动能与动能定理经典习题及答案(免费

合集下载

高中必备物理动能与动能定理技巧全解及练习题(含答案)

高中必备物理动能与动能定理技巧全解及练习题(含答案)

高中必备物理动能与动能定理技巧全解及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =2.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.3.如图所示,小滑块(视为质点)的质量m = 1kg ;固定在地面上的斜面AB 的倾角θ=37°、长s =1m ,点A 和斜面最低点B 之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。

【物理】 物理动能与动能定理专题练习(及答案)及解析

【物理】 物理动能与动能定理专题练习(及答案)及解析

【物理】 物理动能与动能定理专题练习(及答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。

动能定理练习题(附答案)

动能定理练习题(附答案)

动能定理练习题(附答案)2012年3月1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B :G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B : G F W W W ∑=+F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理: 221122mgh mv mv =-20m/s v ∴=(2) m 由A 到B ,根据动能定理3:1不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.A22t 01122mgh W mv mv -=-1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v .(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理: 221122mgH mv mv =-v ∴(2)变力6.(3) m 由B 到C ,根据动能定理:4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. 6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.v m0v 'O A →A B→v t v2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解:(1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴=(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-100m s ∴=6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解:78也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下:m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=.fA(1) m 由A 到C 9:根据动能定理: f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C : f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功. 解:(1) m 由B 到C :根据动能定理: 2B1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理: 2f B 102mgR W mv +=-f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求证:hsμ=. 证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理:2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-9 也可以分段计算,计算过程略.10A又1cos l s θ=、12s s s =+ 则11:0h s μ-=即:hsμ=证毕.9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的B 点. 若该物体从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 已知AB = BC ,求物体在斜面上克服摩擦力做的功. 解:设斜面长为l ,AB 和BC 之间的距离均为s ,物体在斜面上摩擦力做功为f W . m 由O 到B :根据动能定理:f 2cos18000mgh W f s ++⋅⋅=-m 由O 到C :根据动能定理:2f 2012cos18002mgh W f s mv ++⋅⋅=- 2f 012W mv mgh ∴=-克服摩擦力做功2f 012W W mgh mv ==-克f10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.(2)这一过程牵引力所做的功.11具体计算过程如下:由1cos l s θ=,得:12cos180cos18000mgh mg s mgs μμ+⋅⋅+⋅=-()120mgh mg s s μ-⋅+=由12s s s =+,得:0mgh mgs μ-=即:0h s μ-=(3)这一过程汽车行驶的距离. 解12:(1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =⋅=⋅1000N f ∴=(2)汽车由静止到达最大速度的过程中:6F 1.210J W P t =⋅=⨯(2)汽车由静止到达最大速度的过程中,由动能定理:2F m 1cos18002W f l mv +⋅⋅=-800m l ∴=11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。

高中物理动能与动能定理题20套(带答案)及解析

高中物理动能与动能定理题20套(带答案)及解析
根据动能定理得:
得:W=6J
(3)设物块P与滑块Q碰后速度分别为v1和v2,P与Q在小车上滑行距离分别为S1和S2
高中物理动能与动能定理题20套(带答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
(3)欲使小珠到达E点与钢丝间的弹力超过 ,求释放小珠的位置范围.
【答案】⑴v1=0;⑵ ;⑶C点上方低于 处滑下或高于 处
【解析】
【详解】
(1)由机械能守恒可知,小珠由C点释放,到达E点时,因CE等高,故到达E点的速度为零;
(2)由题意: ;小珠由B点释放,到达E点满足:
从E点滑出后恰好撞到D点,则 ; 联立解得: ;
(1)A、B间的水平距离;
(2)物块通过C点时,轨道对物体的支持力;
(3)物块与小车因摩擦产生的热量。
【答案】(1)1.2m(2) (3)13.6J
【解析】
【详解】
(1)物块从A到B由平抛运动的规律得:
tanθ=
x=v0t
得x=1.2m
(2)物块在B点时,由平抛运动的规律得:
物块在小车上BC段滑动过程中,由动能定理得:mgR(1-cosθ)= mvC2- mvB2
4.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型. 和 为两段水平直轨道,竖直圆轨道与水平直轨道相切于 点, 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在 点的小车以额定功率启动,当小车运动到 点时关闭发动机并不再开启,测得小车运动到最高点 时对轨道的压力大小 ,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量 ,额定功率 , 长 , 长 ,竖直圆轨道半径 ,水平半圆轨道半径 .小车在两段水平直轨道所受的阻力大小均为 ,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取 .求:

(完整版)动能定理习题(附答案)

(完整版)动能定理习题(附答案)

1、 一质量为1kg 的物体被人用手由静止向上提高 (1)物体克服重力做功• (2)合外力对物体做功.解:⑴ m 由 A 到 B :W Gmgh 10J克服重力做功10W 克G W G 10J C12⑵m 由A 到B ,根据动能定理11: W -mv2⑶ m 由 A 到 B : W W G W FW F 12J2、 一个人站在距地面高 h = 15m 处,将一个质量为 上抛出• (1)若不计空气阻力,求石块落地时的速度 ⑵若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W.1 2 解:(1) m 由A 到B :根据动能定理: mgh mv⑵m 由A 到B ,根据动能定理12:1 2 1 2 mgh Wmv t mv oW 1.95J2 23a 、运动员踢球的平均作用力为200N ,把一个静止的质量为在水平面上运动 60m 后停下.求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理13:1 2 W mv 0 0 50J 2(3b)球在运动员踢球的过程中,根据动能定理14W 】mv 2-mv 22 210不能写成:W G mgh 10J .在没有特别说明的情况下,临 默认解释为重力所做的功,而在这个过程中重力所做的功为负. 11也可以简写成:“m : A B : Q W EJ',其中 W E k 表示动能定理. 12此处写 W 的原因是题目已明确说明 W 是克服空气阻力所做的功. 13踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功 14结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能, 然后其他形式的能又转化为动能,而前后动能相等(3)手对物体做功.B m0 2J* N hA±+ mgm = 100g 的石块以v o = 10m/s 的速度斜向 V.1kg 的球以10m/s 的速度踢出,v 0 0 v ; v 0m_O A Bmg mg1m ,这时物体的速度是 2m/s ,求:4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v o 竖直下抛,落地后,小钢球陷入泥 土中的深度为h 求:(2)泥土对小钢球的阻力是恒力还是变力 (4)求泥土对小钢球的平均阻力大小 .解:(1) m 由A 到B :根据动能定理:(2) m 由1状态到3状态15 16:根据动能定理:Fs 1 cos0omgscos180° 0 0s 100m15也可以用第二段来算s 2,然后将两段位移加起来.计算过程如下: m 由2状态到3状态:根据动能定理:o12mgs 2 cos180 0 mv s 70m则总位移s s, s?100m .(1)求钢球落地时的速度大小v.(3)求泥土阻力对小钢球所做的功 mgmgH12 12 mv mv 0 2 2(2)变力 6.(3) m 由B 到C ,根据动能定理: mgh W1 2 mv 2W f1 2mv 0 mg v tW f2 mv 02mg Hcos180°2h5、在水平的冰面上,以大小为 F=20N 冰车受到的摩擦力是它对冰面压力的 进了一段距离后停止.取g = 10m/s 2. (1)撤去推力F 时的速度大小. I 程s. I 的水平推力,推着质量 0. 01倍,当冰车前进了 .求:(2)冰车运动的总路m=60kg S 1=30m 的冰车, 后,撤去推力F ,冰车又前 由静止开始运动•解:(1) m 由1状态到2状态:根据动能定理7 F& cos0oo1 2mgs cos180 — mv 014m/s 3.74m/sv6、如图所示,光滑1/4圆弧半径为0.8m,有一质量为1.0kg的物体自A点从静止开始下滑到B 点,然后沿水平面前进4m,到达C点停止.求:(1) 在物体沿水平运动中摩擦力做的功(2) 物体与水平面间的动摩擦因数.解:⑴m由A到C9:根据动能定理:mgR W f 0 0W f mgR 8J⑵ m 由 B 到C: W f mg x cos180°0.27、粗糙的1/4圆弧的半径为0.45m,有一质量为0.2kg的物体自最高点A从静止开始下滑到圆弧最低点B时,然后沿水平面前进0.4m到达C点停止.设物体与轨道间的动摩擦因数为0.5 (g =10m/s 2),求:(1) 物体到达B点时的速度大小•(2) 物体在圆弧轨道上克服摩擦力所做的功.解:⑴m由B到C :根据动能定理:mg I cos180°v B 2m/s1 2⑵ m由A到B:根据动能定理:mgR W f mv(3 02克服摩擦力做功W克f W f 0.5J8、质量为m的物体从高为h的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为I,斜面倾角为,物体在斜面上运动的水平位移为s,,在水平面上运动的位移为S2,如图所示10.m由A到B :根据动能定理:mgh mg cos I cos180o mgs2 cos180°0 0又Q I cos s i、s S1 S2h则: h s 0即:ss9也可以分段计算,计算过程略10、汽车质量为 m = 2 x 103kg ,沿平直的路面以恒定功率 达到最大速度20m/s.设汽车受到的阻力恒定.求:证毕•9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的 从斜面的顶端以初速度 v o 沿斜面滑下,则停在平面上的 C 点•已知AB = BC 克服摩擦力做的功• ° A 故功 解:设斜面长为I , AB 和BC 之间的距离均为s ,物体在斜面上摩擦力 O 到B :根据动能定理: mgh W f 2 s cos180o 0 0 O 到C :根据动能定理: mgh W f 2 2s cos180° 1 2mv 2mgB 点•若该物体 ,求物体在斜面上N i厂ABN 2W f-mv 2 mgh 2克服摩擦力做功W 克 f W fmgh 1 2mv o2(1)阻力的大小. ⑵这一过程牵引力所做的功 (3)这一过程汽车行驶的距离解12 : (1)汽车速度v 达最大v m 时,有F f ,故:P F v m f v mf 1000N(2)汽车由静止到达最大速度的过程中: 6 g Pt 1.2 10 J (2)汽车由静止到达最大速度的过程中,由动能定理: mg mg l cos180o 1 2mv m 2l 800m 11. AB 是竖直平面内的四分之一圆弧轨道,在下端 A 点起由静止开始沿轨道下滑。

(完整版)动能定理习题(附答案)

(完整版)动能定理习题(附答案)

1、 一质量为1kg 的物体被人用手由静止向上提高 (1)物体克服重力做功• (2)合外力对物体做功.解:⑴ m 由 A 到 B :W Gmgh 10J克服重力做功10W 克G W G 10J C12⑵m 由A 到B ,根据动能定理11: W -mv2⑶ m 由 A 到 B : W W G W FW F 12J2、 一个人站在距地面高 h = 15m 处,将一个质量为 上抛出• (1)若不计空气阻力,求石块落地时的速度 ⑵若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W.1 2 解:(1) m 由A 到B :根据动能定理: mgh mv⑵m 由A 到B ,根据动能定理12:1 2 1 2 mgh Wmv t mv oW 1.95J2 23a 、运动员踢球的平均作用力为200N ,把一个静止的质量为在水平面上运动 60m 后停下.求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理13:1 2 W mv 0 0 50J 2(3b)球在运动员踢球的过程中,根据动能定理14W 】mv 2-mv 22 210不能写成:W G mgh 10J .在没有特别说明的情况下,临 默认解释为重力所做的功,而在这个过程中重力所做的功为负. 11也可以简写成:“m : A B : Q W EJ',其中 W E k 表示动能定理. 12此处写 W 的原因是题目已明确说明 W 是克服空气阻力所做的功. 13踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功 14结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能, 然后其他形式的能又转化为动能,而前后动能相等(3)手对物体做功.B m0 2J* N hA±+ mgm = 100g 的石块以v o = 10m/s 的速度斜向 V.1kg 的球以10m/s 的速度踢出,v 0 0 v ; v 0m_O A Bmg mg1m ,这时物体的速度是 2m/s ,求:4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v o 竖直下抛,落地后,小钢球陷入泥 土中的深度为h 求:(2)泥土对小钢球的阻力是恒力还是变力 (4)求泥土对小钢球的平均阻力大小 .解:(1) m 由A 到B :根据动能定理:(2) m 由1状态到3状态15 16:根据动能定理:Fs 1 cos0omgscos180° 0 0s 100m15也可以用第二段来算s 2,然后将两段位移加起来.计算过程如下: m 由2状态到3状态:根据动能定理:o12mgs 2 cos180 0 mv s 70m则总位移s s, s?100m .(1)求钢球落地时的速度大小v.(3)求泥土阻力对小钢球所做的功 mgmgH12 12 mv mv 0 2 2(2)变力 6.(3) m 由B 到C ,根据动能定理: mgh W1 2 mv 2W f1 2mv 0 mg v tW f2 mv 02mg Hcos180°2h5、在水平的冰面上,以大小为 F=20N 冰车受到的摩擦力是它对冰面压力的 进了一段距离后停止.取g = 10m/s 2. (1)撤去推力F 时的速度大小. I 程s. I 的水平推力,推着质量 0. 01倍,当冰车前进了 .求:(2)冰车运动的总路m=60kg S 1=30m 的冰车, 后,撤去推力F ,冰车又前 由静止开始运动•解:(1) m 由1状态到2状态:根据动能定理7 F& cos0oo1 2mgs cos180 — mv 014m/s 3.74m/sv6、如图所示,光滑1/4圆弧半径为0.8m,有一质量为1.0kg的物体自A点从静止开始下滑到B 点,然后沿水平面前进4m,到达C点停止.求:(1) 在物体沿水平运动中摩擦力做的功(2) 物体与水平面间的动摩擦因数.解:⑴m由A到C9:根据动能定理:mgR W f 0 0W f mgR 8J⑵ m 由 B 到C: W f mg x cos180°0.27、粗糙的1/4圆弧的半径为0.45m,有一质量为0.2kg的物体自最高点A从静止开始下滑到圆弧最低点B时,然后沿水平面前进0.4m到达C点停止.设物体与轨道间的动摩擦因数为0.5 (g =10m/s 2),求:(1) 物体到达B点时的速度大小•(2) 物体在圆弧轨道上克服摩擦力所做的功.解:⑴m由B到C :根据动能定理:mg I cos180°v B 2m/s1 2⑵ m由A到B:根据动能定理:mgR W f mv(3 02克服摩擦力做功W克f W f 0.5J8、质量为m的物体从高为h的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为I,斜面倾角为,物体在斜面上运动的水平位移为s,,在水平面上运动的位移为S2,如图所示10.m由A到B :根据动能定理:mgh mg cos I cos180o mgs2 cos180°0 0又Q I cos s i、s S1 S2h则: h s 0即:ss9也可以分段计算,计算过程略10、汽车质量为 m = 2 x 103kg ,沿平直的路面以恒定功率 达到最大速度20m/s.设汽车受到的阻力恒定.求:证毕•9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的 从斜面的顶端以初速度 v o 沿斜面滑下,则停在平面上的 C 点•已知AB = BC 克服摩擦力做的功• ° A 故功 解:设斜面长为I , AB 和BC 之间的距离均为s ,物体在斜面上摩擦力 O 到B :根据动能定理: mgh W f 2 s cos180o 0 0 O 到C :根据动能定理: mgh W f 2 2s cos180° 1 2mv 2mgB 点•若该物体 ,求物体在斜面上N i厂ABN 2W f-mv 2 mgh 2克服摩擦力做功W 克 f W fmgh 1 2mv o2(1)阻力的大小. ⑵这一过程牵引力所做的功 (3)这一过程汽车行驶的距离解12 : (1)汽车速度v 达最大v m 时,有F f ,故:P F v m f v mf 1000N(2)汽车由静止到达最大速度的过程中: 6 g Pt 1.2 10 J (2)汽车由静止到达最大速度的过程中,由动能定理: mg mg l cos180o 1 2mv m 2l 800m 11. AB 是竖直平面内的四分之一圆弧轨道,在下端 A 点起由静止开始沿轨道下滑。

(物理)高考必备物理动能与动能定理技巧全解及练习题(含答案)及解析

(物理)高考必备物理动能与动能定理技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

(物理)物理动能与动能定理练习题20篇及解析


【分析】
【详解】
(1)在 B 点时有 vB= v0 ,得 vB=6m/s cos 60
(2)从
B
点到
E
点有
mgh
mgL
mgH
0
1 2
mvB2
,得
L=6.5m
(3)设运动员能到达左侧的最大高度为 h′,从 B 到第一次返回左侧最高处有
mgh
mgh
'
mg
2L
0
1 2
mvB2
,得
h′=1.2m<h=2
m,故第一次返回时,运动员不能
(1)运动员从 A 点运动到 B 点过程中,到达 B 点时的速度大小 vB; (2)水平轨道 CD 段的长度 L;
(3)通过计算说明,第一次返回时,运动员能否回到 B 点?如能,请求出回到 B 点时速度的 大小;如不能,请求出最后停止的位置距 C 点的距离.
【答案】(1)vB=6m/s (2) L=6.5m (3)停在 C 点右侧 6m 处 【解析】
(1)选手放开抓手时的速度大小; (2)选手在传送带上从 A 运动到 B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】
试题分析:(1)设选手放开抓手时的速度为 v1,则-mg(L-Lcosθ)= mv12- mv02,
v1=5m/s (2)设选手放开抓手时的水平速度为 v2,v2=v1cosθ①
物块第二次接触弹簧后,物块从 O 点沿斜面上升的最大距离 s2 ,由动能定理得:
mg sin (s1 s2 ) mg cos (s1 s2 ) 0
解得: s2 2m
故物块每经过一次 O 点,上升的最大距离为上一次的 1 2

高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

(物理)物理动能与动能定理题20套(带答案)及解析

(物理)物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。

用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。

已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.关于做功和物体动能变化的关系,不正确的是( ).
A.只有动力对物体做功时,物体的动能增加
B.只有物体克服阻力做功时,它的功能减少
C.外力对物体做功的代数和等于物体的末动能和初动能之差
D.动力和阻力都对物体做功,物体的动能一定变化
2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是( ).
A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零
B.如果合外力对物体所做的功为零,则合外力一定为零
C.物体在合外力作用下作变速运动,动能一定变化
D.物体的动能不变,所受的合外力必定为零
3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,
最后都静止,它们滑行的距离是( ).
A.乙大 B.甲大 C.一样大 D.无法比较
4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().
A.动力做的功为零 B.动力做的功不为零
C.动力做功与阻力做功的代数和为零 D.合力做的功为零
5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,
下列说法中错误的是( ).
A.物体的动能可能减少 B.物体的动能可能增加
C.没有撤去的这个力一定不再做功 D.没有撤去的这个力一定还做功
6.如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水
平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当
拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,
则外力对物体所做的功大小是( ).
A、FR/4 B、3FR/4 C、5FR/2 D、零
7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。从某时刻起作用一向右的
水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,
水平力做功为( )
A. 0 B. 8J C. 16J D. 32J
8.质量为 5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其
速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.

9. 一小球从高出地面Hm处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑
h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

10.飞行子弹打入放在光滑水平面上的木块中深入2cm,未穿出同时木块滑动了1cm,则子
弹动能的变化、木块获得的动能、由于摩擦增加的内能的比是多少。

S

d
11. 质量为M、厚度为d的方木块,静置在光滑的水平面上,如图所示,一子弹以初速度
0
v

水平射穿木块,子弹的质量为m,木块对子弹的阻力为fF且始终不变,在子弹射穿木块的
过程中,木块发生的位移为L。求子弹射穿木块后,子弹和木块的速度各为多少?
v
0

L
d

12. 物体质量为10kg,在平行于斜面的拉力F作用下沿斜面向上运动,斜面与物体间的动
摩擦因数为1.0,当物体运动到斜面中点时,去掉拉力F,物体刚好能运动到斜面顶端

停下,斜面倾角为30°,求拉力F多大?(2/10smg)

13.质量为4t的汽车,以恒定功率沿平直公路行驶,在一段时间内前进了100m,其速度从
36km/h增加到54km/h。若车受到的阻力恒定,且阻力因数为0.02,求这段时间内汽车所做

的功。(2/10smg)

答案
1.D 2.A 3. A 4. C、D 5. C 6. A 7. A

7. 错解:JmvmvWF32)44(221)21(2122202 选D
诊断:错在认为动能有方向,向左的16J动能与向右的16J动能不同。实际上动能是标量,
没有方向,且是恒正的一个量,由动能定理得:02121202mvmvEWkF答案:A
8.3.75×105W、2.5×104N 提示:选机车为研究对象,它受到的重力
mg、支持力F2、阻力F1和牵引力F的作用,受力如图,在机车速度从10m/s
增加到15m/s的过程中,重力和支持力不做功,牵引力F对机车做正功,
阻力对机车做负功根据动能定理可得:Pt-F1s=ΔEK注意到上述过程中的
末状态速度为最大速度,这时有F=F1,故P=F1v2 ,联立上面两式解得:
)(2)(222122stvvvvmP


=3.75×105W ,01vPF=2.5×104N
9. 解:小球由A落到B只有重力作用,由B到C受沙坑阻力f、重力作用。在A点动能
为零,在C动能为零,0)(hfhHmg
mghhHf
f
为重力的hH1倍(大于重力)

10. 解析:子弹打入木块直到一起运动为止,子弹与木块间有
摩擦力设为f。

设木块质量M,末速为v,动能221MvEK木

子弹质量为m,飞行速度0v,飞行时动能2021mvEK弹
对木块221MvfS ① 对子弹2202121)(mvmvdSf ②
①代入②得2202220)(2121212121vMmmvmvMvmvfd
等号右边就是子弹打入木块过程中系统动能损失,即为内能增加值。

21fd
fS
由能量守恒知220)(2121vMmfdmv

∴ 232121220fdmvmv 子弹动能减少量、木块动能、增加的内能比为2:1:3
11. 解析:子弹受力如左图所示,由题知子弹的初速度为0v,位移为dLs,阻力为fF。
子弹射穿木块的过程由动能定理得


202

212

1
mvmvdlFf
解得mdLFvvf)(220

木块受力如右图所示,由题知木块的初速度为0,发生的位移Ls,fF为动力,子弹
射穿木块的过程由动能定理得2121MvLFf 解得MLFvf21
12. 解析:木块受力如图4所示,设斜面的长度为s。
木块受到的摩擦力30cosmgFFNfNN7.82310101.0

C
B
A
f
H

h
mg

mg
v
0

F
N

F
f

N
F

F
N

F
f

Mg

F
F
N

F
f
mg
木块从开始运动到静止由动能定理得030sin2mgssFsFf
解得NNmgFFf4.117)1010217.8(2)30sin(2
13. 解析:以汽车为研究对象,在水平方向受牵引力F和阻力fF的作用。因为汽车的功率
恒定,汽车的速度小时牵引力大,速度大时牵引力小,所以,此过程牵引力为变力,汽车的
运动也是变速运动。此题用动能定理求解非常方便。

由动能定理,可得21222121mvmvWWf 又kmgssFWff

其中smhkmv/10/361,hkmv/542sm/15
解得kmgsvvmW)(212122
JJ1001010402.0)1015(104213223
J5103.3
动能定理内涵丰富,解决问题简洁、实用,是其他物理规律和定理无法比拟的,应熟练
掌握。

相关文档
最新文档