(小学奥数)接送问题

合集下载

(完整版)奥数.详解行程.发车间隔,接送和扶梯问题.教师版

(完整版)奥数.详解行程.发车间隔,接送和扶梯问题.教师版

发车间隔、接送和扶梯问题一、发车间隔间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡二、接送问题校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

三、扶梯问题1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

小学奥数接送问题知识要点

小学奥数接送问题知识要点

小学奥数接送问题知识要点
奥数是一种既有趣又有挑战性的数学训练方式,因其以解决具体问题为主,深受各界人士的支持。

本文将从接送问题的角度出发,阐述小学奥数中的接送问题的基本要点,帮助读者更好地理解小学奥数接送问题。

首先,接送问题是奥数中一个很重要的方面。

例如,在一个三角形中,有三个点,需要从一个点接送至另一个点,满足一定的条件,使得总距离最短。

在解决接送问题时,必须要了解关于三角形的基本知识,熟悉不同形状三角形的特点,熟悉常用的几何公式,以便正确解决问题,节省时间和精力。

其次,在解决接送问题的过程中,有几个重要的步骤需要注意,首先,要明确接送问题的实际要求。

比如,在三角形接送问题中,各点的位置要知道明确,以便绘制地图,搞清楚总距离;其次,要熟悉常用的几何公式,比如三角形的底边长、高等;最后,要仔细审题,注意特殊情况下的接送要求,比如接送路径中有交叉点等。

此外,解决接送问题还要注意图形排版和考虑求解策略。

比如,绘制图形时,要注意结构是否清晰,以免影响理解;而在求解方法上,则可以把接送问题分解成几个小问题,比较容易找到最优解。

最后,在小学奥数的接送问题解决过程中,我们还应当注意培养孩子们的逻辑思维能力和考虑问题的能力,以及熟悉几何基本知识和运用公式。

如果孩子可以熟练掌握这些技巧,就可以在解决问题的过程中增强自信,积累成就感,从而更好地发展自身的智力水平。

综上所述,小学奥数中的接送问题,重点是明确接送要求,准确定位接送点之间的距离,熟练运用几何公式,以及注重练习逻辑思维和考虑问题的能力。

本文旨在介绍小学奥数中接送问题的基本内容,为读者提供参考,帮助他们更好地理解接送问题。

小学五年级奥数 电梯、发车间隔与接送问题

小学五年级奥数 电梯、发车间隔与接送问题

【例3】(★★★) 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千 米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好 能坐一个班的学生。为了使两班学生在最短时间内到达公园,两地相 距150千米,那么各个班的步行距离是多少?
【例4】(★★★) 甲、乙、丙三个班的学生租用一辆大巴车一起去郊外活动,但大巴车 只能搭载一个班的学生,于是计划先让甲班的学生坐车,乙、丙两班 的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回 头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后 一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速 度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之 间的距离为8千米,求这些学生到达终点一共所花的时间。
甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千 米,乙班步行的速度是每小时3千米,学校有一辆汽车,它的速度是每 小时48千米,这辆汽车恰好能坐一个班的学生。为了使两班学生在最 短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是 多少?
【例7】(★★★★★) 有两个班的小学生要到少年宫参加活动,但只有一辆可乘坐一个班学 生的汽车接送,第一班的学生坐车从学校出发的同时,第二班学生开 始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二 班学生上车并直接开往少年宫,学生步行速度为每小时4个公里,满载 时车速每小时40公里,空载时车速为每小时50公里。问:要使两班学 生同时到达少年宫,第一班学生要步行全程的几分之几?
1
【例5】(★★★★)【例6】( Nhomakorabea★★★)
希望小学有100名学生到离学校33千米的郊区参加采摘活动,学校只有 一辆限乘25人的中型面包车。为了让全体学生尽快地到达目的地。决 定采取步行与乘车相结合的办法。已知学生步行的速度是每小时5千米, 汽车行驶的速度是每小时55千米。请你设计一个方案,请问使全体学 生都能到达目的地的最短时间是多少小时?

小学奥数接送行程例题透析及练习题

小学奥数接送行程例题透析及练习题

小学奥数接送行程例题透析及练习题小学奥数接送行程例题透析及练习题小学奥数接送行程例题透析及练习题例1:某工厂每天早晨都派小汽车接专家上班。

有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)解析:设专家从家中出发后走到M处(如图1)与小汽车相遇。

由于正常接送必须从B→A→B,而现在接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A 只需5分钟。

这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55(分钟)。

•例2:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9-4/9)=864千米。

例3:如果A、B两地相距10千米,一个班有学生45人,由A 地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进…多次往返后,当全体学生到达B地时,马车共行了多少千米?答案:10*(1+2/3*3/4*2+1/3*3/4*2+1/6*3/4*2+1/8*3/4*2)=10*47/16=235/8千米例4:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的`路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9-4/9)=864千米。

小学奥数 典型行程问题 接送问题.学生版

小学奥数  典型行程问题   接送问题.学生版

1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前 分钟到厂。

知识精讲教学目标接送问题【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。

有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。

则李经理乘车的速度是步行速度的倍。

(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例4】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例5】海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

六年级奥数接送问题学生版

六年级奥数接送问题学生版

接送问题教学目标六年级奥数接送问题学生版⒉理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度〈来回不同〉、班级速度〈不同班不同速〉、班数是否变化分类为四种常见题型:〈1〉车速不变-班速不变-班数2个〈最常见〉〈2〉车速不变-班速不变-班数多个〈3〉车速不变-班速变-班数2个〈4〉车速变-班速不变-班数2个三、标准解法:画图+列3个式子⒈总时间=一个队伍坐车的时间+这个队伍步行的时间;⒉班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。

【例 2】李经理的司机每天早上7点30分到达李经理家接他去公司。

有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。

则李经理乘车的速度是步行速度的倍。

〈假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计〉模块二、汽车接送问题——接两个人或多人〈一〉、车速不变、人速不变【例 3】〈难度级别※※※〉A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 〈难度级别 ※※〉甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例 6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例 7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例 8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.〈二〉车速不变、人速变【例 10】〈难度级别※※〉甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

小学奥数接送问题技巧

小学奥数接送问题技巧

小学奥数接送问题技巧
小学奥数接送问题技巧
一、分析问题:
在学习小学奥数接送时,我们必须先分析我们面对的是什么样的问题,它们有
什么特点?有什么提示给我们作答的技巧?它们有什么规律性的归纳?了解了这些,我们就可以抓住答题的重点,知其所以然,用章取义的方法把握问题的答案。

二、正确化解问题:
针对小学奥数接送大体有两种解决方法,一种是发散思维,即从问题里思考出
答案;另一种是归纳思维,即从规律中得到答案。

发散思维是关键思维,可以帮助我们找到问题答案,但有时也会在中途迷失;而归纳思维是系统思维,可以根据已知条件规律性的推理,把握问题的答案。

三、回到试题:
根据以上两种解决思路到试题中,我们可以清晰的看出试题的解题步骤,先以
发散思维为主,由外而内,一步步思考,大步跨越各个细节;再以归纳思维汇总所有知识,从其中提炼出与试题有关的规律,在这个基础上推理拓展,将问题答案一一解析。

四、技巧结论:
总而言之,学习小学奥数接送技巧就是:先分析问题,了解题目的特点,抓住
重点;再由发散思维和归纳思维结合,一步步地解决问题,达到系统性题解。

最后要注意的是,要不断练习,才能熟能生巧,灵活运用这些技巧解题。

小学奥数应用题专题-接送问题练习含有答案解析

小学奥数应用题专题-接送问题练习含有答案解析

小学奥数应用题专题-接送问题练习含有答案解析1、A、B两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。

现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。

已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?【答案】3.3小时【解析】因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。

对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。

现在考虑甲和乙丙步行路程的距离。

甲多步行1千米要用小时,乙多骑车1千米用小时,甲多用小时。

甲步行1千米比乙少用小时,所以甲比乙多步行的路程是乙步行路程的:.这样设乙丙步行路程为3份,甲步行4份。

如下图安排:这样甲骑车行骑车的,步行. 所以时间为:小时。

2、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【答案】8倍【解析】车下午2时从学校出发,如图,在点与劳模相遇,再返回点,共用时40分钟,由此可知,在从到用了分钟,也就是2时20分在点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个需要1小时,也就是从点走到点需要30分钟,而前面说走完需要20分钟,所以走完要10分钟,也就是说.走完,劳模用了80分钟;走完,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的倍.复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点到两端、的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出与的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走米.相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走米,汽车速度是劳模的倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.3、有一只小猴子在深山中发现了一片野香蕉园,它一共摘了根香蕉,然后要走米才能到家,如果它每次最多只能背根香蕉,并且它每走米就要吃掉一根香蕉,那么,它最多可以把多少根香蕉带回家?【答案】54根【解析】首先,猴子背着100根香蕉直接回家,会怎样?在到家的时候,猴子刚好吃完最后一根香蕉,其他200根香蕉白白浪费了!折返,求最值问题,我们需要设计出一个最优方案..猴子必然要折返3次来拿香蕉.我们为猴子想到一个绝妙的主意:在半路上储存一部分香蕉.猴子的路线:这两个储存点与就是猴子放置香蕉的地方,怎么选呢?最好的情况是:(一)当猴子第①③④次回去时,都能在这里拿到足够到野香蕉园的香蕉.(二)当猴子第②④次到达储存点时,都能将之前路上消耗的香蕉补充好(即身上还有100个)(三)点同上.的距离为,路上消耗个香蕉.的距离为,路上消耗个香蕉.猴子第一次到达点,还有个香蕉,回去又要消耗个,只能留下个香蕉.这个香蕉将为猴子补充②③④次路过时的消耗和需求,每次都是个,则.米,猴子将在留下60个香蕉.那么当猴子②次到达时,身上又有了100个香蕉,到⑤时还有个,从⑤回③需要个,可在留下个,用于⑥时补充从④到⑥的消耗个.则:.至此,猴子到家时所剩的香蕉为:.因为猴子每走10米才吃一个香蕉,走到家时最后一个10米才走了,所以还没有吃香蕉,应该还剩下54个香蕉.方法二:小猴子背根香蕉最多走米,那么根香蕉需要有分三次背,就应有两个存储点如上图所示,所以还剩下的香蕉为因为猴子每走10米才吃一个香蕉,走到家时最后一个10米才走了,所以还没有吃香蕉,应该还剩下54个香蕉.4、科学考察队的一辆越野车需要穿越一片全程大于千米的沙漠,但这辆车每次装满汽油最多只能驶千米,队长想出一个方法,在沙漠中设一个储油点,越野车装满油从起点出发,到储油点时从车中取出部分油放进储油点,然后返回出发点,加满油后再开往,到储油点时取出储存的油放在车上,从出发点到达终点.用队长想出的方法,越野车不用其他车帮助就完成了任务,那么,这辆越野车穿越这片沙漠的最大行程是多少千米?【答案】800千米【解析】汽车从起点行驶到点时,首先要消耗掉往返间路程的油,留下的油要保证再次到点时油箱还是满的,所以这辆越野车穿越这片沙漠的最大行程是(千米)5、有5位探险家计划横穿沙漠.他们每人驾驶一辆吉普车,每辆车最多能携带可供一辆车行驶312千米的汽油.显然,5个人不可能共同穿越500千米以上的沙漠.于是,他们计划在保证其余车完全返回出发点的前提下,让一辆车穿越沙漠,当然实现这一计划需要几辆车相互借用汽油.问:穿越沙漠的那辆车最多能穿越多宽的沙漠?【答案】520千米【解析】首先得给这5辆吉普车设计一套行驶方案,而这个方案的核心就在于:其中的4辆车只是燃料供给车,它们的作用就是在保证自己能够返回的前提下,为第5辆车提供足够的燃料.如图所示,5辆车一起从A点出发,设第1辆车到B点时留下足够自己返回A点的汽油,剩下的汽油全部转给其余4辆车.注意,B点的最佳选择应该满足刚好使这4辆车全部加满汽油.剩下的4辆车继续前进,到C点时第2辆车留下够自己返回A点的汽油,剩下的汽油全部转给其余3辆车,使它们刚好加满汽油.剩下的3辆车继续前进……到E点时,第4辆车留下返回A点的汽油,剩下的汽油转给第5辆车.此时,第5辆车是加满汽油的,还能向前行驶312千米.以这种方式,第5辆车能走多远呢?我们来算算.5辆车到达B点时,第1辆车要把另外4辆车消耗掉的汽油补上,加上自己往返AB的汽油,所以应把行驶312千米的汽油分成6份,2份自己往返AB,4份给另外4辆车每辆加1份,刚好使这4辆车都加满汽油.因此AB的长为:(千米).接下来,就把5辆车的问题转化为4辆车的问题.4辆车从B点继续前进,到达C点时,4辆车共消耗掉4份汽油,再加上第2辆车从C经B返回A,所以第2辆车仍然要把汽油分成6等份,3份供自己从B到C,再从C返回A,3份给另外3辆车加满汽油,由此知BC长也是52千米.同样的道理,(千米).所以第5辆车最远能行驶:(千米).6、甲、乙两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水.⑴如果不准将部分食物存放在途中,问其中一人最远可以深人沙漠多少千米(当然要求二人最后返回出发点)?⑵如果可以将部分食物存放于途中以备返回时取用,情况又怎样呢?【答案】⑴320千米⑵360千米【解析】⑴怎么才能让其中一人走得最远呢?只能是另一人在某个地方将自己的部分食物和水(注意必须留足自己返回所需)补给第一个人,让他仍然有24天的食物和水,这样才能走得最远.如图所示,不妨设甲从A点出发,走了x天后到达B点处返回,甲在B点处留足返回时所需x天食物和水后,将其余食物与水全部给乙补足为24天.此时相当于甲的24天的食物和水供甲走2个x天和乙走1个x天,故有(天).所以甲应在第8天从B点处返回A.因为乙在B点已经消耗了8天的食物和水,但同时在B点甲又给乙补充了8天的食物和水,所以此时乙身上仍然携带有24天的食物和水.由于乙也要返回,所以乙最多只能往前走(天)的路程到达C处,就必须返回.所以其中的一人最远只能深入沙漠(千米).(2)如果允许存放部分食物和水于途中,则同上面分析类似,甲走了y天后不仅要补足乙的食物和水,还要存足y天的供乙返回时消耗的食物和水.即甲的24天的食物和水供甲、乙各走2个y天,所以(天).此时的乙不仅补足了24天的食物和水,而且甲还给他预留了返回的食物和水.所以乙就可以带着身上24天的食物和水继续往沙漠深处走12天后再返回,取得甲事先存放的食物和水后,然后再返回出发地.因此,乙共可深入沙漠(千米).7、某沙漠通讯班接到紧急命令,让他们火速将一份情报送过沙漠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接送問題教學目標1、準確畫出接送問題的過程圖——標準:每個量在相同時間所走的路程要分清2、理解運動過程,抓住變化規律3、運用行程中的比例關係進行解題知識精講一、校車問題——行走過程描述隊伍多,校車少,校車來回接送,隊伍不斷步行和坐車,最終同時到達目的地,即到達目的地的最短時間,不要求證明。

二、常見接送問題類型根據校車速度(來回不同)、班級速度(不同班不同速)、班數是否變化分類為四種常見題型:(1)車速不變-班速不變-班數2個(最常見)(2)車速不變-班速不變-班數多個(3)車速不變-班速變-班數2個(4)車速變-班速不變-班數2個三、標準解法:畫圖+列3個式子1、總時間=一個隊伍坐車的時間+這個隊伍步行的時間;2、班車走的總路程;3、一個隊伍步行的時間=班車同時出發後回來接它的時間。

模組一、汽車接送問題——接一個人【例 1】某校和某工廠之間有一條公路,該校下午2時派車去該廠接某勞模來做報告,往返需用1小時.這位勞模在下午1時便離廠步行向學校走來,途中遇到接他的汽車,便立刻上車駛向學校,在下午2時40分到達.問:汽車速度是勞模步行速度的幾倍?【巩固】張工程師每天早上8點準時被司機從家接到廠裏。

一天,張工程師早上7點就出了門,開始步行去廠裏,在路上遇到了接他的汽車,於是,他就上車行完了剩下的路程,到廠時提前20分鐘。

這天,張工程師還是早上7點出門,但15分鐘後他發現有東西沒有帶,於是回家去取,再出門後在路上遇到了接他的汽車,那麼這次他比平常要提前分鐘到廠。

【例 2】李經理的司機每天早上7點30分到達李經理家接他去公司。

有一天李經理7點從家裏出發去公司,路上遇到從公司按時來接他的車,再乘車去公司,結果比平常早到5分鐘。

則李經理乘車的速度是步行速度的倍。

(假設車速、步行速度保持不變,汽車掉頭與上下車時間忽略不計)模組二、汽車接送問題——接兩個人或多人(一)、車速不變、人速不變【例 3】(難度級別※※※)A、B兩個連隊同時分別從兩個營地出發前往一個目的地進行演習,A連有卡車可以裝載正好一個連的人員,為了讓兩個連隊的士兵同時儘快到達目的地,A連士兵坐車出發一定時間後下車讓卡車回去接B連的士兵,兩營的士兵恰好同時到達目的地,已知營地與目的地之間的距離為32千米,士兵行軍速度為8千米/小時,卡車行駛速度為40千米每小時,求兩營士兵到達目的地一共要多少時間?【巩固】甲班與乙班學生同時從學校出發去公園,兩班的步行速度相等都是4千米/小時,學校有一輛汽車,它的速度是每小時48千米,這輛汽車恰好能坐一個班的學生.為了使兩班學生在最短時間內到達公園,設兩地相距150千米,那麼各個班的步行距離是多少?【例 4】(難度級別※※)甲、乙、丙三個班的學生一起去郊外活動,他們租了一輛大巴,但大巴只夠一個班的學生坐,於是他們計畫先讓甲班的學生步行,乙丙兩班的學生步行,甲班學生搭乘大巴一段路後,下車步行,然後大巴車回頭去接乙班學生,並追趕上步行的甲班學生,再回頭載上丙班學生後一直駛到終點,此時甲、乙兩班也恰好趕到終點,已知學生步行的速度為5千米/小時,大巴車的行駛速度為55千米/小時,出發地到終點之間的距離為8千米,求這些學生到達終點一共所花的時間.【例 5】 海澱區勞動技術學校有100名學生到離學校33千米的郊區參加採摘活動,學校只有一輛限乘25人的中型麵包車.為了讓全體學生儘快地到達目的地.決定採取步行與乘車相結合的辦法.已知學生步行的速度是每小時5千米,汽車行駛的速度是每小時55千米.請你設計一個方案,使全體學生都能到達目的地的最短時間是多少小時?1份【例 6】甲、乙兩班學生到離校39千米的博物館參觀,但只有一輛汽車,一次只能乘坐一個班的學生.為了儘快到達博物館,兩個班商定,由甲班先坐車,乙班先步行,同時出發,甲班學生在途中某地下車後步行去博物館,汽車則從某地立即返回去接在途中步行的乙班學生.如果甲、乙兩班學生步行速度相同,汽車速度是他們步行速度的10倍,那麼汽車應在距博物館多少千米處返回接乙班學生,才能使兩班同時到達博物館?A B C D【例 7】甲、乙兩班學生到離校24千米的飛機場參觀,但只有一輛汽車,一次只能乘坐一個班的學生.為了儘快到達飛機場,兩個班商定,由甲班先坐車,乙班先步行,同時出發,甲班學生在途中某地下車後步行去飛機場,汽車則從某地立即返回接在途中步行的乙班學生.如果甲、乙兩班學生步行速度相同,汽車速度是他們步行速度的7倍,那麼汽車應在距飛機場多少千米處返回接乙班學生,才能使兩班同時到達飛機場?【例 8】A、B兩地相距22.4千米.有一支遊行隊伍從A出發,向B勻速前進;當遊行隊伍隊尾離開A時,甲、乙兩人分別從A、B兩地同時出發.乙向A步行;甲騎車先追向隊頭,追上隊頭後又立即騎向隊尾,到達隊尾後再立即追向隊頭,追上隊頭後又立即騎向隊尾……當甲第5次追上隊頭時恰與乙相遇在距B地5.6千米處;當甲第7次追上隊頭時,甲恰好第一次【例 9】A、B兩地相距22.4千米.有一支遊行隊伍從A出發,向B勻速前進;當遊行隊伍隊尾離開A時,甲、乙兩人分別從A、B兩地同時出發.乙向A步行;甲騎車先追向隊頭,追上隊頭後又立即騎向隊尾,到達隊尾後再立即追向隊頭,追上隊頭後又立即騎向隊尾……當甲第5次追上隊頭時恰與乙相遇在距B地5.6千米處;當甲第7次追上隊頭時,甲恰好第一次到達B地,那麼此時乙距A地還有______千米.(二)車速不變、人速變【例 10】(難度級別※※)甲班與乙班學生同時從學校出發去公園,甲班步行的速度是每小時4千米,乙班步行的速度是每小時3千米。

學校有一輛汽車,它的速度是每小時48千米,這輛汽車恰好能坐一個班的學生。

為了使兩班學生在最短時間內到達公園,那麼甲班學生與乙班學生需要步行的距離之比是多少千米?(三)、車速變、人速不變【例 11】甲、乙兩班同學到42千米外的少年宮參加活動,但只有一輛汽車,且一次只能坐一個班的同學,已知學生步行速度相同為5千米/小時,汽車載人速度是45千米/小時,空車速度是75千米/小時.如果要使兩班同學同時到達,且到達時間最短,那麼這個最短時間是多少?【例 12】有兩個班的小學生要到少年宮參加活動,但只有一輛車接送,第一班的學生坐車從學校出發的同時,第二班學生開始步行;車到途中某處,讓第一班學生下車步行,車立刻返回接第二班學生上車並直接開往少年宮,學生步行速度為每小時4公里,載學生時車速每小時40公里,空車時車速為每小時50公里.問:要使兩班學生同時到達少年宮,第一班學生要步行全程的幾分之幾?【例 13】某學校學生計畫乘坐旅行社的大巴前往郊外遊玩,按照計畫,旅行社的大巴準時從車站出發後能在約定時間到達學校,搭載滿學生在預定時間到達目的地,已知學校的位置在車站和目的地之間,大巴車空載的時候的速度為60千米/小時,滿載的時候速度為40千米/小時,由於某種原因大巴車晚出發了56分鐘,學生在約定時間沒有等到大巴車的情況下,步行前往目的地,在途中搭載上趕上來的大巴車,最後比預定時間晚了54分鐘到達目的地,求學生們的步行速度.(四)、車速變、人速變【例 14】(臺灣小學數學競賽選拔賽決賽)甲、乙二人由A地同時出發朝向B地前進,A、B兩地之距離為36千米.甲步行之速度為每小時4千米,乙步行之速度為每小時5千米.現有一輛自行車,甲騎車速度為每小時10千米,乙騎車的速度為每小時8千米.出發時由甲先騎車,乙步行,為了要使兩人都儘快抵達目的地,騎自行車在前面的人可以將自行車留置在途中供後面的人繼續騎.請問他們從出發到最後一人抵達目的地最少需要多少小時?模組三、汽車接送問題——借車趕路問題【例 15】(難度級別※※※※※)三個人同時前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小時;現在還有一輛自行車,但只能一個人騎,已知騎車的速度為10千米每小時。

現先讓其中一人先騎車,到中途某地後放車放下,繼續前進;第二個人到達後騎上再行駛一段後有放下讓最後那人騎行,自己繼續前進,這樣三人同時到達甲地。

問,三人花的時間各為多少?【例 16】(全國“華羅庚金杯”少年數學邀請賽)A、B兩地相距120千米,已知人的步行速度是每小時5千米,摩托車的行駛速度是每小時50千米,摩托車後座可帶一人.問:有三人並配備一輛摩托車從A地到B地最少需要多少小時?(保留—位小數)【例 17】兄弟兩人騎馬進城,全程51千米。

馬每時行12千米,但只能由一個人騎。

哥哥每時步行5千米,弟弟每時步行4千米。

兩人輪換騎馬和步行,騎馬者走過一段距離就下鞍拴馬(下鞍拴馬的時間忽略不計),然後獨自步行。

而步行者到達此地,再上馬前進。

若他們早晨6點動身,則何時能同時到達城裏?【巩固】(難度級別※)甲乙兩人同時從學校出發去距離33千米外的公園,甲步行的速度是每小時4千米,乙步行的速度是每小時3千米。

他們有一輛自行車,它的速度是每小時5千米,這輛車只能載一個人,所以先讓其中一人先騎車到中途,然後把車放下之後繼續前進,等另一個人趕到放車的位置後再騎車趕去,這樣使兩人同時到達公園。

那麼放車的位置距出發點多少千米?【巩固】A、B兩人同時自甲地出發去乙地,A、B步行的速度分別為100米/分、120米/分,兩人騎車的速度都是200米/分,A先騎車到途中某地下車把車放下,立即步行前進;B走到車處,立即騎車前進,當超過A一段路程後,把車放下,立即步行前進,兩人如此繼續交替用車,最後兩人同時到達乙地,那麼A從甲地到乙地的平均速度是米/分.【例 18】A、B兩地相距30千米,甲乙丙三人同時從A到B,而且要求同時到達。

現在有兩輛自行車,但不許帶人,但可以將自行車放在中途某處,後來的人可以接著騎。

已知騎自行車的平均速度為每小時20千米,甲步行的速度是每小時5千米,乙和丙每小時4千米,那麼三人需要多少小時可以同時到達?【例 19】設有甲、乙、丙三人,他們步行的速度相同,騎車的速度也相同,騎車的速度是步行速度的3倍.現甲從A地去B地,乙、丙從B地去A地,雙方同時出發.出發時,甲、乙為步行,丙騎車.途中,當甲、丙相遇時,丙將車給甲騎,自己改為步行,三人仍按各自原有方向繼續前進;當甲、乙相遇時,甲將車給乙騎,自己重又步行,三人仍按各自原有方向繼續前進.問:三人之中誰最先達到自己的目的地?誰最後到達目的地?模組四、汽車接送問題——策略問題【例 20】兩輛同一型號的汽車從同一地點同時出發,沿同一方向同速直線前進,每車最多能帶20桶汽油(連同油箱內的油)。

每桶汽油可以使一輛汽車前進60千米,兩車都必須返回出發地點,兩輛車均可借對方的油,為了使一輛車盡可能地遠離出發點,那麼這輛車最遠可達到離出發點多少千米遠的地方?【巩固】(難度等級※※※※)在一個沙漠地帶,汽車每天行駛200千米,每輛汽車載運可行駛24天的汽油.現有甲、乙兩輛汽車同時從某地出發,並在完成任務後,沿原路返回.為了讓甲車盡可能開出更遠的距離,乙車在行駛一段路程後,僅留下自己返回出發地的汽油,將其他的油給甲車.求甲車所能開行的最遠距離.【例 21】一個旅遊者於是10時15分從旅遊基地乘小艇出發,務必在不遲於當日13時返回。

相关文档
最新文档