七年级上册数学全册单元试卷培优测试卷

合集下载

七年级数学上册全册单元测试卷培优测试卷

七年级数学上册全册单元测试卷培优测试卷

七年级数学上册全册单元测试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.2.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

【答案】(1)解:如图:点C、D为线段AB的三等分点,可以组成的线段为:3+2+1=6(条),∵AB=6,点C、D为线段AB的三等分点,∴AC=CD=DB=2,AD=BC=4,∴这些线段长度的和为:2+2+2+4+4+6=20.(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;∴这些线段长度的和为:48+24+12+4=88.【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.3.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.4.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系为:________(直接写出结果).(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP,CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系为:________(直接写出结果).(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP,CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.【答案】(1)∠FDC+∠ECD=∠A+180°(2)∠P=90°+ ∠A(3)解:∵DP、CP分别平分∠ADC和∠BCD,【解析】【解答】(1)探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,故答案为:( 2 )探究二:∵DP、CP分别平分∠ADC和∠ACD,故答案为:【分析】(1)由三角形的一个外角等于和它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再将两个等式两边分别相加并运用三角形的内角和定理即可求解;(2)由角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,再结合三角形的内角和定理即可求解;(3)由角平分线的定义可得∠PDC=∠ADC,∠PCD=∠BCD,再结合三角形的内角和定理和四边形的内角和定理即可求解。

七年级数学上册全册单元试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

【答案】(1)解:如图:点C、D为线段AB的三等分点,可以组成的线段为:3+2+1=6(条),∵AB=6,点C、D为线段AB的三等分点,∴AC=CD=DB=2,AD=BC=4,∴这些线段长度的和为:2+2+2+4+4+6=20.(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;∴这些线段长度的和为:48+24+12+4=88.【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。

数学七年级上册全册单元试卷培优测试卷

数学七年级上册全册单元试卷培优测试卷

数学七年级上册全册单元试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,∠AOB=∠COD=90°,射线OE,FO分别平分∠AOC和∠BOD.(1)当OB和OC重合时,如图(1),求∠EOF的度数;(2)当∠AOB绕点O逆时针旋转至图(2)的位置(0°<∠BOC<90°)时,求∠EOF的度数.【答案】(1)解:当OB和OC重合时,∠AOD=∠AOC+∠BOD=180°,又∵射线OE,FO分别平分∠AOC和∠BOD,∴∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COF+∠BOF= (∠AOC+∠BOD)= ×180°=90°(2)解:∵∠AOB=∠COD=90°,∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COE+∠BOF﹣∠BOC= ∠AOC+ ∠BOD﹣∠BOC= (∠AOC+∠BOD)﹣∠BOC= (∠AOB+∠BOC+∠COD+∠BOC)﹣∠BOC= (180°+2∠BOC)﹣∠BOC=90°+∠BOC﹣∠BOC=90°【解析】【分析】(1)由角平分线的性质可得∠COE=∠AOC,∠BOF=∠BOD;由平角的定义可得∠AOC+∠BOD=180°,由角的构成可得∠EOF=∠COE+∠BOF,代入计算即可求解;(2)同理可求解。

2.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE 和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC = ________°;(2)如图②,若∠BEC=140°,求∠BE1C的度数;(3)猜想:若∠BEC=α度,则∠BE n C = ________ °.【答案】(1)75(2)解:如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;∵∠BEC=140°,∴∠BE1C=70°;(3)【解析】【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE=75°;故答案为:75;( 3 )如图2,∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2= ∠ABE1+ ∠DCE1= ∠CE1B= ∠BEC;∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3= ∠ABE2+ ∠DCE2= ∠CE2B= ∠BEC;…以此类推,∠E n= ∠BEC,∴当∠BEC=α度时,∠BE n C等于 °.故答案为: .【分析】(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE=75°;(2)先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠BE1C=∠ABE1+∠DCE1= ∠ABE+∠DCE= ∠BEC;(3)根据∠ABE1和∠DCE1的平分线,交点为E2,得出∠BE2C=∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C= ∠BEC;…据此得到规律∠E n= ∠BEC,最后求得∠BE n C的度数.3.如图①,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的上方.(1)在图①中, ________度;(2)将图①中的三角板绕点按逆时针方向旋转,使得在的内部,如图②,若,求的度数;(3)将图①中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,当直线恰好平分锐角时,旋转的时间是________秒.(直接写出结果)【答案】(1)30(2)解:设∠BON=α,∵∠BOC=60°,∴∠NOC=60°-α,∵∠MON=90°,∴∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,∠MOA=180°-∠MON-∠BON=180°-90°-α=90°-α,∵∠NOC= ∠MOA,∴60°-α= (90°-α),解得:α=54°,即∠BON=54°;(3)3或21【解析】【解答】(1)∵将一直角三角板的直角顶点放在点O处,一边ON在射线OB 上,另一边OM在直线AB的上方,∴∠MON=90°,∴∠COM=∠MON-∠BOC=90°-60°=30°,(3)∵直线ON平分∠BOC,∠BOC=60°,∴∠BON=30°或∠BON=210°,∵三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,∴直线ON平分∠BOC时,旋转的时间是3或21秒,故答案为:3或21.【分析】(1)由题意得出∠MON=90°,得出∠COM=∠MON-∠BOC=90°-60°=30°;(2)设∠BON=α,则∠NOC=60°-α,∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,∠MOA=180°-∠MON-∠BON=180°-90°-α=90°-α,由题意得出60°-α= (90°-α),解得α=54°即可;(3)求出∠BON=30°或∠BON=210°,即可得出答案.4.在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.(1)运动前线段AB的长度为________;(2)当运动时间为多长时,点A和线段BC的中点重合?(3)试探究是否存在运动到某一时刻,线段AB= AC?若存在,求出所有符合条件的点A 表示的数;若不存在,请说明理由.【答案】(1)16(2)解:设当运动时间为x秒长时,点A和线段BC的中点重合,依题意有﹣6+3t=11+t,解得t=故当运动时间为秒长时,点A和线段BC的中点重合(3)解:存在,理由如下:设运动时间为y秒,①当点A在点B的左侧时,依题意有(10+y)﹣(3y﹣6)=2,解得y=7,﹣6+3×7=15;②当点A在线段BC上时,依题意有(3y-6)-(10+y)=解得y=-6+3 =19综上所述,符合条件的点A表示的数为15或19【解析】【分析】(1)根据两点间的距离公式即可求解;(2)先根据中点坐标公式求得B、C的中点,再设当运动时间为x秒长时,点A和线段BC的中点重合,根据路程差的等量关系列出方程求解即可;(3)设运动时间为y秒,分两种情况:①当点A在点B的左侧时,②当点A在线段AC上时,列出方程求解即可.5.我们学过角的平分线的概念类比给出新概念:从一个角的顶点出发把这个角分成1:2的两个角的射线,叫做这个角的三分线显然,一个角的三分线有两条,例如:如图1,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线。

七年级上册数学全册单元试卷培优测试卷

七年级上册数学全册单元试卷培优测试卷

七年级上册数学全册单元试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.(1)填空:解:过点P作EF∥AB,∴∠B+∠BPE=180°∵AB∥CD,EF∥AB∴________(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∠EPD+________=180°∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D 的数量关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.【答案】(1)CD∥EF;∠D(2)解:猜想∠BPD=∠B+∠D,理由:过点P作EP∥AB,∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠BPD=∠B+∠D(3)图③结论:∠D=∠BPD+∠B,理由是:过点P作EP∥AB,∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠BPD=∠B+∠D;图④结论∠B=∠BPD+∠D,理由是:∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠B=∠BPD+∠D【解析】【解答】(1)过点P作EF∥AB,∴∠B+∠BPE=180°,∵AB∥CD,EF∥AB,∴CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD+∠D=180°,∴∠B+∠BPE+∠EPD+∠D=360°,∴∠B+∠BPD+∠D=360°,故答案为:CD∥EF,∠D;【分析】(1)过点P作EF∥AB,根据平行线的性质,可证得∠B+∠BPE=180°,再证明CD∥EF,就可证得∠EPD+∠D=180°,两式相加,就可得出∠BPD与∠B、∠D的数量关系。

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

(1)点 E, , 共线时,如图 ,求
的度数;
(2)点 E, , 不共线时,如图
,设

、 满足的数量关系式,并说明理由.
【答案】 (1)解:如图 中,由翻折得:
,请分别写出 ,
(2)解:如图 ,结论:
.
理由:如图 中,由翻折得:

如图 ,结论:

理由:
,

. 【解析】【分析】(1)根据翻折不变性得: 解决问题.(2)根据翻折不变性得到:
接 写出
之间的关系.
【答案】 (1)解:∵ ∴
∵ ∴

(2)解: 过点 G 作 ∴ ∵ ∴ ∴


这三个角的度数和为一个定值,是 交 BE 于点 H
(3)解:过点 G 作 ∴ ∵ ∴ ∴


交 BE 于点 H

的关系仍成立
(4)不成立| ∠ EGF-∠ DEC+∠ BFG=180° 【解析】【解答】解:(4)过点 G 作
(1)如图①,当点 E 在线段 AC 上时,求证:

(2)在(1)的条件下,判断
这三个角的度数和是否为一个定
值? 如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点 E 在线段 AC 的延长线上时,(2)中的结论是否仍然成立?如果不成
立, 请直接写出
之间的关系.
(4)当点 E 在线段 CA 的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直
故答案为:不成立,∠ EGF-∠ DEC+∠ BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出
;两条直线平行,
同位角相等,得出
,即可证明

七年级数学上册全册单元试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.如图(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段(2)解:,理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),∴2x= =m(m-1),∴x=(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行场比赛【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛.3.如图,已知∠AOB=120°,OC⊥OB,按下列要求利用量角器过点O作出射线OD、OE;(1)在图①中作出射线OD满足∠COD=50°,并直接写出∠AOD的度数是________;(2)在图②中作出射线OD、OE,使得OD平分∠AOC,OE平分∠BOD,并求∠COE的度数;(3)如图③,若射线OD从OA出发以每秒10°的速度绕点O顺时针方向旋转,同时射线OE从OC出发以每秒5°的速度绕点O顺时针方向旋转,设旋转的时间为t秒,在旋转过程中,当OB第一次恰好平分∠DOE时,求出t的值,并作出此时OD、OE的大概位置.【答案】(1)20°或80°(2)解:如图,∵CO⊥BO ∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵OD平分∠AOC ∴∠COD= ∠AOC=15°∴∠BOD=90°+15°=105°, ∵OE是∠BOD的平分线∴∠EOD= ∠BOD=52.5°∴∠COE=52.5°-15°=37.5°.(3)解:如图,根据题意有:30°+5t+(90°-5t)×2=10t 解得:t=14.【解析】【解答】解:(1)有两种情况分别是:①当OD在∠AOB内部时,如图,∵CO⊥BO∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵∠COD=50°,∴∠AOD=50°+30°=80°;.②当OD在∠AOB外部时,如图,∵CO⊥BO∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵∠COD=50°,∴∠AOD=50°-30°=20°【分析】(1)有两种情况分别是:①当OD在∠AOB内部时,如图,根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,最后根据∠AOD=∠AOC+∠COD即可算出答案;②当OD在∠AOB外部时,如图,根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,最后根据∠AOD=∠COD-∠COA即可算出答案;(2)根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,根据角平分线的定义得出∠COD= ∠AOC算出∠COD的度数,根据角的和差,由∠BOD=∠COD+∠BOC算出∠BOD的度数,再根据角平分线的定义得出∠EOD= ∠BOD得出∠EOD的度数,最后根据∠COE=∠EOD- ∠COD算出答案;(3)根据题意∠AOD=10t,∠COE=5t,根据角的和差得出∠BOD=∠AOD-∠AOB=10t-120°,∠BOE=∠COB-∠COE=90°-5t,然后根据角平分线的定义得出∠BOD=∠BOE,从而列出方程,求解即可。

七年级数学上册全册单元试卷培优测试卷

七年级数学上册全册单元试卷培优测试卷

七年级数学上册全册单元试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

七年级上册数学全册单元试卷(培优篇)(Word版 含解析)

七年级上册数学全册单元试卷(培优篇)(Word版 含解析)

七年级上册数学全册单元试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD= ∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD= ∠AOC,∠DOE= (n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).【答案】(1)解:∵∠BOC=40°,OD平分∠AOC,∴∠AOD=∠DOC=70°,∵∠DOE=90°,则∠AOE=90°﹣70°=20°(2)解:设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解得:x= ,∴∠AOE=60﹣x=60﹣ =(3)解:设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解得:x= ,∴∠AOE= ﹣ =【解析】【分析】(1)首先根据平角的定义,由∠AOC=∠AOB-∠BOC算出∠AOC的度数,再根据角平分线的定义由∠AOD=∠DOC =∠AOC算出∠AOD的度数,最后根据∠AOE=∠DOE-∠AOD即可算出答案;(2)可以用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE;(3)用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学全册单元试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

【答案】(1)解:如图:点C、D为线段AB的三等分点,可以组成的线段为:3+2+1=6(条),∵AB=6,点C、D为线段AB的三等分点,∴AC=CD=DB=2,AD=BC=4,∴这些线段长度的和为:2+2+2+4+4+6=20.(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;∴这些线段长度的和为:48+24+12+4=88.【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.3.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.【答案】(1)解:设x秒点P、Q两点相遇根据题意得:2x+3x=20,解得x=4答:4秒后,点P、Q两点相遇。

(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。

4.如图1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB内部的一条射线,且OF平分∠AOE.(1)若∠EOB=30°,则∠COF=________;(2)若∠COF=20°,则∠EOB=________;(3)若∠COF=n°,则∠EOB=________(用含n的式子表示).(4)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由.【答案】(1)20°(2)40°(3)80°-2n°(4)如图所示:∠EOB=80°+2∠COF.证明:设∠COF=n°,则∠AOF=∠AOC-∠COF=30°-n°,又∵OF平分∠AOE,∴∠AOE=2∠AOF=60°-2n°.∴∠EOB=∠AOB-∠AOE=140°-(60°-2n°)=(80+2n)°即∠EOB=80°+2∠COF.【解析】【解答】(1)∵∠AOB=140°,∠EOB=30°,∴∠AOE=∠AOB-∠EOB=140°-30°=110°,∵OF平分∠AOE,∴∠AOF= ∠AOE= ×110°=55°,∴∠COF=∠AOF-∠AOC,=55°-30°,=25°;故答案为:25°;(2)∵∠AOC=30°,∠COF=20°,∴∠AOF=∠AOC+∠COF=30°+20°=50°,∵OF平分∠AOE,∴∠AOE=2∠AOF=2×50°=100°,∴∠EOB=∠AOB-∠AOE=140°-100°=40°;故答案为:40°;(3)∵∠AOC=30°,∠COF=n°,∴∠AOF=∠AOC+∠COF=30°+n°,∵OF平分∠AOE,∴∠AOE=2∠AOF=2(30°+n°)=60°+2n°,∴∠EOB=∠AOB-∠AOE=140°-(60°+2n°)=80°-2n°;故答案为:80°-2n°;【分析】(1)根据∠AOE=∠AOB-∠EOB先求出∠AOE,再根据角平分线的定义求出∠AOF,最后根据∠COF=∠AOF-∠AOC解答即可;(2)根据∠AOF=∠AOC+∠COF先求出∠AOF,再根据角平分线的定义求出∠AOE,最后根据∠EOB=∠AOB-∠AOE解答即可;(3)与(2)的思路相同求解即可;(4)设∠COF=n°,先表示出∠AOF,再根据角平分线的定义求出∠AOE,最后根据∠EOB=∠AOB-∠AOE解答即可.5.已知,∠AOB=∠COD=90°,射线OE,FO分别平分∠AOC和∠BOD.(1)当OB和OC重合时,如图(1),求∠EOF的度数;(2)当∠AOB绕点O逆时针旋转至图(2)的位置(0°<∠BOC<90°)时,求∠EOF的度数.【答案】(1)解:当OB和OC重合时,∠AOD=∠AOC+∠BOD=180°,又∵射线OE,FO分别平分∠AOC和∠BOD,∴∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COF+∠BOF= (∠AOC+∠BOD)= ×180°=90°(2)解:∵∠AOB=∠COD=90°,∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COE+∠BOF﹣∠BOC= ∠AOC+ ∠BOD﹣∠BOC= (∠AOC+∠BOD)﹣∠BOC= (∠AOB+∠BOC+∠COD+∠BOC)﹣∠BOC= (180°+2∠BOC)﹣∠BOC=90°+∠BOC﹣∠BOC=90°【解析】【分析】(1)由角平分线的性质可得∠COE=∠AOC,∠BOF=∠BOD;由平角的定义可得∠AOC+∠BOD=180°,由角的构成可得∠EOF=∠COE+∠BOF,代入计算即可求解;(2)同理可求解。

6.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.7.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、 MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.【答案】(1)∵BC=15,点C对应的数是10,∴c-b=15,∴b=-5,∵c-b=b-a=15,∴a=-20;(2)①∵OQ=10+t,OP=20+2t,∴PQ=(10+t)+( 20+2t)=30+3t;∵OB=5, OQ=10+t,∴BQ=15+t,∵M为BQ的中点,∴BM=7.5+0.5t,∴OM=7.5+0.5t-5=2.5+0.5t.∵OP=20+2t, N为OP的中点,∴ON=10+t,∴MN=OM+ON=12.5+1.5t;②PQ-2MN=5.∵PQ=30+3t,MN= 12.5+1.5t,∴PQ-2MN=(30+3t)-2(12.5+1.5t)=5.【解析】【分析】(1)利用数轴上所表示的数,右边的总比左边的大及数轴上任意两点间的距离等于这两点所表示数的差的绝对值,由BC=15,点C对应的数是10,即可算出点B 所表示的数,即b的值,进而根据 c-b=b-a 即可算出点A所表示的数a的值;(2)① 根据路程等于速度乘以时间,得出PA=2t,CQ=t,所以OQ=OC+CQ=10+t,OP==OA+PA=20+2t, 进而根据PQ=OQ+OP,根据整式加减法法则算出PQ的长;根据BQ=OB+OQ得出 BQ=15+t, genuine线段中点的定义得出 BM=7.5+0.5t, ON=10+t, 根据MN=OM+ON ,由整式加减法法则即可算出答案;②PQ-2MN=5,理由如下:由PQ=30+3t,MN= 12.5+1.5t,故利用整式家家爱你法法则即可算出PQ-2MN=5。

相关文档
最新文档