七年级上册数学 期末试卷(培优篇)(Word版 含解析)
七年级数学培优试卷 第36讲 期末复习专题(含答案)

36讲 期末复习专题一、平行线1.如图,已知AD ⊥BC ,FG ⊥BC ,∠1=∠2,求证:∠BAC =∠DEC.132ABCD E FG2.如图,已知∠1+∠2=180°,∠3=∠B ,∠AFE =50°,求∠ACB 的度数.312FE DCBA3.如图,已知∠1+∠2=180°,∠3=∠B ,试判定∠AED 与∠C 的大小关系,并证明.231ABC D EGH4.如图,已知∠A =∠D ,∠B =∠C ,求证:∠AMC =∠BND.ABCDEF M N5.如图,已知∠1=∠C ,∠2+∠D =90°,BE ⊥DF 于G ,求证:AB ∥CD .21ABCDE F G6.已知:如图,∠DAB =∠DCB ,AE 、CF 分别平分∠DAB 、∠DCB ,AE ∥CF ,求证:∠B =∠D .2413ABCDEF7.如图,已知AD ⊥BC ,EF ⊥BC ,垂足为D 、F ,∠1=∠E ,求证:AD 平分∠BAC .1B CAEF D8.如图,AB ∥DE ,∠1=∠ACB ,∠CAB =12∠BAD ,试说明AD ∥BC . 1BCAEF D9.如图,点E 在CA 延长线上,DE 、AB 交于F ,且∠BDF =∠AEF ,∠B =∠C . (1)说明AB 与CD 的位置关系,并予以证明;(2)∠EAF 、∠BDF 的平分线交于G ,∠EDC =040,求∠G .B CA E FDBAEG FD10.如图,小刀的刀柄外形是直角梯形(挖去一个小半圆),刀片上下是平行的,当转动刀片时会产生∠1、∠2,则∠1、∠2之间有何数量关系?并证明.2111.如图,BF 平分∠ABC ,∠BFG =∠FBG =25°,∠AFG =75°,D 为BC 上一点,∠BDE =155°. ① 求∠C 的度数; ② 求证:BF ∥DE .DFGE AC B二、坐标系综合 12.已知A (0,5),B (4,0),C 为x 轴负半轴上一点,且S △ABC =15. (1)求C 点坐标;(2)平移直线AC 过点O ,交AB 于D ,求S △ACD 和S △OAD . (3)E 为线段AC 上一点,若S △ABE =12S △ABC ,求E 点坐标; (4)平移直线AB 过点C ,交y 轴于F ,求F 点的坐标.备用图 备用图13.已知A (2,3),B (0,2),C (4,0),D (-2,0) (1)求S △ABC ;(2)求A 作AM ∥BC 交x 轴于M ,求M 点的坐标;(3)P 为x 轴上一动点,BP 平分S 四边形ABCD ,求P 点的坐标; (4)Q 为y 轴上一点,若CQ ∥BD ,求Q 点的坐标.14.如图,A 在第二象限,AB ⊥x 轴于B ,点C 是y 轴正半轴上一点,D 为线段OB 上一点,DE ⊥CD 交AB 于E ,∠BED 、∠DCO 的平分线交于点P .(1)当D 在OB 上运动时,∠P 的大小是否改变?试证明;(2)当∠CDO =∠A 时,下列结论:①CD ⊥AC ;②EP ∥AC .请选择正确的结论并证明.P15.已知A (-3,0),B (1,0),C 为y 轴上一点,且S △ABC =6. (1)求C 点的坐标;(2)是否存在点P (t ,t )使S △P AB =13S △ABC ?若存在,求P 点的坐标; (3)过O 作AC 的平行线l ,∠OAC 、∠ACO 的平分线分别交直线l 于M 、N ,AM 交CN 于I ,求M NAIC∠∠∠的值.。
数学七年级上册 期末试卷(Word版 含解析)

数学七年级上册 期末试卷(Word 版 含解析)一、选择题1.下列说法中不正确的是( )A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .若 AC=BC ,则点 C 是线段 AB 的中点2.有理数-53的倒数是( ) A .53 B .53- C .35 D .353.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( )A .1B .2C .1-D .2-4.如图,图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE=18°,则图2中∠AEF 的度数为( )A .120°B .108°C .126°D .114° 5.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( ) A .0B .1C .2D .3 6.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .37.下列几何体三视图相同的是( )A .圆柱B .圆锥C .三棱柱D .球体8.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D9.-5的相反数是( )A .-5B .±5C .15D .510.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角 D .EOD ∠与BOC ∠是对顶角11.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30712.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( )A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯13.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( )A .44.8310⨯B .54.8310⨯C .348.310⨯D .50.48310⨯14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养15.2-的相反数是( )A .2-B .2C .12D .12- 二、填空题16.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.17.-6的相反数是 .18.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.19.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.20.若2x =-是关于x 的方程23a x +=的解,则a 的值为_______. 21.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示)22.如图,一副三角板如图示摆放,若α=70°,则β的度数为_____°.23.若代数式M =5x 2﹣2x ﹣1,N =4x 2﹣2x ﹣3,则M ,N 的大小关系是M ___N (填“>”“<”或“=”)24.写出一个关于三棱柱的正确结论________.25.如果单项式1b xy +-与23a x y -是同类项,那么()2019a b -=______.三、解答题26.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.27.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯- ⎪⎝⎭.28.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点 A , B 表示的数分别为 a , b ,则 A , B 两点之间的距离AB=a-b ,线段 AB 的中点M 表示的数为2a b +.如图,在数轴上,点A,B,C 表示的数分别为-8,2,20.(1)如果点A 和点C 都向点B 运动,且都用了4秒钟,那么这两点的运动速度分别是点A 每秒_______个单位长度、点C 每秒______个单位长度;(2)如果点A 以每秒1个单位长度沿数轴的正方向运动,点C 以每秒3个单位长度沿数轴的负方向运动,设运动时间为t 秒,请问当这两点与点B 距离相等的时候,t 为何值? (3)如果点A 以每秒1个单位长度沿数轴的正方向运动,点B 以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C 点时就停止不动,设运动时间为t 秒,线段AB 的中点为点P ;① t 为何值时PC=12;② t 为何值时PC=4.29.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=. 30.给出定义:我们用(a ,b )来表示一对有理数a ,b ,若a ,b 满足a ﹣b =ab +1,就称(a ,b )是“泰兴数”如2﹣11=233⨯+1,则(2,13)是“泰兴数”. (1)数对(﹣2,1),(5,23)中是“泰兴数”的是 . (2)若(m ,n )是“泰兴数”,求6m ﹣2(2m +mn )﹣2n 的值;(3)若(a ,b )是“泰兴数”,则(﹣a ,﹣b ) “泰兴数”(填“是”或“不是”). 31.2017年元旦期间,某商场打出促销广告,如表所示. 优惠条件一次性购物不超过200元 一次性购物超过200元,但不超过500元 一次性购物超过500元 优惠办法 没有优惠 全部按九折优惠 其中500元仍按九折优惠,超过500元部分按八折优惠小欣妈妈两次购物分别用了134元和490元.(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.32.已知关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解.(1)求,m n 的值;(2)已知线段AB m =,在直线AB 上取一点P ,恰好使AP m PB=,点Q 为PB 的中点,求线段AQ 的长.33.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.四、压轴题34.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.35.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.36.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.37.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).38.已知线段AD=80,点B、点C都是线段AD上的点.(1)如图1,若点M为AB的中点,点N为BD的中点,求线段MN的长;(2)如图2,若BC=10,点E是线段AC的中点,点F是线段BD的中点,求EF的长;(3)如图3,若AB=5,BC=10,点P、Q分别从B、C出发向点D运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t秒,点E为AQ的中点,点F为PD的中点,若PE=QF,求t的值.39.如图1,点O为直线AB上一点,过点O作射线OC,OD,使射线OC平分∠AOD.(1)当∠BOD=50°时,∠COD=°;(2)将一直角三角板的直角顶点放在点O处,当三角板MON的一边OM与射线OC重合时,如图2.①在(1)的条件下,∠AON=°;②若∠BOD=70°,求∠AON的度数;③若∠BOD=α,请直接写出∠AON的度数(用含α的式子表示).40.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=_______;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.41.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.42.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.43.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可.【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A 、B 、C 三点在一条直线上时,当AC=BC 时,点 C 是线段 AB 的中点;故错误; 故选:D .【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.D解析:D【解析】【分析】根据倒数的定义,即乘积是1的两数互为倒数可得答案.【详解】解:-53的倒数是-35,故选:D.【点睛】本题考查了倒数的定义,熟练掌握倒数的求法是解题的关键.3.C解析:C【解析】【分析】根据题意将解代入方程解出a即可.【详解】将x=-a代入方程得:-a-3a=4,解得:a=-1.故选C.【点睛】本题考查一元一次方程的解题方法,熟练掌握解题方法是关键.4.D解析:D【解析】【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x-18°,再由第2次折叠得到∠C′FB=∠BFC=x-18°,于是利用平角定义可计算出x=66°,接着根据平行线的性质得∠A′EF=180°-∠B′FE=114°,所以∠AEF=114°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−18°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−18°,而∠B′FE+∠BFE+∠C′FB=180°,∴x+x+x−18°=180°,解得x=66°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−66°=114°,∴∠AEF=114°.故答案选:D.【点睛】本题考查了翻折变换(折叠问题)与平行线的性质,解题的关键是熟练的掌握翻折变换(折叠问题)与平行线的性质.5.D解析:D【解析】【分析】由任意三个相邻数之和都是4,可知a 1、a 4、a 7、…a 3n+1相等,a 2、a 5、a 8、…a 3n+2相等,a 3、a 6、a 9、…a 3n 相等可以得出a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,求出x 问题得以解决.【详解】解:由任意三个相邻数之和都是37可知:a 1+a 2+a 3=4a 2+a 3+a 4=4a 3+a 4+a 5=4…可以推出:a 1=a 4=a 7=…=a 3n+1,a 2=a 5=a 8=…=a 3n+2,a 3=a 6=a 9=…=a 3n ,∴a 3n +a 3n+1+a 3n+2=4∵a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,21009004,1,2a a x a x =-=-=∴a 2+ a 100+ a 900= a 2+ a 1+ a 3=4即-4+x-1+2x=4解得:x=3故选:D.【点睛】本题考查规律型中的数字的变化,解题的关键是找出数的变化规律“a 1=a 4=a 7=…=a 3n+1,a 2=a 5=a 8=…=a 3n+2,a 3=a 6=a 9=…=a 3n (n 为自然数)”.本题属于基础题,难度不大,解题关键是根据数列中数的变化找出变化规律.解析:A【解析】【分析】根据线段中点的性质,可得MC,NC的长,根据线段的和差,可得答案.【详解】解:(1)由点M、N分别是线段AC、BC的中点,得MC=12AC=12×4=2,NC=12BC=12×6=3.由线段的和差,得:MN=MC+NC=2+3=5;故选:A.【点睛】本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键.7.D解析:D【解析】【分析】根据几何体的主视图、左视图、俯视图的形状即可判断.【详解】解:A选项,圆柱的主视图和左视图为长方形,俯视图为圆,不相同,A错误;B选项,圆锥的主视图和左视图为三角形,俯视图为圆及圆心,不相同,B错误;C选项,三棱柱的三视图分别为三角形,三角形,三角形及中心与顶点的连线, C错误;D选项,球体的三视图均为相同的圆,D正确.故选:D【点睛】本题考查了三视图,熟练掌握基础几何体的三视图是解题的关键.8.A解析:A【解析】【分析】A、B、C、D四个点,哪个点离原点最远,则哪个点所对应的数的绝对值最大,据此判断即可.【详解】∵A、B、C、D四个点,点A离原点最远,∴点A所对应的数的绝对值最大;故答案为A.【点睛】本题考查绝对值的意义,绝对值表示数轴上的点到原点的距离,理解绝对值的意义是解题的关键.解析:D【解析】【分析】根据相反数的定义直接求解即可.【详解】解:-5的相反数是5,故选D.【点睛】本题考查相反的定义,熟练掌握基础知识是解题关键.10.D解析:D【解析】【分析】根据余角、邻补角、对顶角的定义即可求解.【详解】由图可知,∵OE CD ⊥∴ 1∠与2∠互为余角,A 正确;3∠与2∠互为余角,B 正确;3∠与AOD ∠互为补角,C 正确;AOD ∠与BOC ∠是对顶角,故D 错误;故选D.【点睛】此题主要考查相交线,解题的关键是熟知余角、邻补角、对顶角的定义.11.B解析:B【解析】【分析】 由线段和差可得35AC BD AB +=,由6AC BD +=即可得AB 的长度,即可得CD 的长度.【详解】 解:∵75AD BC AB += 又∵AD BC AD CD BD AB CD +=++=+ ∴75AB CD AB +=∴25CD AB =∴35AC BD AB CD AB +=-=∵6AC BD += ∴3=65AB ∴=10AB ∴22=10=455CD AB =⨯ 故选:B【点睛】本题考查了线段和差及倍数关系,掌握线段的和差及转化是解题的关键.12.C解析:C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】将324000用科学记数法表示为:53.2410⨯.故选:C .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.A解析:A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:448300 4.8310=⨯;故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.D解析:D【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.15.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .二、填空题16.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为1解析:1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a=1故答案为117.6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.解析:6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.18.两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本解析:两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.19.150【解析】设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150,故答案为150.【解析】设该商品的标价为每件x 元,由题意得:80%x ﹣100=20,解得:x =150,故答案为150.20.-8【解析】【分析】将代入方程后解关于a 的一元一次方程即可.【详解】将代入方程得,解得:a=-8.【点睛】本题考查一元一次方程的解得概念,解题的关键是将方程的解代入方程后再解关于a 的方解析:-8【解析】【分析】将2x =-代入方程后解关于a 的一元一次方程即可.【详解】将2x =-代入方程得2-23a +=,解得:a=-8. 【点睛】本题考查一元一次方程的解得概念,解题的关键是将方程的解代入方程后再解关于a 的方程. 21.4【解析】【分析】根据补角的定义即可求解.【详解】一个角的度数是,则它的补角的度数为180°-=134°24’=134.4° 故答案为:134.4.【点睛】此题主要考查角度的求解,解题解析:4【解析】【分析】根据补角的定义即可求解.【详解】一个角的度数是4536'︒,则它的补角的度数为180°-4536'︒=134°24’=134.4°故答案为:134.4.【点睛】此题主要考查角度的求解,解题的关键熟知补角的定义.22.【解析】【分析】直接利用α和β互余,用90°减去α就是β.【详解】解:∵∴ ,故答案为:20.【点睛】本题主要考查余角的概念,掌握余角的求法是解题的关键.解析:【解析】【分析】直接利用α和β互余,用90°减去α就是β.【详解】解:∵70α=︒∴907020β=︒-︒=︒ ,故答案为:20.【点睛】本题主要考查余角的概念,掌握余角的求法是解题的关键.23.>.【解析】【分析】首先计算出、的差,再分析差的正负性可得答案.【详解】M ﹣N =5x2﹣2x ﹣1﹣(4x2﹣2x ﹣3),=5x2﹣2x ﹣1﹣4x2+2x+3,=x2+2>0,∴M>N解析:>.【解析】【分析】首先计算出M 、N 的差,再分析差的正负性可得答案.【详解】M ﹣N =5x 2﹣2x ﹣1﹣(4x 2﹣2x ﹣3),=5x2﹣2x﹣1﹣4x2+2x+3,=x2+2>0,∴M>N,故答案为:>.【点睛】此题主要考查了整式的加减,关键是注意去括号时符号的变化.24.三棱柱有5个面(答案不唯一)【解析】【分析】根据三棱柱的特点,例如,三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱等写出一个即可.【详解】解:∵三棱柱的性质有:三棱柱有5个面,三棱柱有6解析:三棱柱有5个面(答案不唯一)【解析】【分析】根据三棱柱的特点,例如,三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱等写出一个即可.【详解】解:∵三棱柱的性质有:三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱,三棱柱的底面形状为三角形等等,∴关于三棱柱的正确结论是:三棱柱有5个面(答案不唯一)故答案为:三棱柱有5个面(答案不唯一)【点睛】本题考查了三棱柱的特点,具有空间想象能力,掌握了三棱柱的顶点、棱、面的性质是解答此题的关键.25.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a、b,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 三、解答题26.(1)2;(2)−5或1或7;(3)1t =或173t =【解析】【分析】(1)根据题意OA 的长度即为所求;(2)分三种情况进行讨论,①当点P 位于A 点左侧;②点P 位于线段AB 上;③点P 位于B 点右侧,分别求解;(3)分情况讨论,当PA=3或PB=3时,分别求解.【详解】解:(1)由题意OA=2;OB=4∴点O 到线段AB 的“靠近距离”为2故答案为:2;(2)①当点P 位于A 点左侧时,点P 表示-2-3=-5;②点P 位于线段AB 上时,点P 表示-2+3=1,此时PA=PB=1③点P 位于B 点右侧时,点P 表示4+3=7∴m=−5或1或7故答案为:−5或1或7;(3)①当PA=3时, 可得523t -=,或253t -=,解得14t t ==或.而当4t =时,PB=14-4×3=2,PB <PA ,点P 到线段AB 的“靠近距离”为2,不符合题意. 所以1t =.②当PB=3时, 可得14(12)3t -+=,或(12)143t +-=, 解得111733t t ==或. 而当113t =时,PA=1172533⨯-=,PA<PB ,点P 到线段AB 的“靠近距离”为73,不符合题意. 所以173t =.综上所述,所以1t =或173t =. 【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键. 27.(1)-8;(2)60. 【解析】 【分析】(1)先计算乘方和乘法,再计算减法,即可得到答案; (2)利用乘法分配律进行计算,即可得到答案. 【详解】(1)解:原式=4-12=-8; (2)解:原式=-30+40+50=60. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则. 28.(1)2.5;4.5;(2)t =4或7;(3)①112;②20 【解析】 【分析】(1)根据数轴上两点之间的距离公式求出AB 的长和BC 的长,然后根据速度=路程÷时间即可得出结论;(2)分点A 和点C 相遇前AB=BC 、相遇时AB=BC 和相遇后AB=BC 三种情况,分别画出对应的图形,然后根据AB=BC 列出方程求出t 的即可;(3)①分点B 到达点C 之前和点B 到达点C 之后且点A 到点C 之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t 的值; ②分点B 到达点C 之前和点B 到达点C 之后且点A 到点C 之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t 的值; 【详解】解:(1)∵点A,B,C 表示的数分别为-8,2,20. ∴AB=2-(-8)=10,BC=20-2=18∵点A 和点C 都向点B 运动,且都用了4秒钟,∴点A 的速度为每秒:AB ÷4=2.5个单位长度,点C 的速度为每秒:BC ÷4=4.5个单位长度,故答案为:2.5;4.5. (2)AC=20-(-8)=28∴点A 和点C 相遇时间为AC ÷(1+3)=7s当点A 和点C 相遇前,AB=BC 时,此时0<t <7,如下图所示此时点A运动的路程为1×t=t,点C运动的路程为3×t=3t∴此时AB=10-t,BC=18-3t∵AB=BC∴10-t=18-3t解得:t=4;当点A和点C相遇时,此时t=7,如下图所示此时点A和点C重合∴AB=BC即t=7;当点A和点C相遇后,此时t>7,如下图所示由点C的速度大于点A的速度∴此时BC>AB故此时不存在t,使AB=BC.综上所述:当A、C两点与点B距离相等的时候,t=4或7.(3)点B到达点C的时间为:BC÷3=6s,点A到达点C的时间为:AC÷1=28s ①当点B到达点C之前,即0<t<6时,如下图所示此时点A所表示的数为-8+t,点B所表示的数为2+3t∴线段AB的中点P表示的数为()()823232t tt-+++=-∴PC=20-(2t-3)=12解得:t=11 2;当点B到达点C之后且点A到点C之前,即6≤t<28时,如下图所示此时点A所表示的数为-8+t,点B所表示的数为20∴线段AB的中点P表示的数为()820622t t-++=+∴PC=20-(62t+)=12 解得:t=4,不符合前提条件,故舍去. 综上所述:t=112时,PC=12; ②当点B 到达点C 之前,即0<t <6时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为2+3t ∴线段AB 的中点P 表示的数为()()823232t t t -+++=-∴PC=20-(2t -3)=4 解得:t=192,不符合前提条件,故舍去; 当点B 到达点C 之后且点A 到点C 之前,即6≤t <28时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为20 ∴线段AB 的中点P 表示的数为()820622t t-++=+ ∴PC=20-(62t+)=4 解得:t=20.综上所述:当t=20时,PC=4. 【点睛】此题考查是数轴上的动点问题,掌握数轴上两点之间的距离公式、中点公式、行程问题公式和分类讨论的数学思想是解决此题的关键. 29.3a 2b-ab 2+4;18. 【解析】 【分析】先解出a 与b 的值,再化简代数式代入求解即可. 【详解】根据2(2)10a b ++-=,可得:a=-2,b=1.22225(3)4(31)a b ab ab a b ---+-=15a 2b-5ab 2+4ab 2-12a 2b+4 =3a 2b-ab 2+4将a=-2,b=1代入得:原式=3×(-2)2×1-(-2)×12+4=12+2+4=18. 【点睛】本题考查代数式的化简求值,关键在于先通过非负性求出a,b 的值. 30.(1)(5,23);(2)6m ﹣2(2m +mn )﹣2n 的值是2;(3)不是. 【解析】 【分析】(1)根据“泰兴数”的定义,计算两个数对即可判断; (2)化简整式,计算“泰兴数”(),m n ,代入求值;(3)计算a -,b -的差和它们积与1的和,看是不是符合“泰兴数”的定义即可. 【详解】(1)∵﹣2﹣1=﹣3,﹣2×1+1=﹣1,213533-=,2135133⨯+=, 所以数对()2,1-不是“泰兴数”25,3⎛⎫⎪⎝⎭是“泰兴数”; 故答案为:25,3⎛⎫ ⎪⎝⎭. (2)6m ﹣2(2m +mn )﹣2n =2m ﹣2mn ﹣2n =2(m ﹣mn ﹣n )因为(m ,n )是“泰兴数”, 所以m ﹣n =mn +1,即m ﹣n ﹣mn =1 所以原式=2×1=2;答:6m ﹣2(2m +mn )﹣2n 的值是2. (3)∵(a ,b )是“泰兴数”, ∴a ﹣b =ab +1, ∵﹣a ﹣(﹣b ) =b ﹣a =﹣ab ﹣1 ≠ab +1∴(﹣a ,﹣b )不是泰兴数. 故答案为:不是 【点睛】本题考查了有理数的混合运算、整式的加减及整体代入求值.解决本题的关键是理解“泰兴数”的定义.。
人教版数学七年级上新课标与核心素养期末冲刺培优测试卷(含答案及详解)

⼈教版数学七年级上新课标与核⼼素养期末冲刺培优测试卷(含答案及详解)⼈教版数学七年级上册期末15天提分卷2018年8⽉期末数学试卷班级姓名考号⼀、选择题:本⼤题共10⼩题,每⼩题3分,共30分,注意每⼩题的四个选项中只有⼀个是对的,将正确答案相对应的字母填在表格内.1.如图,由两块长⽅体叠成的⼏何体,从正⾯看它所得到的平⾯图形是( )A.B.C.D.2.沿图中虚线旋转⼀周,能围成的⼏何体是下⾯⼏何体中的( )A.B.C.D.3.下列说法错误的是( )A.长⽅体、正⽅体都是棱柱B.六棱柱有六条棱、六个侧⾯C.三棱柱的侧⾯是三⾓形D.球体的三种视图均为同样的图形4.a与b的平⽅的和可表⽰为( )A.(a+b)2B.a2+b2C.a2+b D.a+b25.下列说法正确的是( )A.是单项式B.是五次单项式C.ab2﹣2a+3是四次三项式D.2πr的系数是2π,次数是1次6.下列计算正确的是( )A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b7.把⼀副三⾓板按如图所⽰那样拼在⼀起,那么∠ABC的度数是( )A.150°B.135°C.120°D.105°8.将21.54°⽤度、分、秒表⽰为( )A.21°54′B.21°50′24″ C.21°32′40″ D.21°32′24″9.若单项式﹣x2a﹣1y4与2xy4是同类项,则式⼦(1﹣a)2015=( )A.0 B.1 C.﹣1 D.1 或﹣110.为庆祝“六?⼀”⼉童节,某幼⼉园举⾏⽤⽕柴棒摆“⾦鱼”⽐赛.如图所⽰:按照上⾯的规律,摆n个“⾦鱼”需⽤⽕柴棒的根数为( )A.2+6n B.8+6n C.4+4n D.8n⼆、填空题:本⼤题共6⼩题,每⼩题4分,共24分.11.某年我国的粮⾷总产量约为8920000000吨,这个数⽤科学记数法表⽰为__________吨.12.两个有理数a、b在数轴上的位置如图所⽰,则a+b__________0;ab__________0(填“<”或“>”).13.⽤“>”、“<”填空:0__________;__________.14.的倒数是__________;3的相反数为__________;﹣2的绝对值是__________.15.如果代数式5x﹣8与代数式3x的值互为相反数,则x=__________.16.在长为48cm的线段AB上,取⼀点D,使AD=AB,C为AB的中点,则CD=__________cm.三、解答题(⼀):本⼤题共3⼩题,每⼩题6分,共18分,要有必要的运算过程或演算步骤.17.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).18.计算:8×+(﹣2)3÷4.19.解⽅程:x+2=6﹣3x.四、解答题(⼆):本⼤题共3⼩题,每⼩题7分,共21分.20.根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.21.根据下⾯给出的数轴,解答下⾯的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表⽰的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(⽤不同于A,B的其它字母表⽰),并写出这些点表⽰的数.22.先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.五、解答题(三):本⼤题共3⼩题,每⼩题9分,共27分.23.连州某旅⾏社组织甲、⼄两个旅游团分别到西安、北京旅游,已知这两个旅游团共有55⼈,甲旅游团的⼈数⽐⼄旅游团的⼈数的2倍少5⼈,问:(1)若设⼄旅⾏社的⼈数为x,请⽤含x的代数式表⽰甲旅⾏社的⼈数;(2)甲、⼄两个旅游团各有多少⼈?24.某公园元旦期间,前往参观的⼈⾮常多.这期间某⼀天某⼀时段,随机调查了部分⼊园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表⽰等候检票的时间⼤于或等于10min⽽⼩于20min,其它类同.(1)这⾥采⽤的调查⽅式是__________(填“普查”或“抽样调查”),样本容量是__________;(2)表中a=__________,b=__________,并请补全频数分布直⽅图;(3)在调查⼈数⾥,若将时间分段内的⼈数绘成扇形统计图,则“40~50”的圆⼼⾓的度数是__________.25.观察下列关于⾃然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×__________2=__________;(2)写出你猜想的第n个等式(⽤含n的式⼦表⽰),并验证其正确性.七年级(上)期末数学试卷⼀、选择题:本⼤题共10⼩题,每⼩题3分,共30分,注意每⼩题的四个选项中只有⼀个是对的,将正确答案相对应的字母填在表格内.1.如图,由两块长⽅体叠成的⼏何体,从正⾯看它所得到的平⾯图形是( )A.B.C.D.【考点】简单组合体的三视图.【分析】细⼼观察图中⼏何体摆放的位置,根据主视图是从正⾯看到的图形判定即可.【解答】解:长⽅体的主视图是:长⽅形,此图有两个长⽅体组成,因此主视图是两个长⽅形,再根据长⽅体的摆放可得:A正确,故选;A.【点评】此题主要考查了⼏何体的三视图,从正⾯看到的图叫做主视图,再注意长⽅体的摆放位置即可.2.沿图中虚线旋转⼀周,能围成的⼏何体是下⾯⼏何体中的( )A.B.C.D.【考点】点、线、⾯、体.【分析】根据该图形的上下底边平⾏且相等的特点可得旋转⼀周后得到的平⾯应是平⾏且全等的关系,据此找到正确选项即可.【解答】解:易得该图形旋转后可得上下底⾯是平⾏且半径相同的2个圆,应为圆柱,故选B.【点评】长⽅形旋转⼀周得到的⼏何体是圆柱.3.下列说法错误的是( )A.长⽅体、正⽅体都是棱柱B.六棱柱有六条棱、六个侧⾯C.三棱柱的侧⾯是三⾓形D.球体的三种视图均为同样的图形【考点】认识⽴体图形;简单⼏何体的三视图.【分析】利⽤常见⽴体图形的特征分析判定即可.【解答】解:A、长⽅体、正⽅体都是棱柱,此选项正确,B、六棱柱有六条棱、六个侧⾯,此选项正确,C、三棱柱的侧⾯是平⾏四边形或长⽅形或正⽅形,此选项错误,D、球体的三种视图均为同样的图形,此选项正确,故选:C.【点评】本题主要考查了认识⽴体图形及简单⼏何体的三视图,解题的关键是熟记常见⽴体图形的特征.4.a与b的平⽅的和可表⽰为( )A.(a+b)2B.a2+b2C.a2+b D.a+b2【考点】列代数式.【分析】⽤a加上b的平⽅列式即可.【解答】解:a与b的平⽅的和可表⽰为a+b2.故选:D.【点评】此题考查列代数式,理解题意,搞清运算的顺序与⽅法即可.5.下列说法正确的是( )A.是单项式B.是五次单项式C.ab2﹣2a+3是四次三项式D.2πr的系数是2π,次数是1次【考点】多项式;单项式.【分析】分别根据单项式以及多项式的定义判断得出即可.【解答】解:A、是分式,不是单项式,故此选项错误;B、﹣a2b3c是六次单项式,故此选项错误;C、ab2﹣2a+3是三次三项式,故此选项错误;D、2πr的系数是2π,次数是1次,故此选项正确.故选:D.【点评】此题考查了多项式和单项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最⾼次数,就是这个多项式的次数.6.下列计算正确的是( )A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.【点评】本题考查了合并同类项,系数相加字母部分不变.7.把⼀副三⾓板按如图所⽰那样拼在⼀起,那么∠ABC的度数是( )A.150°B.135°C.120°D.105°【考点】⾓的计算.【分析】∠ABC等于30度⾓与直⾓的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°,故选C.【点评】本题考查了⾓度的计算,理解三⾓板的⾓的度数是关键.8.将21.54°⽤度、分、秒表⽰为( )A.21°54′B.21°50′24″ C.21°32′40″ D.21°32′24″【考点】度分秒的换算.【分析】根据⼤单位化⼩单位乘以进率,可得答案.【解答】解:21.54°=21°32.4′=21°32′24″.故选:D.【点评】本题考查了度分秒的换算,不满⼀度的化成分,不满⼀分的化成秒.9.若单项式﹣x2a﹣1y4与2xy4是同类项,则式⼦(1﹣a)2015=( )A.0 B.1 C.﹣1 D.1 或﹣1【考点】同类项.【分析】利⽤同类项的定义求解即可.【解答】解:∵单项式﹣x2a﹣1y4与2xy4是同类项,∴2a﹣1=1,解得a=1,∴(1﹣a)2015=0,故选:A.【点评】本题主要考查了同类项,解题的关键是熟记同类项的定义.10.为庆祝“六?⼀”⼉童节,某幼⼉园举⾏⽤⽕柴棒摆“⾦鱼”⽐赛.如图所⽰:按照上⾯的规律,摆n个“⾦鱼”需⽤⽕柴棒的根数为( )A.2+6n B.8+6n C.4+4n D.8n【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】观察给出的3个例图,注意⽕柴棒根数的变化是图②的⽕柴棒⽐图①的多6根,图③的⽕柴棒⽐图②的多6根,⽽图①的⽕柴棒的根数为2+6.【解答】解:第n条⼩鱼需要(2+6n)根,故选A.【点评】本题考查列代数式,本题的解答体现了由特殊到⼀般的数学⽅法(归纳法),先观察特例,找到⽕柴棒根数的变化规律,然后猜想第n条⼩鱼所需要的⽕柴棒的根数.⼆、填空题:本⼤题共6⼩题,每⼩题4分,共24分.11.某年我国的粮⾷总产量约为8920000000吨,这个数⽤科学记数法表⽰为8.92×109吨.【考点】科学记数法—表⽰较⼤的数.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于8920000000有10位,所以可以确定n=10﹣1=9.【解答】解:8 920 000 000=8.92×109.故答案为:8.92×109.【点评】此题考查科学记数法表⽰较⼤的数的⽅法,准确确定a与n值是关键.12.两个有理数a、b在数轴上的位置如图所⽰,则a+b<0;ab<0(填“<”或“>”).【考点】数轴.【分析】先根据数轴确定a,b的取值范围,根据有理数的加法、乘法,即可解答.【解答】解:由数轴可得:a<0<b,|a|>|b|,∴a+b<0,ab<0,故答案为:<,<.【点评】本题考查了数轴,解决本题的关键是根据数轴确定a,b的取值范围.13.⽤“>”、“<”填空:0>;<.【考点】有理数⼤⼩⽐较.【专题】综合题.【分析】前两个数可直接⽐较⼤⼩.利⽤负数⼩于0,后两个数,先求它们的绝对值,再利⽤绝对值⼤的反⽽⼩⽐较即可.【解答】解:∵|﹣|==,|﹣|==,∴>,∴﹣<﹣.故答案为:>,<.【点评】本题利⽤了负数⼩于0,两个负数相⽐较绝对值⼤的反⽽⼩的知识.14.的倒数是;3的相反数为﹣3;﹣2的绝对值是2.。
七年级上册数学 期末试卷(Word版 含解析)

七年级上册数学 期末试卷(Word版 含解析) 一、选择题 1.按图中程序计算,若输出的值为9,则输入的数是( )
A.289 B.2 C.1 D.2或
1
2.如图,是一个正方体的展开图则“数”字的对面的字是( )
A.核 B.心 C.素 D.养
3.若x3是方程3xa0的解,则a的值是( )
A.9 B.6 C.9 D.
6
4.如果整式xn﹣3﹣5x2+2是关于x的三次三项式,那么n等于( ) A.3 B.4 C.5 D.6 5.在55方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平移方法是( )
(1)(2) A.先向下移动1格,再向左移动1格; B.先向下移动1格,再向左移动2格
C.先向下移动2格,再向左移动1格: D.先向下移动2格,再向左移动2格
6.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ).
A. B. C. D.
7.﹣3的相反数为( ) A.﹣3 B.﹣13 C.13 D.3 8.下列各数是无理数的是( ) A.﹣2 B.227 C.0.010010001 D.π 9.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式
和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A.115×103 B.11.5×104 C.1.15×105 D.0.115×106 10.拖拉机加油50L记作50L,用去油30L记作30L,那么5030等于( ) A.20 B.40 C.60 D.
80
11.如图,若AB,CD相交于点O,过点O作OECD,则下列结论不正确的是
A.1与2互为余角 B.3与2互为余角
C.3与AOD互为补角 D.EOD与BOC是对顶角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学 期末试卷(培优篇)(Word 版 含解析)一、选择题 1.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .2.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( )A .5B .﹣5C .7D .﹣73.下列图形中1∠和2∠互为余角的是( )A .B .C .D .4.钟面上8:45时,时针与分针形成的角度为( )A .7.5°B .15°C .30°D .45°5.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65°6.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A .63B .70C .92D .1057.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A、B、C三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是()A.20 B.25 C.30 D.358.对于代数式3m+的值,下列说法正确的是()A.比3大B.比3小C.比m大D.比m小9.由n个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n的最小值为()A.10 B.11 C.12 D.1310.下列图形,不是柱体的是()A.B.C.D.11.下列说法错误的是( )A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.不相交的两条直线叫做平行线12.将方程21101136x x++-=去分母,得()A.2(2x+1)﹣10x+1=6 B.2(2x+1)﹣10x﹣1=1C.2(2x+1)﹣(10x+1)=6 D.2(2x+1)﹣10x+1=113.一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.14.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是().A .-1B .0C .3D .4 15.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.在直线l 上有四个点A 、B 、C 、D ,已知AB =8,AC =2,点D 是BC 的中点,则线段AD =________.17.若221x x -+的值是4,则2245x x --的值是_________.18.如果向北走20米记作+20米,那么向南走120米记为______米.19.若623m x y -与41n x y -的和是单项式,则n m = _______.20.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .21.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同.年级课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数 七年级17 6 8 八年级14.5 5 7 九年级 12.5则九年级科技小组活动的次数是_____.22.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.23.如图,已知直线AB 和CD 相交于点O ,射线OE 在COB ∠内部,OE OC ⊥,OF平分AOE ∠,若40BOD ∠=,则COF ∠=__________度.24.单项式345ax y -的次数是__________. 25.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.三、解答题26.如图,点O 在直线AB 上,OC ⊥AB .在RtΔODE 中,∠ODE=90°,∠DOE=30°,先将ΔODE 一边OE 与OC 重合(如图1),然后将ΔODE 绕点O 按顺时针方向旋转(如图2),当OE 与OC 重合时停止旋转.(1)当∠AOD=80°时,则旋转角∠COE 的大小为____________ ;(2)当OD 在OC 与OB 之间时,求∠AOD -∠COE 的值;(3)在ΔODE 的旋转过程中,若∠AOE=4∠COD 时,求旋转角∠COE 的大小.27.解方程:(1)-5x +3=-3x -5;(2)4x -3(1-x )=11.28.计算:(1)253(3)-÷-;(2)1138842⎛⎫-⨯+- ⎪⎝⎭; (3)2357m n n m ---;(4)()2242x xy xy x xy ⎡⎤--+--⎣⎦. 29.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车. (1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距?30.计算:(1)﹣2÷8×(﹣12); (2)2312(3)()19---⨯-+.31.解方程(1)()3226x x +-=;(2)212134x x +--= 32.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①59415x x -=+;②91554y y +-= (1)①中的x 表示 ;②中的y 表示 .(2)请选择其中一种方法,写出完整的解答过程.33.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.四、压轴题34.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =35.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.36.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.37.尺规作图是指用无刻度的直尺和圆规作图。
尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.初中阶段同学们首次接触的尺规作图是“作一条线段等于已知线段”.图1图2备用图(1)如图1,在线段AB 外有一点C ,现在利用尺规作图验证“两点之间线段最短”,AB AC CB <+.请根据提示,用尺规完成作图,并补充验证步骤.第一步,以A 为圆心,AC 为半径作弧,交线段AB 于点M ,则AC =_____________; 第二步,以B 为圆心,BC 为半径作弧,交线段AB 于点N ,则BC =_____________; 则AC BC +=______________+_______________AB =+_______________故:AB AC CB <+.(2)如图2,在直线l 上,从左往右依次有四个点O ,E ,O ',F ,且4OE EO '==,10EF =.现以O 为圆心,半径长为r 作圆,与直线l 两个交点中右侧交点记为点P .再以O '为圆心;相同半径长r 作圆,与直线l 两个交点中左侧交点记为点Q .若P ,Q ,F 三点中,有一点分另外两点所连线段之比为1:2,求半径r 的长.38.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少;(2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.39.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.40.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°:(1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.43.设A、B、C是数轴上的三个点,且点C在A、B之间,它们对应的数分别为x A、x B、x C.(1)若AC=CB,则点C叫做线段AB的中点,已知C是AB的中点.①若x A=1,x B=5,则x c=;②若x A=﹣1,x B=﹣5,则x C=;③一般的,将x C用x A和x B表示出来为x C=;④若x C=1,将点A向右平移5个单位,恰好与点B重合,则x A=;(2)若AC=λCB(其中λ>0).①当x A=﹣2,x B=4,λ=13时,x C=.②一般的,将x C用x A、x B和λ表示出来为x C=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.解:根据以上分析应是圆锥和圆柱的组合体.故选B.考点:点、线、面、体.2.A解析:A【解析】【分析】把x=3代入已知方程后,列出关于m的新方程,通过解新方程来求m的值.【详解】∵x=3是关于x的方程2x﹣m=x﹣2的解,∴2×3﹣m=3﹣2,解得:m=5.故选A.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.3.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.4.A解析:A【解析】试题解析:钟面上8:45时,分针指向9,时针在8和9之间,夹角的度数为:4530307.5.60-⨯=故选A.5.D解析:D【解析】【分析】根据方向角的定义和角平分线的定义即可得到结论.【详解】∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°.∵OB平分∠AOC,∴∠BOC12=∠AOC=65°.故选:D.【点睛】本题考查了方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.6.C解析:C【解析】【分析】设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x+-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=92,解得:x=927,x须为正整数,∴不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C【点睛】此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.7.C解析:C【解析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.解:设折痕对应的刻度为xcm,依题意有绳子被剪为10cm,20cm,30cm的三段,①x=202+10=20,②x=302+10=25,③x=302+20=35,④x=102+20=25,⑤x=102+30=35,⑥x=202+30=40.综上所述,折痕对应的刻度可能为20、25、35、40.故选C.“点睛”本题考查了一元一次方程的应用和图形的简拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分类思想的运用. 8.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m大3.【详解】解:∵3+m=m+3,m+3表示比m大3,∴3+m比m大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.9.C【解析】【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.D解析:D【解析】锥体必有一个顶点和一个底面,一个曲面;柱体必有两个底面(上底和下底),其他部分可能是平面,也可能是曲面,有两个面互相平行且大小相同,余下的每个相邻两个面的交线互相平行.故选D.11.D解析:D【解析】【分析】根据各项定义性质判断即可.【详解】D选项应该为:同一平面内不相交的两条直线叫平行线.故选D.【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.12.C解析:C【解析】【分析】方程的分母最小公倍数是6,方程两边都乘以6即可.【详解】方程两边都乘以6得:2(2x+1)﹣(10x+1)=6.故选:C.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.13.B解析:B【解析】【分析】根据展开图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【点睛】考核知识点:几何体的三视图.14.C解析:C【解析】【分析】观察数轴根据点B与点A之间的距离即可求得答案.【详解】观察数轴可知点A与点B之间的距离是5个单位长度,点B在点A的右侧,因为点A表示的数是-2,-2+5=3,所以点B表示的数是3,故选C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.15.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x−1)−2(2x+3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.二、填空题【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差解析:3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC=8+2=10,由线段中点的性质,得BD=CD=12BC=12×10=5,AD=CD-AC=5-2=3;当C在线段AB上时,由线段的和差,得BC=AB-AC=8-2=6,由线段中点的性质,得BD=CD=12BC=12×6=3,所以AD=AC+CD=2+3=5.综上所述,AD=3或5.故答案为:3或5.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.17.1【解析】【分析】根据题意,得到,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵,∴,∴;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到,熟练运用整解析:1【解析】根据题意,得到223x x -=,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵2214x x -+=,∴223x x -=,∴222452(2)52351x x x x --=--=⨯-=;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到223x x -=,熟练运用整体代入法进行解题. 18.-120【解析】【分析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正解析:-120【解析】【分析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正负数的意义.19.8【解析】【分析】根据同类项的特点即可求解.【详解】∵与的和是单项式∴与是同类项,故6-m=4,n-1=2∴m=2,n=3∴8故答案为:8.【点睛】此题主要考查整式的运算,解解析:8【解析】【分析】根据同类项的特点即可求解.【详解】∵623m x y -与41n x y -的和是单项式∴623m x y -与41n x y -是同类项,故6-m=4,n-1=2∴m=2,n=3∴n m =8故答案为:8.【点睛】此题主要考查整式的运算,解题的关键是熟知同类项的特点.20.2或5.5或8.5【解析】【分析】分为两种情况讨论:当点P 在BC 上时,当点P 在AB 上时,根据三角形的面积公式建立方程求出其解即可.【详解】∵,,点是的中点∴BD=3cm,如图,点P 在B解析:2或5.5或8.5【解析】【分析】分为两种情况讨论:当点P 在BC 上时,当点P 在AB 上时,根据三角形的面积公式建立方程求出其解即可.【详解】∵6AB cm =,8BC cm =,点D 是AB 的中点∴BD=3cm,如图,点P 在BC 上时,CP=2t ,∵三角形PCD 的面积为26cm . ∴12CP×BD=6,即12×2t×3=6解得t=2s,当P运动到B时,时间为8÷2=4s 如图,当点P在AB上时,BP1=t-4,DP1= BP1-BD=t-4-3=t-7∵三角形PCD的面积为26cm.∴12DP1×BC=6,即12×(t-7)×8=6解得t=8.5s同理BP2=t-4,DP2= BD- BP2=3-(t-4)=7-t ∵三角形PCD的面积为26cm.∴12DP1×BC=6,即12×(7-t)×8=6解得t=5.5s综上,当点P运动时间t 2或5.5或8.5秒时,三角形PCD的面积为26cm.故答案为:2或5.5或8.5.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.21.【解析】【分析】设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.构建方程组求出x,y即可解决问题.【详解】解:设每次文艺小组活动时间为x h解析:【解析】【分析】设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.构建方程组求出x,y即可解决问题.【详解】解:设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.由题意6817 5714.5x yx y+=⎧⎨+=⎩,解得1.51xy=⎧⎨=⎩,∴1.5m+m=12.5,解得m=5故答案为:5.【点睛】本题主要考查二元一次方程组的应用,能够根据题意列出方程组是解题的关键.22.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.23.25【解析】【分析】,得出,根据对顶角相等可得出,因此,又因为平分,,即可求出答案.【详解】解:∵,∴,∵根据对顶角相等可得出,∴,∵平分,∴,∴.故答案为:25.【点睛】解析:25【解析】【分析】OE OC ⊥,得出COE 90∠=︒,根据对顶角相等可得出BOD AOC 40∠∠==︒,因此AOE 130∠=︒,又因为OF 平分AOE ∠,AOF EOF 65∠∠==︒,即可求出答案.【详解】解:∵OE OC ⊥,∴COE 90∠=︒,∵根据对顶角相等可得出BOD AOC 40∠∠==︒,∴AOE 130∠=︒,∵OF 平分AOE ∠,∴AOF EOF 65∠∠==︒,∴COF 906525∠=︒-︒=︒.故答案为:25.【点睛】本题考查的知识点是角的和与差,找出图形中角之间的数量关系是解此类题目的关键. 24.5【解析】【分析】根据单项式的次数的定义进行判断即可.【详解】单项式的次数是:1+3+1=5故答案为:5【点睛】本题考查了单项式的次数的定义,掌握单项式的次数的定义是解题的关键. 解析:5【解析】【分析】根据单项式的次数的定义进行判断即可.【详解】 单项式345ax y -的次数是:1+3+1=5 故答案为:5【点睛】本题考查了单项式的次数的定义,掌握单项式的次数的定义是解题的关键.25.-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x ﹣1=2x+a 中算出a 即可.【详解】由方程4x+3=7,解得x=1;将x=-1代入5x ﹣1=2x+a,解得a解析:-4 ,【解析】【分析】先解出4x +3=7方程的值,将相反数算出来再代入5x ﹣1=2x +a 中算出a 即可.【详解】由方程4x +3=7,解得x =1;将x =-1代入5x ﹣1=2x +a ,解得a =-4.【点睛】本题考查方程的解及相反数的概念,关键在于掌握相关知识点.三、解答题26.(1)20;(2)60°;(3)6°或70°.【解析】【分析】(1)根据旋转的性质,求出旋转角的度数,即可得到答案;(2)由旋转的性质可知,''D OD E OE ∠=∠,由(1)知'60AOD ∠=︒,根据角的和差关系,即可得到∠AOD -∠COE 的值;(3)根据题意,可分为两种情况进行分析:①OD 在OA 与OC 之间时;②OD 在OC 与OB 之间时;设∠COE 为x ,根据角的和差关系列出等式,分别求出答案即可.【详解】解:(1)由图1可知,∠AOD=903060︒-︒=︒,如图2,当∠AOD=80°时,有:∠COE=80°-60°=20°,故答案为:20°.(2)如图:由(1)知,'60AOD ∠=︒,由旋转的性质,可知''D OD E OE ∠=∠,∴''''60AOD COE AOD D OD E OE AOD ∠-∠=∠+∠-∠=∠=︒;(3)根据题意,设∠COE 为x ,则①如图,当OD 在OA 与OC 之间时,∴∠AOE=90°+x ,∠COD=30°x -,∵∠AOE=4∠COD ,∴904(30)x x ︒+=︒-,解得:6x =︒;②如图,当OD 在OC 与OB 之间时,∴∠AOE=90°+x ,∠COD=x 30-︒,∵∠AOE=4∠COD ,∴904(30)x x ︒+=-︒,解得:70x =︒;∴旋转角∠COE 的大小为:6°或70°.【点睛】本题考查了旋转的性质,以及角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键,注意利用分类讨论的思想进行解题,题目比较好,难度不大.27.(1)x =4;(2)x =2.【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)移项得:-5x +3x =-5-3合并得:﹣2x =﹣8,解得:x =4;(2)去括号得:4x ﹣3+3x =11,移项得:4x +3x =11+3移项合并得:7x =14,解得:x =2. 【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解. 28.(1)8;(2)9;(3)58m n --;(4)22x xy +【解析】【分析】(1)有理数的混合运算,先做乘方,然后做乘除,最后做加减;(2)利用乘法分配律使得运算简便;(3)整式加减,合并同类项进行计算;(4)整式的加减混合运算,先去括号,然后合并同类项.【详解】解:(1)253(3)-÷- =59(3)-÷-=53+=8;(2)1138842⎛⎫-⨯+- ⎪⎝⎭ =113888842-⨯-⨯+⨯ =1212--+=9;(3)2357m n n m ---=58m n --;(4)()2242x xy xy x xy ⎡⎤--+--⎣⎦ =224()2x xy xy x xy +---=2242x xy xy x xy +-+-=22x xy +.【点睛】本题考查有理数的混合运算,整式的加减混合运算,掌握计算顺序及法则,准确计算是本题的解题关键.29.(1)乙车出发2小时追上甲车;(2)乙车出发、、与甲车相距 【解析】【分析】(1)设乙车出发x 小时追上甲车,由此时甲车走了(x+1)小时,根据两车所走的路程相等,列出方程进行求解即可;(2)分乙车没追上甲车、乙车追上甲车、乙车到达B 地而甲车没到达B 地三种情况分别解即可.【详解】(1)设乙车出发x 小时追上甲车,由此时甲车走了(x+1)小时,由题意得60(x+1)=90x , 解得:x=2, 答:乙车出发2小时追上甲车;(2)①(小时), ②(小时), ③4小时后,甲距离地60千米,乙到达地等甲,还有可能相距50米,(小时),答:乙车出发2小时追上甲车;乙车出发、、与甲车相距. 【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解(1)的关键,分情况讨论是解(2)的关键.30.(1)3;(2)﹣6.【解析】【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】(1)原式121238=⨯⨯=;(2)原式1427143169⎛⎫=-+⨯-+=--+=- ⎪⎝⎭.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.31.(1)2x =;(2)25x =【解析】【分析】(1)通过去括号,移项,合并同类项,系数化1即可求解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化1,从而得到方程的解.【详解】解:(1)()3226x x +-=3246x x +-=510x =2x =;(2)212134x x +--= ()()4213212x x +--=843612x x +-+=5=2x2=5x . 【点睛】本题考查了解一元一次方程,注意去分母时,方程两边同时乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.32.(1)x 表示小组人数,y 表示计划做“中国结”数;(2)小组共有24人,计划做111个“中国结”.【解析】【分析】(1)根据①所列方程分析出x 表示小组人数;根据②所列方程分析出y 表示“中国结”的总个数;(2)根据解应用题的步骤,设,列,解,答步骤写出完整的解答过程.【详解】解:(1)x 表示小组人数,y 表示计划做“中国结”数(2)方法①设小组共有x 人根据题意得:59415x x -=+解得:24x =∴59111x -=个答:小组共有24人,计划做111个“中国结”;方法②计划做y 个“中国结”, 根据题意得:91554y y +-= 解得:y=111 ∴111+9=245人 答:小组共有24人,计划做111个“中国结”.【点睛】本题考查一元一次方程的应用,由实际问题抽象出一元一次方程,根据解应用题的步骤解答问题是关键.。