1 1≥23. 当且仅当 a=b=c=13时取“=”.
(2)设 bn=Snn(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列.
(1)解 由已知得a31a=1+32d+=19,+3 2,解得∴d=2,
否定是:存在三项 成等比数列
故 an=2n-1+ 2,Sn=n(n+ 2). (2)证明 由(1)得 bn=Snn=n+ 2. 假设数列{bn}中存在三项 bp,bq,br(p,q,r∈N*, 且互不相等)成等比数列,则 bq2=bpbr.
为便于利用条件, 尝试平方

高考数学大一轮复习 第十二章 复数、算法、推理与证明 4 第4讲 直接证明与间接证明课件 理

高考数学大一轮复习 第十二章 复数、算法、推理与证明 4 第4讲 直接证明与间接证明课件 理

法二:S11+S12+…+S1n=112+212+…+n12>1, 又因为 1>n+n 1,
所以S11+S12+…+S1n>n+n 1.
12/11/2021
第十四页,共四十三页。
综合法的证题思路 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知 (从题设到结论)的逻辑推理方法,即从题设中的已知条件或已 证的真实判断(命题)出发,经过一系列中间推理,最后导出所 要求证结论的真实性. (2)综合法的逻辑依据是三段论式的演绎推理.
12/11/2021
第七页,共四十三页。
命题“对任意角 θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-
sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”过
程应用了( )
A.分析法
B.综合法
C.综合法和分析法
D.间接证明法
解析:选 B.因为证明过程是“从左往右”,即由条件⇒结论,
12/11/2021
第二十五页,共四十三页。
角度二 证明存在性问题 已知四棱锥 S-ABCD 中,底面是边长为 1 的正方形,又
SB=SD= 2,SA=1. (1)求证:SA⊥平面 ABCD; (2)在棱 SC 上是否存在异于 S,C 的点 F,使得 BF∥平面 SAD? 若存在,确定点 F 的位置;若不存在,请说明理由.
12/11/2021
第十八页,共四十三页。
又△ABC 三内角 A,B,C 成等差数列,故 B=60°, 由余弦定理,得 b2=c2+a2-2accos 60°, 即 b2=c2+a2-ac,故 c2+a2=ac+b2 成立. 于是原等式成立.
12/11/2021

高考数学大一轮复习第十二章推理与证明、算法、复数12.2直接证明与间接证明教师专用文苏教版

(1)证明: 是函数f(x)的一个零点;
(2)试用反证法证明 〉c。
证明 (1)∵f(x)的图象与x轴有两个不同的交点,
∴f(x)=0有两个不等实根x1,x2,
∵f(c)=0,∴x1=c是f(x)=0的根,
又x1x2= ,∴x2= ( ≠c),
∴ 是f(x)=0的一个根.
即 是函数f(x)的一个零点.
qSn=a1q+a1q2+…+a1qn,②
①-②得,(1-q)Sn=a1-a1qn,
∴Sn= ,
∴Sn=
(2)证明 假设{an+1}是等比数列,则对任意的k∈N*,
(ak+1+1)2=(ak+1)(ak+2+1),
a +2ak+1+1=akak+2+ak+ak+2+1,
a q2k+2a1qk=a1qk-1·a1qk+1+a1qk-1+a1qk+1,
方法二 + +…+ = + +…+ >1,
又∵1> ,
∴ + +…+ 〉 .
思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.
12.2 直接证明与间接证明
1.直接证明
(1)综合法
①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.
②框图表示: ⇒…⇒…⇒
③思维过程:由因导果.
(2)分析法
①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.

高考数学大一轮复习 第十二章 推理与证明、算法、复数 12.2 直接证明与间接证明教师用书 文 苏教版

12.2 直接证明与间接证明1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明反证法:要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).这个过程包括下面3个步骤:(1)反设——假设命题的结论不成立,即假定原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真——由矛盾结果,断定反设不真,从而肯定原结论成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( ×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ×)(3)用反证法证明结论“a>b”时,应假设“a<b”.( ×)(4)反证法是指将结论和条件同时否定,推出矛盾.( ×)(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.(2016·扬州质检)已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为______________________. 答案 c n +1<c n 解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,则c n 随n 的增大而减小,∴c n +1<c n .2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为____________________________. 答案 a ,b 至少有一个能被5整除解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0只要证明________(填正确的序号). ①2ab -1-a 2b 2≤0; ②a 2+b 2-1-a 4+b 42≤0;③a +b22-1-a 2b 2≤0;④(a 2-1)(b 2-1)≥0. 答案 ④解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·盐城模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x n n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 答案332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数, 且A ,B ,C ∈(0,π). ∴f A +f B +f C3≤f (A +B +C3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用 例1 数列{a n }满足a n +1=a n2a n +1,a 1=1. (1)证明:数列{1a n}是等差数列;(2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n=2,故数列{1a n}是以1为首项,2为公差的等差数列.(2)解 由(1)知1a n=2n -1,∴S n =n+2n -2=n 2.方法一1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n n +=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1.方法二1S 1+1S 2+…+1S n =112+122+…+1n 2>1,又∵1>nn +1,∴1S 1+1S 2+…+1S n >n n +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞), ∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立.上式两边同时取常用对数,得 lg(a +b 2·b +c 2·c +a2)>lg abc ,∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明x 1+x 22cos x 1cos x 2>x 1+x 21+x 1+x 2.由于x 1,x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式显然成立,因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证明f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22,即证明x 1-2x 1+x 2-2x 22≥1223x x +-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥1223x x+-(x 1+x 2),即证明3x 1+3x 22≥1223x x+,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2016·苏州模拟)下列各式:1+0.12+0.1>12,0.2+30.5+3>0.20.5,2+73+7>23,72+π101+π>72101. 请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明. 解 已知a >b >0,m >0,求证:b +m a +m >ba.证明如下:∵a >b >0,m >0,欲证b +m a +m >ba, 只需证a (b +m )>b (a +m ),只需证am >bm , 只需证a >b ,由已知得a >b 成立, 所以b +m a +m >ba成立. 题型三 反证法的应用 命题点1 证明否定性命题例3 (2016·连云港模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n, ∴S n =a 1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 命题点2 证明存在性问题例4 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD , ∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD . 命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =b a. 假设x 1,x 2是它的两个不同的根, 即ax 1=b ,① ax 2=b ,②由①-②得a (x 1-x 2)=0, 因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误. 所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明 (1)∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a,∴x 2=1a (1a≠c ),∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点.(2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0,知f (1a )>0,与f (1a )=0矛盾,∴1a≥c ,又∵1a ≠c ,∴1a>c .22.反证法在证明题中的应用典例 (14分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去. 规范解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1),所以设点A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形, 因为点B 不是W 的顶点,且AC ⊥OB , 所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[7分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22 =k ·x 1+x 22+m =m1+4k2.所以AC 的中点为M ⎝⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[10分]因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k ,因为k ·⎝ ⎛⎭⎪⎫-14k =-14≠-1, 所以AC 与OB 不垂直.[13分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[14分]1.(2017·泰州月考)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是__________________________. 答案 方程x 2+ax +b =0没有实根解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为__________.答案 (-3,0]解析 若2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k -38或k =0.解得-3<k ≤0.3.设x ,y ,z >0,则关于三个数y x +y z ,z x +z y ,x z +x y的叙述正确的是________. ①都大于2②至少有一个大于2 ③至少有一个不小于2④至少有一个不大于2答案 ③解析 因为(y x +y z )+(z x +z y )+(x z +x y) =(y x +x y )+(y z +z y)+(z x +x z)≥6, 当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,③正确.4.(2016·镇江模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是____________. 答案 P <Q解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a , Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .5.(2016·苏州模拟)下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧ f -=-2p 2+p +1≤0,f =-2p 2-3p +9≤0,解得p ≤-3或p ≥32, 故满足题干条件的p 的取值范围为⎝⎛⎭⎪⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称,求证:f (x +12)为偶函数. 证明 由函数f (x +1)与f (x )的图象关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得 f (x -12+1)=f [-(x -12)],即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.(2016·苏州模拟)已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=x 2-x 1+-x 1-x 2+x 1+x 2+=x 2-x 1x 1+x 2+>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·浙江)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1--x 41--x =1-x 41+x , 由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=x -x +x ++32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34, 又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. 13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2. 因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。

2021版高考数学一轮复习第12章复数、算法、推理与证明第4节直接证明与间接证明课件文新人教A版


——综合法和分析法,间接证明的方法 ——反证法,它常以立体几何中的证明及 相关选修内容中平面几何,不等式的证明 为载体加以考查,注意提高分析问题、解 决问题的能力;在高考中主要以解答题的
逻辑推理
形式考查,难度中档.
1
课 前 ·基 础 巩 固
‖知识梳理‖
1.直接证明
内容
综合法
分析法
定义
从要证明的结论出发,逐步寻求使 利用已知条件和某些数学定义、公 它成立的 1 _充__分______条件,直到最 理、定理等,经过一系列的推理论
答案:③
2
课 堂 ·考 点 突 破
考点 综合法的应用
|题组突破| 1.在平行六面体 ABCD-A1B1C1D1 中,AA1=AB,AB1⊥.
求证:(1)AB∥平面 A1B1C; (2)平面 ABB1A1⊥平面 A1BC.
证明:(1)在平行六面体 ABCD-A1B1C1D1 中,AB∥A1B1. 又 AB⊄平面 A1B1C,A1B1⊂平面 A1B1C,所以 AB∥平面 A1B1C. (2)在平行六面体 ABCD-A1B1C1D1 中,四边形 ABB1A1 为平行四边形. 又因为 AA1=AB,所以四边形 ABB1A1 为菱形, 因此 AB1⊥A1B. 因为 AB1⊥B1C1,BC∥B1C1,所以 AB1⊥BC. 又因为 A1B∩BC=B,A1B⊂平面 A1BC,BC⊂平面 A1BC,所以 AB1⊥平面 A1BC. 因为 AB1⊂平面 ABB1A1,所以平面 ABB1A1⊥平面 A1BC.
解析:(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件. (2)应假设“a≤b”. (3)反证法只否定结论. 答案:(1)× (2)× (3)× (4)√
二、走进教材

高考数学一轮复习 第十二章 算法初步 第4讲 直接证明与间接证明课件 理


2.间接证明
(1)反证法的定义
假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明
□05 假设错误
,从而证明 □06 原命题成立 的证明方法.
(2)利用反证法证题的步骤
①假设命题的结论不成立,即假设结论的反面成立;
②由假设出发进行正确的推理,直到推出矛盾为止;
2-pr)+ 2(2q-p-r)=0.
12/13/2021
第二十八页,共三十七页。
答案
因为p,q,r∈N*,所以q22q--ppr-=r0=,0, 所以p+2 r2=pr⇒(p-r)2=0. 所以p=r,这与p≠r矛盾,所以数列{bn}中任意不同的三项都不可能成 为等比数列.
12/13/2021
12/13/2021
第三十页,共三十七页。
答案
同理(1-b)b≤14,(1-c)c≤14, 所以(1-a)a(1-b)b(1-c)c≤614, 这与假设矛盾,故原命题正确. 证法二:假设三式同时大于41, 因为0<a<1,所以1-a>0, 1-2a+b≥ 1-ab> 41=12,
12/13/2021
12/13/2021
第十九页,共三十七页。
即时训练 2.已知正数a,b,c满足a+b+c=1. 求证: a+ b+ c≤ 3.
证明 欲证 a+ b+ c≤ 3, 则只需证( a+ b+ c)2≤3, 即证a+b+c+2( ab+ bc+ ac)≤3, 即证 ab+ bc+ ac≤1. 又 ab+ bc+ ac≤a+2 b+b+2 c+a+2 c=1,当且仅当a=b=c=13时取 “=”.
A.假设a,b,c都是偶数 B.假设a,b,c都不是偶数 C.假设a,b,c中至多有一个偶数 D.假设a,b,c中至多有两个偶数 答案 B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业67 直接证明与间接证明
一、选择题
1.若a,b∈R,则下面四个式子中恒成立的是( ).
A.lg(1+a2)>0 B.a2+b2≥2(a-b-1)

C.a2+3ab>2b2 D.ab<a+1b+1
2.(2012河北张家口模拟)分析法又称执果索因法,若用分析法证明:“设a>b>c,
且a+b+c=0,求证b2-ac<3a”“索”的“因”应是( ).
A.a-b>0 B.a-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
3.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”成立的( ).
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.要证:a2+b2-1-a2b2≤0,只要证明( ).

A.2ab-1-a2b2≤0 B.a2+b2-1-a4+b42≤0

C.a+b22-1-a2b2≤0 D.(a2-1)(b2-1)≥0
5.在△ABC中,角A,B,C所对的边分别为a,b,c,若C=120°,c=2a,则( ).
A.a>b B.a<b
C.a=b D.a与b的大小关系不能确定
6.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、
b、c
中至少有一个是偶数.用反证法证明时,下列假设正确的是( ).

A.假设a、b、c都是偶数 B.假设a、b、c都不是偶数
C.假设a、b、c至多有一个偶数 D.假设a、b、c至多有两个偶数
7.一个平面封闭区域内任意两点距离的最大值称为该区域的“直径”,封闭区域边界
曲线的长度与区域直径之比称为区域的“周率”,下面四个平面区域(阴影部分)的周率从左
到右依次记为τ1,τ2,τ3,τ4,则下列关系中正确的是( ).

A.τ1>τ4>τ3 B.τ3>τ1>τ2
C.τ4>τ2>τ1 D.τ3>τ4>τ1
二、填空题
8.(2012广东肇庆模拟)已知点An(n,an)为函数y=x2+1图象上的点,Bn(n,bn)为函
数y=x图象上的点,其中n∈N*,设cn=an-bn,则cn与cn+1的大小关系为________.
9.已知命题:“在等差数列{an}中,若4a2+a10+a( )=24,则S11为定值”为真命题,
由于印刷问题,括号处的数模糊不清,可推得括号内的数为__________.
10.请阅读下列材料:若两个正实数a1,a2满足a21+a22=1,那么a1+a2≤2.
证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,
恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤2.
根据上述证明方法,若n个正实数满足a21+a22+…+a2n=1时,你能得到的结论为
__________.
三、解答题
11.已知{an}是正数组成的数列,a1=1,且点(an,an+1)(n∈N*)在函数y=x2+1的图
象上.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+2an,求证:bn·bn+2<b2n+1.
参考答案
一、选择题
1.B 解析:在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+
(b+1)2≥0,
∴a2+b2≥2(a-b-1)恒成立.
2.C 解析:b2-ac<3ab2-ac<3a2

(a+c)2-ac<3a2


a2+2ac+c2-ac-3a
2

<0

-2a2+ac+c2<0
2a2-ac-c2>0

(a-c)(2a+c)>0
(a-c)(a-b)>0.

3.B
4.D 解析:因为a2+b2-1-a2b2≤0(a2-1)(b2-1)≥0.

5.A 解析:由正弦定理,得csin 120°=asin A,

∴sin A=a·322a=64>12.
∴A>30°.∴B=180°-120°-A<30°.
∴a>b.
6.B 解析:“至少有一个”的否定是“都不是”.

7.C 解析:在图(1)中,设图形所在的矩形长为a,宽为b,则其周率为2(a+b)a2+b2,

由不等式的性质可知2(a+b)a2+b2≤22;在图(2)中设大圆的半径为R,则易知外边界长为π
R,而内边界恰好为一个半径为R2的小圆的周长πR,故整个边界长为2πR
,而封闭曲线的直

径最大值为2R,故周率为π;图(3)中周长为直径的三倍,故周率为3;图(4)中设各边长为
a,则整个边界的周长为12a,直径为23a
,故周率为23,故三个周率大小符合选项C.

二、填空题

8.cn+1<cn 解析:由条件得cn=an-bn=n2+1-n=1n2+1+n,
∴cn随n的增大而减小.
∴cn+1<cn.

9.18 解析:S11=11(a1+a11)2=11a6,由S11为定值,可知a6=a1+5d为定值.

设4a2+a10+an=24,整理得a1+n+126d=4,可知n=18.
10.a1+a2+…+an≤n 解析:构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-an)2=
nx2-2(a1+a2+…+an)x+1,因为对一切实数x,恒有f(x
)≥0,所以Δ≤0,

从而得4(a1+a2+…+an)2-4n≤0,
所以a1+a2+…+an≤n.
三、解答题
11.解:(1)由已知得an+1=an+1,
则an+1-an=1,
又a1=1,
所以数列{an}是以1为首项,1为公差的等差数列.
故an=1+(n-1)×1=n.
(2)由(1)知,an=n,从而bn+1-bn=2n.
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b
1
=2n-1+2n-2+…+2+1
=1-2n1-2=2n-1.
因为bn·bn+2-b2n+1=(2n-1)(2n+2-1)-(2n+1-1)2
=(22n+2-2n+2-2n+1)-(22n+2-2·2n+1+1)
=-2n<0,
所以bn·bn+2<b2n+1.

相关文档
最新文档