人教版高中数学必修2立体几何题型归类总结

合集下载

高中数学必修二立体几何知识点总结

高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ; S=第二章 直线与平面的位置关系2.11 2 三个公理:(符号表示为A ∈LB ∈L => A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 =〉 有且只有一个平面α,使A ∈α、B ∈α、C ∈α.公理(3公理2。

1 异面直线: 不同在任何一个平面内,没有公共点。

2 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

3 4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角.2。

1。

3 - 2。

1。

4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 -— 有无数个公共点(2)直线与平面相交 -- 有且只有一个公共点(3)直线在平面平行 —— 没有公共点L A · α C · B· A · α =>a ∥c指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质21简记为:线线平行,则线面平行。

符号表示: a αb β =〉 a∥αa∥b21符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3简记为:线面平行则线线平行。

高中数学必修2(人教B版)第一章立体几何初步1.1知识点总结含同步练习题及答案

高中数学必修2(人教B版)第一章立体几何初步1.1知识点总结含同步练习题及答案

D.棱柱
如图所示,是一个三棱台 ABC − A ′ B ′ C ′ ,试用两个平面把这个三棱台分成三部分,使每一部 分都是一个三棱锥.
解:如图,过 A ′ ,B ,C 三点作一个平面,再过 A ′ ,B ,C ′ 作一个平面,就把三棱台 ABC − A ′ B ′ C ′ 分成三部分,形成的三个三棱锥分别是 A ′ − ABC,B ′ − A ′ BC ′ , A ′ − BC C ′ .
− − − − − −
− − − − − −
轴截面为正三角形的圆锥叫做等边圆锥.已知某等边圆锥的轴截面面积为 √3 ,求该圆锥的底面 半径、高和母线长. 解:
如图所示,作出等边圆锥的轴截面 P AB,设圆锥的底面半径为 r ,高为 h ,母线长为 l ,则 在轴截面 P AB 中,有 OB = r,P O = h,P B = l,且∠P BO = 60∘ .在 Rt△POB 中, h = √3 r ,l = 2r ,所以
2.空间几何体的结构特征
描述: 多面体 由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻 两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两 个顶点的线段叫做多面体的对角线. 按多面体的面数可把多面体分为四面体、五面体、六面体⋯ ⋯.其中,四个面均为全等的正三 角形的四面体叫做正四面体. 旋转体 由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直 线叫做旋转体的轴. 棱柱的结构特征 一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其 余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的 顶点. 底面是三角形、四边形、五边形⋯ ⋯的棱柱分别叫做三棱柱、四棱柱、五棱柱⋯ ⋯,可以用表 示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱 ABCDEF − A ′ B ′ C ′ D ′ E ′ F ′ 或棱柱 A ′ D .

高中数学必修二立体几何知识点总结(精选.)

高中数学必修二立体几何知识点总结(精选.)

高中数学必修二立体几何知识点总结(精选.)第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表 rl S π=圆锥侧面积 ()l r r S +=π圆锥表 l R r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表 柱体、锥体、台体的体积公式V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥'2211()()33V S S h r rR R h π==++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系12 三个公理:(1符号表示为A ∈LB ∈L => l α⊂A ∈αB ∈α公理1作用:判断直线是否在平面内.(2使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3公理LA · α2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高中数学必修2立体几何常考题型:空间中直线与平面、平面与平面之间的位置关系

高中数学必修2立体几何常考题型:空间中直线与平面、平面与平面之间的位置关系

空间中直线与平面、平面与平面之间的位置关系【知识梳理】1.直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号暗示a⊂αa∩α=A a∥α图形暗示2.两个平面的位置关系位置关系图示暗示法公共点个数两平面平行α∥β没有公共点两平面相交α∩β=l 有无数个公共点(在一条直线上)【常考题型】题型一、直线与平面的位置关系【例1】下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.其中说法正确的个数为()A.0个B.1个C.2个D.3个[解析]对于①,直线a在平面α外包孕两种情况:a∥α或a与α相交,∴a和α纷歧定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a纷歧定平行于α.∴②说法错误.对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行.∴③说法正确.[答案] B【类题通法】空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.【对点训练】1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条与一个平面平行,则另一条必然与这个平面平行.A.0 B.1C.2 D.3解析:选C①正确;②错误,如图1所示,l1∥m,而m⊂α,l1⊂α;③正确,如图2所示,在正方体ABCD-A1B1C1D1中,直线A1C1与直线BD异面,A1C1⊂平面A1B1C1D1,且BD∥平面A1B1C1D1,故③正确;④错误,直线还可能与平面相交.由此可知,①③正确,故选C.题型二、平面与平面的位置关系【例2】(1)平面α内有无数条直线与平面β平行,问α∥β是否正确,为什么?(2)平面α内的所有直线与平面β都平行,问α∥β是否正确,为什么?[解](1)不正确.如图所示,设α∩β=l,则在平面α内与l平行的直线可以有无数条:a1,a2,…,a n,…,它们是一组平行线,这时a1,a2,…,a n,…与平面β都平行(因为a1,a2,…,a n,…与平面β无交点),但此时α与β不平行,α∩β=l.(2)正确.平面α内所有直线与平面β平行,则平面α与平面β无交点,符合平面与平面平行的定义.【类题通法】两个平面的位置关系同平面内两条直线的位置关系类似,可以从有无公共点区分:如果两个平面有一个公共点,那么由公理3可知,这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面互相平行.这样我们可以得出两个平面的位置关系:①平行——没有公共点;②相交——有且只有一条公共直线.若平面α与β平行,记作α∥β;若平面α与β相交,且交线为l,记作α∩β=l.【对点训练】2.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有________组互相平行的面.与其中一个侧面相交的面共有________个.解析:六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共有8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.答案:4 63.如图所示,平面ABC与三棱柱ABC-A1B1C1的其他面之间有什么位置关系?解:∵平面ABC与平面A1B1C1无公共点,∴平面ABC与平面A1B1C1平行.∵平面ABC与平面ABB1A1有公共直线AB,∴平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.【练习反馈】1.M∈l,N∈l,N∉α,M∈α,则有()A.l∥αB.l⊂αC.l与α相交D.以上都有可能解析:选C由符号语言知,直线l上有一点在平面α内,另一点在α外,故l与α相交.2.如图所示,用符号语言可暗示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α解析:选D显然图中α∥β,且l⊂α.3.平面α∥平面β,直线a⊂α,则a与β的位置关系是________.答案:平行4.经过平面外两点可作该平面的平行平面的个数是________.解析:若平面外两点所在直线与该平面相交,则过这两个点不存在平面与已知平面平行;若平面外两点所在直线与该平面平行,则过这两个点存在独一的平面与已知平面平行.答案:0或15.三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a、b都在平面γ内,因此a∥b,又c∥b,所以c∥a.。

(完整word版)高中数学必修二立体几何知识点总结

(完整word版)高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高中数学必修二立体几何笔记整理

高中数学必修二立体几何笔记整理

高中数学必修二立体几何笔记整理一、空间几何体。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类。

- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

- 正棱柱:底面是正多边形的直棱柱。

- 性质。

- 侧棱都平行且相等。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类。

- 按底面多边形的边数分为三棱锥(四面体)、四棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面中心的棱锥。

- 性质。

- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥等截得的棱台分别叫做三棱台、四棱台等。

- 性质。

- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,且对应边互相平行。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫做圆柱。

- 性质。

- 圆柱的轴截面是全等的矩形。

- 圆柱的侧面展开图是矩形。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫做圆锥。

- 性质。

- 圆锥的轴截面是等腰三角形。

- 圆锥的侧面展开图是扇形。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

- 性质。

- 圆台的轴截面是等腰梯形。

- 圆台的侧面展开图是扇环。

7. 球。

- 定义:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

- 性质。

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结学好立几并不难,空间想象是关键。

点线面体是一家,共筑立几百花园。

点在线面用属于,线在面内用包含。

四个公理是基础,推证演算巧周旋。

下面是为大家整理的关于高中立体几何知识点总结,希望对您有所帮助。

欢迎大家阅读参考学习!高中立体几何知识点总结1点在线面用属于,线在面内用包含。

四个公理是基础,推证演算巧周旋。

空间之中两条线,平行相交和异面。

线线平行同方向,等角定理进空间。

判定线和面平行,面中找条平行线。

已知线与面平行,过线作面找交线。

要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。

已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。

判定线和面垂直,线垂面中两交线。

两线垂直同一面,相互平行共伸展。

两面垂直同一线,一面平行另一面。

要让面与面垂直,面过另面一垂线。

面面垂直成直角,线面垂直记心间。

一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。

空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。

引进向量新工具,计算证明开新篇。

空间建系求坐标,向量运算更简便。

知识创新无止境,学问思辨勇攀登。

多面体和旋转体,上述内容的延续。

扮演载体新角色,位置关系全在里。

算面积来求体积,基本公式是依据。

规则形体用公式,非规形体靠化归。

展开分割好办法,化难为易新天地。

高中立体几何知识点总结2三角函数。

注意归一公式、诱导公式的正确性数列题。

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

高中数学必修2立体几何专题

高中数学必修2立体几何专题

专题一浅析中心投影与平行投影中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影.投影定义特征分类光由一点向外散射形成投影线交于一点中心投影的投影在一束平行光线照射下投影线互相平行平行投影正投影和斜投影形成的投影例1 如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等?解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影.方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P 为光源位置.点评:这是一道平行投影和中心投影相结合的题目,答案不唯一. 连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等.例2 如图所示,点O 为正方体ABCD -A′B′C′D′的中心,点E 为面B′BCC′的中心,点F 为B′C′的中点,则空间四边形D′OEF 在该正方体的面上的正投影可能是________( 填出所有可能的序号).1解析:在下底面ABCD 上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①.答案:①②③点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.专题二不规则几何体体积的求法当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考.一、等积转换法当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积.例1 在边长为 a 的正方体ABCD—A1B1C1D1 中,M,N, P分别是棱A1B1,A1D1,A1A 上的点,且满足A1M = 12A1B1,A1N=2 ND1,A1P= 34A1A(如图1),试求三棱锥A1—MNP 的体积.分析:若用公式V= 11—MNP 的体积,则3 Sh 直接计算三棱锥 A需要求出△MNP 的面积和该三棱锥的高,这两者显然都不易求出,但若将三棱锥A1—MNP 的顶点和底面转换一下,变为求三棱锥P—A1MN 的体积,便能很容易的求出其高和底面△A1MN 的面积,从而代入公式求解.解:V A1-MNP =V A1—MNP = 13·S△A1MN ·h =131×·A1M1·A1N·A1P=2131××21 2a·2 3a·34a=1243.a评注:转换顶点和底面是求三棱锥体积的一种常用方法,也是以后学习求点到平面距离的一个理论依据.二、分割法分割法也是体积计算中的一种常用方法,在求一些不规则的几何体的体积以及求两个几何体的体积之比时经常要用到分割法.例2 如图2,在三棱柱ABC—A1B1C1 中,E, F 分别为AB, AC 的中点,平面EB1C1F将三棱柱分成两部分,求这两部分的体积之比.分析:截面EB1C1F 将三棱柱分成两部分,一部分是三棱台AEF—A1B1C1;另一部分是一个不规则几何体,其体积可以利用棱柱的体积减去棱台的体积求得.解:设棱柱的底面积为S,高为h,其体积V=Sh.2则三角形 AEF 的面积为1 4S .1 3 由于 V AEF-A1B 1C 1= s ·h ·( 4 s +S+ 2 )= 7 12Sh,则剩余不规则几何体的体积为 V ′=V - V AEF-A 1B 1C 1=Sh- 7 12 Sh = 5 12 Sh , 所以两部分的体积之比为V AEF- A 1B 1C 1:V ′=7:5.评注: 在求一个几何体被分成的两部分体积之比时, 若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积,再进行计算.三、补形法某些空间几何体是某一个几何体的一部分, 在解题时, 把这个几何体通过“补形”补成 完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略 —— 补形法.常见的补形法有对称补形、联系补形与还原补形 . 对于还原补形,主要涉及台体中“还台为锥”问题.例 3 已知某几何体的三视图如图所示,则该几何体的体积为______.分析: 由三视图画出直观图,补一个大小相同的几何体,构成一个圆柱即可求其体积 .解: 由三视图可知,此几何体是底面半径为 1,高为 4 的圆柱被从母线的中点处截去了圆柱的1 32,根据对称性,可补全此圆柱如图,故体积 V =×4=3π.44× π× 1评注:“对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称 关系对空间想象能力的提高很有帮助.专题三处理球的内切与外接问题与球有关的组合体问题, 一种是内切, 一种是外接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修2立体几何题型归类总结 1 / 151 / 15 立体几何题型归类总结 一、考点分析 基本图形 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

①底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★ ②四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面 直平行六面体 底面为矩形 长方体 底面为正方形 正四棱柱 侧棱及底面边长相等 正方体

2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.球 球的性质: ①球心及截面圆心的连线垂直于截面;

★②22rRd(其中,球心到截面的距离为d、球的半径为R、截面的半径为r) ★球及多面体的组合体:球及正四面体,球及长方体,球及正方体等的内接及外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3SRVR球球(其中R为球的半径)

顶点侧面斜高高

侧棱

底面OCDAB

H

Sl

侧棱

侧面

底面

E'B'D'

C'A'

F'

BDEAFC

rdR球面轴球心

半径

AO

O1B

A'C'D'

B'

CDO

AB

OC'A'

Ac人教版高中数学必修2立体几何题型归类总结 2 / 152 / 15 平行垂直基础知识网络★★★

异面直线所成的角,线面角,二面角的求法★★★ 1.求异面直线所成的角0,90: 解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条及其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;

2求直线及平面所成的角0,90:关键找“两足”:垂足及斜足 解题步骤:一找:找(作)出斜线及其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线及平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。

3求二面角的平面角0, 解题步骤: 一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证:证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。

平行关系 平面几何知识 线线平行 线面平行 面面平行 垂直关系 平面几何知识 线线垂直

线面垂直 面面垂直 判定 性质 判定推论 性质 判定 判定 性质 判定 面面垂直定义

1.,//abab 2.,//aabb 3.,//aa 4.//,aa 5.//,

平行与垂直关系可互相转化 人教版高中数学必修2立体几何题型归类总结

3 / 153 / 15 俯视图 二、典型例题 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm)如图4所示,则此几何体的体积是 . 第4题 第5题 5.如图5是一个几何体的三视图,若它的体积是33,则a . 2 2 侧(左)视图 2 2 2 正(主)视图

3 正视图

俯视图 1 1

2 左视图

a 人教版高中数学必修2立体几何题型归类总结

4 / 154 / 15 6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 .

7.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m),则该几何体的体积为_________m3。

第7题 第8题 9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.

图9

2020正视图 20侧视图

10 10 20俯视图

223

2

21

俯视图 正(主)视图 侧(左)视图 2 3

2

2 人教版高中数学必修2立体几何题型归类总结

5 / 155 / 15 10.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为_____________.

图10 11. 如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_____________.

图11 图12 图13 12. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.

13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图及左视图是边长为2的正三角形,则其表面积是_____________. 14.如果一个几何体的三视图如图14所示(单位长度: cm), 则此几何体的表面积是_____________.

图14 15.一个棱锥的三视图如图图9-3-7,则该棱锥的全面积(单位:2cm)_____________.

正视图 左视图 俯视图 图15

正视图 俯视图 人教版高中数学必修2立体几何题型归类总结

6 / 156 / 15 俯视图侧视图正视图

33

4

16.图16是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_____________. 图16 图17 17.如图17,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为______________. 18.若一个底面为正三角形、侧棱及底面垂直的棱柱的三视图如图9-3-14所示,则这个棱柱的体积为______________.

图18 考点二 体积、表面积、距离、角 注:1-6体积表面积 7-11 异面直线所成角 12-15线面角 1. 将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了___________. 2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积及此正四面体的表面积的比值为___________.

3.设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为_______________.

4.正棱锥的高和底面边长都缩小原来的21,则它的体积是原来的______________. 5.已知圆锥的母线长为8,底面周长为6π,则它的体积是 . 6.平行六面体1AC的体积为30,则四面体11ABCD的体积等于 .

7.如图7,在正方体1111ABCDABCD中,,EF分别是11AD,11CD中点,求异面直线1AB及EF所成角的角______________. 8. 如图8所示,已知正四棱锥S—ABCD侧棱长为2,底面边长为3,E是SA的中点,则异面直线BE及SC所成角的大小为_____________.

俯视图 正(主)视图 侧(左)视图 2 3 2 2 人教版高中数学必修2立体几何题型归类总结 7 / 157 / 15 第8题 第7题 9.正方体''''ABCDABCD中,异面直线'CD和'BC所成的角的度数是_________________.

10.如图9-1-3,在长方体1111ABCDABCD中,已知13,ABBCBCCC,则异面直线1AA及1BC所成的角是_________,异面直线AB及1CD所成的角的度数是______________

图13 11. 如图9-1-4,在空间四边形ABCD中,ACBD ACBD,,EF分别是AB、CD的中点,则EF 及AC所成角的大小为_____________. 12. 正方体1AC中,1AB及平面11ABCD所成的角为 .

13.如图13在正三棱柱111ABCABC中,1ABAA,则直线1CB及平面11AABB所成角的正弦值为_______________.

相关文档
最新文档