《二次函数的最优化问题》
二次函数的应用优秀教案

二次函数的应用【第一课时】【教学目标】1.经历数学建模的基本过程。
2.会运用二次函数求实际生活中的最值问题。
3.体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。
【教学重点】二次函数在最优化问题中的应用。
【教学难点】从现实问题中建立二次函数模型,学生较难理解。
【教学过程】一、创设问题情境,引入新课。
由课文中的问题1引入。
例1:在问题1中,要使围成的水面面积最大,那么它的长应是多少?它的最大面积是多少?问题分析:这是一个求最值的问题。
要想解决这个问题,就要首先将实际问题转化成数学问题。
二、讲授新课。
在前面的学习中我们已经知道S=-x2+20x,这个问题中的水面长x与面积S之间的满足函数关系式。
通过配方,得到S=-(x-10)2+100。
由此可以看出,这个函数的图像是一条开口向下的抛物线,其定点坐标是(10,100)。
所以,当x=10m时,函数取得最大值,为S最大值=100(m²)。
所以,当围成的矩形水面长为10m,宽为10m时,它的面积最大,最大面积是100m²。
总结得出解这类题的一般步骤:(一)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(二)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。
三、例题讲解。
例3:上抛物体在不计空气阻力的情况下,有如下关系式:,其中h 是物体上升的高度,v 0是物体被上抛时的初始速度,g 表示重力加速度,通常取g =10m/s ²,t 是舞台抛出后经过的时间。
在一次排球比赛中,球从靠近地面处被垫起时竖直向上的初始速度为10m/s 。
(一)问排球上升的最大高度是多少?(二)已知某运动员在2.5m 高度是扣球效果最佳,如果她要打快攻,问该运动员在排球被垫起后多长时间扣球最佳?(精确到0.1s )。
分析:学生容易把这个问题中排球的运动路线想象成抛物线,这一点需要首先说明,球是竖直上抛,在球上升或下降的过程中运动员完成击球。
二次函数的应用问题

二次函数的应用问题二次函数是一种常见的代数函数,它的一般形式为f(x) = ax² + bx + c,其中a、b、c都是实数且a ≠ 0。
由于二次函数具有抛物线的形状,因此在各种实际问题中都能够找到应用。
本文将介绍二次函数在现实生活中的一些典型应用问题,并通过具体案例来解析解决方法。
问题一:飞行物体高度计算假设有一架飞机以初速度v₀从地面起飞,以固定的加速度a直线上升,问它在时间t后的高度h为多少?解决方法:根据牛顿第二定律,加速运动下飞机在t时刻的速度v可以表示为v = v₀ + at,高度h可以表示为h = v₀t + 1/2at²。
将其中的v带入,得到h = v₀t + 1/2a(v - v₀),代入飞机起飞时速度为0的条件,可得到简化的高度公式h = 1/2at²。
这就是一个二次函数,其中a为加速度,t为时间。
问题二:物体抛射问题假设有一个人以速度v₀把一个物体从一定高度h₀抛出,考察物体的运动轨迹。
解决方法:物体的垂直位移可以通过二次函数来表示。
首先,垂直方向上的受力只有重力,因此物体在下落过程中的运动可以描述为s = -1/2gt² +v₀t + h₀,其中s为垂直位移,g为重力加速度。
而在水平方向上,物体保持匀速运动,所以可以通过s = v₀x来描述其水平位移,其中x为时间。
问题三:最优化问题对于一个二次函数f(x) = ax² + bx + c,如何确定其在定义域内的最大值或最小值。
解决方法:对于给定的二次函数f(x),可以通过求取其导数f'(x)来确定最大值或最小值的位置。
当f'(x) = 0时,函数取得极值。
根据二次函数的性质,若a > 0,f(x)开口向上,则该极值为最小值;若a < 0,f(x)开口向下,则该极值为最大值。
问题四:实际应用问题二次函数还有很多其他实际应用,比如经济学中的成本、利润和产量问题,物理学中的速度、加速度和位移问题,以及几何学中的抛物线问题等等。
含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题含参数的二次函数在闭区间上的最值问题导语:含参数的二次函数在闭区间上的最值问题是数学中常见的优化问题之一。
通过分析函数的性质和求导,我们可以找到函数在给定闭区间上的最大值或最小值。
本文将从简单到复杂的方式,深入探讨这个主题,并提供一些实际例子来帮助读者更好地理解。
引言: 含参数的二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0。
在闭区间[a, b]上求函数的最值,可以通过以下步骤进行。
一、函数的性质分析1. 我们可以观察函数的开口方向。
如果a>0,函数开口向上,最值为最小值;如果a<0,函数开口向下,最值为最大值。
这个性质对于我们确定最值的区间非常重要。
2. 我们可以通过求导来确定函数的驻点。
驻点是指函数斜率为零的点,可能是最值点的候选。
对于f(x) = ax^2 + bx + c,求导得到f'(x) =2ax + b。
令f'(x) = 0,解得x = -b/2a。
这个x值就是函数的驻点,我们需要判断它是否在闭区间[a, b]上。
3. 我们可以通过比较函数在闭区间的端点值和驻点值来确定最值。
根据前述观察,如果a>0,我们比较f(x)在[a, b]的端点值和驻点值,取较小的值作为最小值;如果a<0,我们比较f(x)在[a, b]的端点值和驻点值,取较大的值作为最大值。
二、实际例子假设我们要找到函数f(x) = x^2 + bx + c在闭区间[1, 3]上的最小值。
1. 观察函数的开口方向。
由于a=1>0,说明函数开口向上,最值为最小值。
2. 求导。
对函数f(x)求导得f'(x) = 2x + b。
令f'(x) = 0,解得x = -b/2。
这个x值就是函数的驻点。
3. 比较端点值和驻点值。
在闭区间[1, 3]中,我们计算f(1),f(3)和f(-b/2)的值。
最优化问题(含答案)

专题10 最优化问题阅读与思考数学问题中常见的一类问题是:求某个变量的最大值或最小值;在现实生活中,我们经常碰到一些带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等,这类问题我们称之为最值问题,解最值问题的常见方法有:1.配方法由非负数性质得()02≥±b a .2.不等分析法通过解不等式(组),在约束条件下求最值. 3.运用函数性质对二次函数()02≠++=a c bx ax y ,若自变量为任意实数值,则取值情况为:(1)当0>a ,a bx 2-=时,a b ac y 442-=最小值 ;(2)当0<a ,abx 2-=时,a b ac y 442-=最大值 ;4.构造二次方程利用二次方程有解的条件,由判别式0≥∆确定变量的取值范围,进而确定变量的最值.例题与求解【例1】当x 变化时,分式12156322++++x x x x 的最小值是 .(全国初中数学联赛试题)解题思路:因分式中分子、分母的次数相等,故可将原分式用整式、真分式的形式表示,通过配方确定最小值.【例2】已知1≤y ,且12=+y x ,则223162y x x ++的最小值为( )A.719 B. 3 C. 727 D. 13 (太原市竞赛试题)解题思路:待求式求表示为关于x (或y )的二次函数,用二次函数的性质求出最小值,需注意的是变量x 、y 的隐含限制.【例3】()21322+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ).解题思路:本题通过讨论a ,b 与对称轴0=x 的关系得出结论.【例4】(1)已知211-+-=x x y 的最大值为a ,最小值b ,求22b a +的值. (“《数学周报》杯”竞赛试题)(2)求使()168422+-++x x 取得最小值的实数x 的值.(全国初中数学联赛试题)(3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值. (“我爱数学”初中生夏令营数学竞赛试题)解题思路:解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等.【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?(河南省竞赛试题)解题思路:设铁路与公路的交点为C ,AC =x 千米,BC =y 千米,AD =n 千米,BD =m 千米,又设铁路每千米的运费为a 元,则从A 到B 的运费()ay m y n a S 222+--=,通过有理化,将式子整理为关于y 的方程.【例6】(1)设r x ,1+r x ,…,k x (r k >),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2003,求k 的最大可能值.(香港中学竞赛试题)(2)a ,b ,c 为正整数,且432c b a =+,求c 的最小值.(全国初中数学联赛试题)解题思路:对于(1),因r =1,对k -r +1= k -1+1=k 个正整数x 1,x 2,…,x k ,不妨设x 1<x 2<…<x k =2013,可见,只有当各项x 1,x 2,…,x k 的值愈小时,才能使k 愈大(项数愈多),通过放缩求k 的最大值;对于(2),从()()222b ac a c =+-入手.能力训练A 级1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为 .2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为 .3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为 .(“希望杯”邀请赛试题)4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值为 ( )(全国初中数学联赛试题)5.已知两点A (3,2)与B (1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是( )A.(0,21-) B.(0,0) C.(0,611) D.(0,41-)(盐城市中考试题)6.正实数x ,y 满足1=xy ,那么44411y x +的最小值为( ) A.21 B. 85 C. 1 D. 45E. 2(黄冈市竞赛试题)7.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示).(1)根据图象,求一次函数b kx y +=的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示毛利润;②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?(南通市中考试题)8.方程()()06122=-+-+m x m x 有一根不大于1-,另一根不小于1,(1)求m 的取值范围;(2)求方程两根平方和的最大值与最小值.(江苏省竞赛试题)9.已知实数a ,b 满足122=++b ab a ,求22b ab a +-的最大值与最小值.(黄冈市竞赛试题)10.已知a ,b ,c 是正整数,且二次函数c bx ax y ++=2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.(天津市竞赛试题)11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为()⎥⎦⎤⎢⎣⎡+-500141x 元. (1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?(河北省竞赛试题)B 级1.a ,b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是 .2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x ++的最小值为 .3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为 km .(全国初中数学竞赛试题)4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab +bc +ac +ad +bd +cd 的最小值为( )A. 0B. 4C. 8D. 10(天津市竞赛试题)5.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为( )A. 5B.423 C. 427 D. 435(天津市选拔赛试题)6.如果抛物线()112----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为( )A.1B.2C.3D.47.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?(“祖冲之杯”邀请赛试题)8.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式:x q x p 53,51==.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?(绍兴市竞赛试题)9.已知为x ,y ,z 为实数,且5=++z y x ,3=++zx yz xy ,试求z 的最大值与最小值.10.已知三个整数a ,b ,c 之和为13,且bca b =,求a 的最大值和最小值,并求出此时相应的b 与c 值.(四川省竞赛试题)11.设x1,x2,…,x n是整数,并且满足:①-1≤x i≤2,i=1,2,…,n②x1+x2+…+x n=19③x12+x22+…+x n2=99求x13+x23+…+x n3的最大值和最小值.(国家理科实验班招生试题)12.已知x1,x2,…,x40都是正整数,且x1+x2+…+x40=58,若x12+x22+…+x402的最大值为A,最小值为B,求A+B的值.(全国初中数学竞赛试题)专题10 最优化例1. 4 提示:原式=112-62-+)(x . 例2. B 提示:由-1≤y ≤1有0≤x ≤1,则z =2x 2+16x +3y 2=14x 2+4x +3是开口向上,对称轴为71-=x 的抛物线.例3. 分三种情况讨论:①0≤a <b ,则f (x )在a ≤x ≤b 上单调递减,∴f (a )=2b ,f (b )=2a ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b a a b 解得⎩⎨⎧==31b a ②a <b ≤0,则f (x )在a ≤x ≤b 上单调递增,∴f (a )=2a ,f (b )=2b ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b b a a 此时满足条件的(a ,b )不存在. ③a <0<b ,此时f (x )在x =0处取得最大值,即2b =f (0)=213,b =413,而f (x )在x =a 或x =b 处取最小值2a .∵a <0,则2a <0,又∵f (b )=f (413)=021341321-2>+⨯)(,∵f (a )=2a ,即2a =2132-2+a ,则⎪⎩⎪⎨⎧=--=413172b a 综上,(a ,b )=(1,3)或(17-2-,413) 例4. (1)121≤≤x ,y 2 = 21+216143-2+-)(x .当x =43时,y 2取得最大值1,a =1; 当21=x 或x =1时,y 2取得最小值21,b =22.故a 2+b 2=23.(2) 如图,AB =8,设AC =x ,则BC =8- x ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2.10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x当且仅当D ,C ,E 三点共线时,原式取最小值.此时∵EBC ∽△DAC ,有224===DA EB CA BC , 从而x =AC =3831=AB .故原式取最小值时,x =38. (3)如图, 原式=[]2222222)24()13()32()01(032--0y x y x -+-+-+-+-+)()(=AB +BC +CD ≥AD ,其中A (-2,0),B (0,3x ),C (1,2y ),D (3,4),并且当点B ,C 在线段AD 上时,原式取得最小值,此时5423=x ,5432=y .例5. 由S =ay m y n a 2)(22+--,得an -S +2ay =a 22n y -,两边平方,经整理得0)()(4322222=+-+-+m a S an y S an a y a .因为关于y 的一元二次方程有实数解,所以[][]0)(34)(422222≥+-⨯--m a S an a S an a ,可化为2223-m a an S ≥)(.∵S >an ,∵am an S 3-≥,即am an S 3+≥,故S 最小=am an 3+.例6(1)设x 1≥1,x 2≥2,x k ≥k ,于是1+2+…+k ≤x 1+x 2+…+x k = 2003,即20032)1(≤+k k k (k +1)≤4006,∵62×63=3906<4006<4032=63×64,∴k ≤62. 当x 1=1,x 2=2,…x 61=61,x 62=112时,原等式成立,故k 的最大可能值为62.(2) 若取⎩⎨⎧=+=-222ba cb ac ,则2)1(2+=b b c 由小到大考虑b ,使2)1(+b b 为完全平方数.当b =8时,c 2=36,则c =6,从而a =28.下表说明c 没有比6更小的正整数解.显然,表中c 4-x 3的值均不是完全平方数,故c 的A 级1.57- 111- 2.1 3.14 提示:y =5-x ,z =4-x ,原式=3(x -3)2+14. 4.A 提示:原式=27-(a +b +c )2. 5.D 6.C 7.(1)y =-x +1000(500≤x ≤800) (2)①S =(x -500)(-x +1000)=-x 2+1500x -500000(500≤x ≤800);②S -(x -750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件. 8.(1)-4≤m ≤2 (2)设方程两根为x 1,x 2,则x 12+x 22=4(m -34)2+1034,由此得x 12+x 22最小值为1034,最大值为101.9.设a 2-ab +b 2=k ,又a 2+ab +b 2=1②,由①②得ab =12(1-k ),于是有(a +b )2=12(3-k )≥0,∴k ≤3,从而a +b =.故a ,b 是方程t 2t +12k -=0的两实根,由Δ≥0,得133k ≤≤. 10.设A (x 1,0),B (x 2,0),其中 x 1,x 2是方程ax 2+bx +c =0的两根,则有x 1+x 2=b a -<0,x 1x 2=ca>0,得x 1<0,x 2<0,由Δ=b 2-4ac >0,得b >∵|OA |=|x 1|<1,|OB |=|x 2|<1,∴-1<x 1<0,-1<x 2<0,于是ca=x 1x 2<1,c <a .由于a 是正整数,已知抛物线开口向上,且当x =-1时,对应的二次函数值大于0,即a -b +c >0,a +c >b .又a ,b ,c 是正整数,有a +c ≥b ,从而a +c >2,则212>>≥,于是a >4,即a ≥5,故b =即b ≥5.因此,取a =5,b =5,c =1,y =5x 2+5x +1满足条件,故a +b +c 的最小值为11. 11.(1)该设备投入使用x 天,每天平均损耗为y =11111[500000(0500)(1500)(2500)(500)]4444x x -+⨯++⨯++⨯++++L=11(1)[500000500x ]42x x x -++⨯=500000749988x x ++. (2)y =500000749988x x ++7749999988≥=.当且仅当5000008xx =,即x =2000时,等号成立.故这台设备投入使用2000天后应当报废.B 级 1.20 提示:a 2-8b ≥0,4b 2-4a ≥0,从而a 4≥64b 2≥64a ,a ≥4,b 2≥4. 2.4 提示:构造方程. 3. 提示:设经过t 小时后,A ,B 船分别航行到A 1,B 1,设AA 1=x ,则BB 1=2x ,B 1A 1=4.D 提示:a 2+b 2≥2ab ,c 2+d 2≥2cd ,∴a 2+b 2+c 2+d 2≥2(ab +cd )≥=4.∴ab +cd ≥2,同理bc +ad ≥2,ac +bd ≥2. 5.A 提示:x =s -2≥0,y =5-43s ≥0,z =1-13s ≥0,解得2≤s ≤3,故s 的最大值与最小值的和为5. 6.A 提示:|AB |=C (2125,24k k k -++-),ABC S V ,而k 2+2k +5=(k +1)2+4≥4. 7.设此商品每个售价为x 元,每日利润为S 元.当x ≥18时,有S =[60-5(x -18)](x -10)=-5(x -20)2+500,即当商品提价为20元时,每日利润为500元;当x ≤18时,S =[60+10(18-x )](x -10)=-10(x -17)2+490,即当商品降价为17元时,每日利润最大,最大利润为490元,综上,此商品售价应定为每个20元. 8.设对甲、乙两种商品的资金投入分别为x ,(3-x )万元,设获取利润为s ,则s15x =s -15x x 2+(9-10s )x +25s 2-27=0,∵关于x 的一元二次方程有实数解,∴(9-10s )2-4×(25s 2-27)≥0,解得1891.05180s ≤=,进而得x =0.75(万元),3-x =2.25(万元).即甲商品投入0.75万元,乙商品投入2.25万元,获得利润1.05万元为最大. 9.y =5-x -z ,代入xy +yx +zx =3,得x 2+(z -5)x +(z 2-5z +3)=0.∵x 为实数,∴Δ=(z -5)2-4(z 2-5z +3)≥0,解得-1≤z ≤133,故z 的最大值为133,最小值为-1. 10.设b cx a b==,则b =ax ,c =ax 2,于是,a +b +c =13,化为a (x 2+x +1)=13.∵a ≠0,∴x 2+x +1-13a=0 ①.又a ,b ,c 为整数,则方程①的解必为有理数,即Δ=52a -3>0,得到1≤a ≤5231≤a ≤16.当a =1时,方程①化为x 2+x -12=0,解得x 1=-4,x 2=3. 故a min =1,b =-4,c =16 或a min =1,b =3,c =9.当a =16时,方程①化为x 2+x +316=0.解得x 1=-34,x 2=-14.故a min =16,b =-12,c =9;或a min =16,b =-4,c =1. 11.设x 1,x 2,…,x n 中有r 个-1,s 个1,t 个2,则219499r s t r s t -++=⎧⎨++=⎩,得3t +s =59,0≤t ≤19.∴x 13+x 23+…+x n 3=-r +s +8t =6t +19.∴19≤x 13+x 23+…+x n 3≤6×19+19=133.∴在t =0,s =59,r =40时,x 13+x 23+…+x n 3取得最小值19;在t =19,s =2,r =21时,x 13+x 23+…+x n 3取得最大值133. 12.∵把58写成40个正整数的和的写法只有有限种,∴x 12+x 22+…+x 402的最大值和最小值存在.不妨设x 1≤x 2≤…≤x 40.若x 1>1,则x 1+x 2=(x 1-1)+(x 2+1),且(x 1-1)2+(x 2+1)2=x 12+x 22+2(x 2-x 1)+2>x 12+x 22.于是,当x 1>1时,可以把x 1逐步调整到1,此时,x 12+x 22+…+x 402的值将增大.同理可以把x 2,x 3,…,x 39逐步调整到1,此时x 12+x 22+…+x 402的值将增大.从而,当x 1,x 2,…,x 39均为1,x 40=19时,x 12+x 22+…+x 402取得最大值,即A =22239111+++L 1442443个+192=400.若存在两个数x i ,x j ,使得x j -x i ≥2(1≤i <j ≤40),则(x i +1)2+(x j -1)2=x i 2+x j 2-2(x i -x j -1)<x i 2+x j 2.这表明,在 x 1,x 2,…,x 40中,若有两个数的差大于1,则把较小的数加1,较大的数减1此时,x 12+x 22+…+x 402的值将减小,因此,当x 12+x 22+…+x 402 取得最小值时,x 1,x 2,…,x 40中任意两个数的差都不大于1. 故当x 1=x 2=…=x 22=1,x 23=x 24=…=x 40=2时,x 12+x 22+…+x 402取得最小值,即222111+++L 144244322个222222+++⋯+=94从而,A+B=494.。
二次函数的应用问题解析

二次函数的应用问题解析Introduction:二次函数是高中数学中的重要内容之一,它在现实生活中具有广泛的应用。
本文将探讨二次函数在实际问题中的应用,包括最值问题、图像分析问题和最优化问题等。
1. 最值问题:一类常见的二次函数应用问题是求解最值。
以抛物线为例,当抛物线开口朝上时,函数有最小值;当抛物线开口朝下时,函数有最大值。
可以通过二次函数的顶点来确定最值点的坐标。
2. 图像分析问题:对于二次函数的图像分析问题,我们可以通过函数的图像特点来解决。
例如,从二次函数的方程中可以直接读出顶点坐标的横纵坐标值,进而确定函数的对称轴和顶点等。
3. 最优化问题:二次函数的最优化问题是另一种常见的应用情况。
通过求解二次函数的极值点来确定输入变量使得函数取得最大或最小值的情况。
这在经济学、物理学等领域中具有重要意义。
4. 物理应用问题:二次函数在物理学中的应用也是广泛存在的。
例如,在抛体运动中,二次函数可以描述出抛体的抛射轨迹。
通过解析抛物线的方程,可以求解出抛体的最大射程、最大高度等。
5. 经济应用问题:在经济学中,二次函数的应用也非常常见。
例如,成本函数、利润函数等经济学模型经常涉及到二次函数。
我们可以通过优化二次函数来求解最低成本、最高利润等经济问题。
6. 几何应用问题:几何中也有很多与二次函数相关的应用问题。
比如,通过二次函数的方程可以得到圆的方程,进而求解圆与直线的交点等。
Conclusion:二次函数作为数学中的重要内容,在实际问题中有着广泛的应用。
通过解析二次函数的方程,可以解决最值问题、图像分析问题和最优化问题等。
此外,在物理学、经济学和几何学中,二次函数也扮演着重要的角色。
掌握二次函数的应用,对于数学和实际生活都具有重要意义。
九下数学课件利用二次函数解决实际问题中的最值问题(课件)

【归纳总结】
最大值问题的一般步骤:
(1)利用应用题中已知条件和学过有关数学公式列出关系数;
(2)把关系式转化为二次函数的关系式;
(3)求二次函数的最大值或最小值.
知识点一 根据文字语言解决问题
【变式1】某工厂2019年产品的产量为100吨,该产品产量的年平均增长
率为x(x>0),设2021年该产品的产量为y吨,则y关于x的函数表达式为
解:设药店每天获得的利润为W元,由题意得
W=(x-50)(-2x+220)=-2(x-80)2+1 800.
∵-2<0,
∴当x=80时,W有最大值,最大值是1 800.
答:每桶消毒液的销售价定为80元时,药店每天获得的利润最大,最
大利润是1 800元.
知识点二 根据函数的图像解决问题
【变式2】一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场
k=-500,
解得
5k+b=9 500,
b=12 000.
∴y=-500x+12 000.
知识点二 根据函数的图像解决问题
(2)在销售过程中要求售价不低于进价,且不高于15元/件.若某一周该商品的销
售量不少于6 000件,求这一周该商场销售这种商品获得的最大利润和售价
分别为多少?
解:根据“在销售过程中要求售价不低于进价,且不高于 15 元/
随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售
策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销
售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整
数).
(1)写出y与x的函数表达式;
知识点二 根据函数的图像解决问题
二次函数的最值问题(课件)

二次函数的单调性
探讨二次函数在定义域内的单调性及其应用。
递增
当二次函数在定义域内递增时,函数值随自变量的 增加而增加。
递减
当二次函数在定义域内递减时,函数值随自变量的 增加而减小。
二次函数的最值存在性定理
研究二次函数在定义域内的最值及其实际应用。
1
最大值存在
当二次函数的系数a为负时,函数在定义域内存在最大值。
2
最小值存在
当二次函数的系数a为正时,函数在定义域内存在最小值。
3
应用举例
高空抛物运动和经济生产成本最小化问题。
求解二次函数的最值
介绍三种方法求解二次函数的最值,并提供实例演示。
配方法
通过坐标变换将二次函数转化 为标准形式,再求解最值。
求导数法
求二次函数的导数,找出极值 点,进而量值。
1 常见错误
对最值问题中容易出现的错误进行梳理和解答。
2 纠正方法
针对学生常见错误,提供具体纠正方法和建议。
3 信息搜索
介绍如何搜索最值问题解题思路和方法的有效途径。
联系与拓展
探讨二次函数最值问题与其他数学知识的联系,以及应用在其他领域的延伸。 如与最优化问题的关系,以及在物理、经济等领域中的应用。
2 完全平方公式
利用完全平方公式,将二次函数转化为平方 项相加的形式,求出零点。
二次函数的图像特点
了解二次函数图像的对称轴和开口方向,以及与函数系数之间的关系。
对称轴
二次函数图像关于垂直于x轴 的直线对称。
开口方向
由二次项系数的正负确定开 口的方向。
函数系数
了解函数系数与图像形状的 关系,如变量a的变化。
二次函数的最值问题
本课件介绍了二次函数的最值问题。包括二次函数的定义和特点、求零点的 因式分解法和完全平方公式、二次函数的图像与对称轴、单调性、最值存在 性定理等。
二次函数线段最值问题二师兄解答

二次函数线段最值问题二师兄解答
【实用版】
目录
1.二次函数线段最值问题的基本概念
2.二次函数线段最值问题的求解方法
3.二次函数线段最值问题的实际应用
正文
一、二次函数线段最值问题的基本概念
二次函数线段最值问题是数学中的一个经典问题,它涉及到二次函数的性质以及线段最值的求解。
在实际生活和学习中,我们经常会遇到这类问题,例如在物理、化学、经济学等领域,它都有广泛的应用。
二次函数是指一个函数的最高次项是二次的函数,它的一般形式是f(x)=ax^2+bx+c,其中 a、b、c 是常数,a 不等于 0。
线段最值问题是指在线段上寻找某一函数的最大值或最小值。
二、二次函数线段最值问题的求解方法
求解二次函数线段最值问题,通常采用以下两种方法:
1.配方法:将二次函数转化为顶点式,然后根据顶点的横坐标求出最值。
配方法的步骤是:先将二次项和一次项的系数分别除以 2,然后将二次项和一次项的平方项加减到一个完全平方项中,从而将二次函数转化为顶点式。
2.导数法:对二次函数求导,然后令导数等于 0,求出极值点。
根据极值点的横坐标,可以判断出最大值或最小值。
三、二次函数线段最值问题的实际应用
二次函数线段最值问题在实际应用中非常广泛,例如在经济学中的最
优化问题,求解最大利润或最小成本;在物理学中的抛物线运动问题,求解最高点或最低点等。
掌握好二次函数线段最值问题的求解方法,对于解决实际问题具有重要意义。
综上所述,二次函数线段最值问题是一个具有实际意义的数学问题,通过配方法和导数法,我们可以有效地求解这类问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数的最优化问题》
《二次函数的最优化问题》是一个经典的数学优化问题,它可以应用到现实中的许多复杂问题中。
该问题主要是对二次函数进行优化,以获得满足特定要求的最优解。
在最优化问题中,优化目标可以是最小化函数值,也可以是最大化函数值。
有时,优化的目标可以是一个混合的最优化目标函数。
此外,优化也可以是有限个数的变量,也可以是无限个变量。
一般来说,二次函数有两种形式,一种是“凸”函数,即函数图形呈上凸多边形,也就是每个变量的增加会使函数值增加;另一种是“凹”函数,即函数图形呈下凹多边形,也就是每个变量的增加会使函数值减少。
根据二次函数的类型,最优化问题的解决方案也不尽相同,因此,在解决二次函数的最优化问题时,应首先判断其函数形式是凸还是凹。
给定一个凸形的二次函数,则其最优解是使函数取得全局最小值的变量值。
而如果是凹形的二次函数,则必须有一个有约束的条件,使得函数取得局部最小值。
两种情况下,最常用的解决方案就是求解二次函数的偏导数,然后用一阶导数法求解函数的极值点,其中最大值(或最小值)就是二次函数的最优解。
此外,可以通过求解拉格朗日乘子来求解约束条件下的凹形二次函数的最优解;而且可以采用优化算法来求解各种函数的最优解,如梯度下降、牛顿法、拟牛顿法、模拟退火法等。
本文介绍的二次函数的最优化问题可以应用到现实中的诸多复
杂问题中,如求解最优组合、最优预测、最优路径等。
通过使用合适的优化方法,可以让现实中的复杂问题获得最佳解决方案,从而使人们获得更多的实际利益。