立体几何(2)新高考多项选择题及答案

合集下载

高考数学高考数学压轴题立体几何多选题分类精编及答案

高考数学高考数学压轴题立体几何多选题分类精编及答案

高考数学高考数学压轴题立体几何多选题分类精编及答案一、立体几何多选题1. 如图,在直三棱柱ABC-A}B}C}中,AC = BC = AA i=2, ZACB = 90°, D, E, F分别为AC, AB的中点.则下列结论正确的是()B. B、CJ /平而DEFD.点d到平面DFF的距离为比C. EF与4G所成的角为90。

2【答案】BCD【分析】利用异而直线的位這关系,线而平行的判泄方法,利用空间直角坐标系异而直线所成角和点到面的距离,对各个选项逐一判断.【详解】对选项A,由图知4C|U平而ACC.A. , EFD平面ACQA^E,且E AC r由异面直线的建义可知AC】与EF异面,故A错误: 对于选项B,在直三棱柱ABC — AQG中,BG HBC.•.•D,F分别是AC, AB的中点,• •FDIIBC, :・B\C\ IIFD.又••• BQ] (Z 平面DEF, DF u 平而DEF, ・・BG //平而DEF.故B正确:对于选项C,由题意,建立如图所示的空间直角坐标系,则C(0,0, 0), A(2,0t 0), 5(0,2, 0),人(2,0, 2),坊(0,2, 2), C 】(0,0, 2),D(l,o, 0), E(2,0, 1), F(1,1, 0)..\EF = (-1,1, T), AC ;=(—2,0, 2).•.•EFAC ; = 2+0—2 = 0, :.EF 丄 AC ;, 丄 A©.•.•EF 与AC ;所成的角为90。

,故c 正确:对于选项D,设向量匝= (x,y, Z)是平而DEF 的一个法向疑.・••万E = (ho ・ 1) , DF = (0,l, 0),取 X = 1 ♦则 z=—1 ‘ ・••帀=(h 0, —1),设点耳到平而DEF 的距离为d ・二点d 到平而DEF 的距离为空,故D 正确.2故选:BCD【点睛】本题主要考查异而直线的位置关系,线而平行的判定,异而直线所成角以及点到而的距 离,还考查思维能力及综合分析能力,属难题.2. 已知球O 为正方体ABCD-AgD 、的内切球,平而A {C }B 截球O 的而积为24兀, 下列命题中正确的有()A. 异而直线AC 与所成的角为60。

新高考数学的立体几何多选题含解析

新高考数学的立体几何多选题含解析

新高考数学的立体几何多选题含解析一、立体几何多选题1.如图,在边长为4的正方形ABCD 中,点E 、F 分别在边AB 、BC 上(不含端点)且BE BF =,将AED ,DCF 分别沿DE ,DF 折起,使A 、C 两点重合于点1A ,则下列结论正确的有( ).A .1A D EF ⊥B .当12BE BF BC ==时,三棱锥1A F DE -6π C .当14BE BF BC ==时,三棱锥1A F DE -217 D .当14BE BF BC ==时,点1A 到平面DEF 的距离为177【答案】ACD 【分析】A 选项:证明1A D ⊥面1A EF ,得1A D EF ⊥;B 选项:当122BE BF BC ===时,三棱锥1A EFD -的三条侧棱111,,A D A E A F 两两相互垂直,利用分隔补形法求三棱锥1A EFD -的外接球体积; C 选项:利用等体积法求三棱锥1A EFD -的体积; D 选项:利用等体积法求出点1A 到平面DEF 的距离. 【详解】 A 选项:正方形ABCD,AD AE DC FC ∴⊥⊥由折叠的性质可知:1111,A D A E A D A F ⊥⊥ 又111A E A F A ⋂=1A D ∴⊥面1A EF又EF ⊂面1A EF ,1A D EF ∴⊥;故A 正确.B 选项:当122BE BF BC ===时,112,22A E A F EF ===在1A EF 中,22211A E A F EF +=,则11A E A F ⊥由A 选项可知,1111,A D A E A D A F ⊥⊥∴三棱锥1A EFD -的三条侧棱111,,A D A E A F 两两相互垂直,把三棱锥1A EFD -=, 三棱锥1A EFD -,体积为334433R ππ==,故B 错误C 选项:当114BE BF BC ===时,113,A E A F EF ===在1A EF中,22222211111338cos 22339A E A F EF EA F A E A F+-+-∠===⋅⨯⨯,1sin 9EA F ∠=则111111sin 332292A EFSA E A F EA F =⋅⋅∠=⨯⨯⨯=111111433A EFD D A EF A EF V V SA D --∴==⋅⋅==故C 正确;D 选项:设点1A 到平面EFD 的距离为h ,则 在EFD △中,2222225524cos 225525DE DF EF EDF DE DF +-+-∠===⋅⨯⨯, 7sin 25EDF ∠=则1177sin 5522252EFDSDE DF EDF =⋅⋅∠=⨯⨯⨯=11173323A EFD DEFV Sh h -∴=⋅⋅=⨯⨯=即7h =故D 正确; 故选:ACD 【点睛】方法点睛:求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.2.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A.若1A P P 点有且只有一个B .若12A P =,则点P 的轨迹是一段圆弧C .若1//A P 平面11BD C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 603A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.3.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 3C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.4.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为22D .设正方体棱长为1,则过点E ,F ,A 的平面截正方体所得的截面面积最大为5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为62,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.5.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确;若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAMθ∠=∠=,84ππθ<<,则22DAGπθ∠=-,tantan22DG OGAGπθθ==⎛⎫-⎪⎝⎭,化简得到2tan tan21θθ=,解得5tan5θ=,验证满足,故D正确;故选:ACD.【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.6.如图四棱锥P ABCD-,平面PAD⊥平面ABCD,侧面PAD是边长为26的正三角形,底面ABCD为矩形,23CD=,点Q是PD的中点,则下列结论正确的是()A.CQ⊥平面PADB.PC与平面AQC22C.三棱锥B ACQ-的体积为62D.四棱锥Q ABCD-外接球的内接正四面体的表面积为3【答案】BD【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以Q , 平面PAD 的一个法向量为(0,1,0)m =,6(QC =,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则36022260n AQ x zn AC⎧⋅=+=⎪⎨⎪⋅=+=⎩, 令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos 3θ=,所以B 正确; 三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V SOP --==⋅1112326326322=⨯⨯⨯⨯⨯=, 所以C 不正确;设四棱锥Q ABCD -外接球的球心为(0,3,)M a ,则MQ MD =,所以()()()2222226323632a a ⎛⎫⎛⎫++-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即(0,3,0)M 为矩形ABCD 对角线的交点, 所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以22236x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为2342434x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.7.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴=== N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点,点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.8.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°] D .直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63【答案】ABD 【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P﹣A1C1D的体积为定值;在C中,异面直线AP与A1D所成角的取值范用是[60°,90°];在D 中,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线C1P与平面A1C1D 所成角的正弦值的最大值为63.【详解】解:在A中,∵A1C1⊥B1D1,A1C1⊥BB1,B1D1∩BB1=B1,∴A1C1⊥平面BB1D1,∴A1C1⊥BD1,同理,DC1⊥BD1,∵A1C1∩DC1=C1,∴直线BD1⊥平面A1C1D,故A正确;在B中,∵A1D∥B1C,A1D⊂平面A1C1D,B1C⊄平面A1C1D,∴B1C∥平面A1C1D,∵点P在线段B1C上运动,∴P到平面A1C1D的距离为定值,又△A1C1D的面积是定值,∴三棱锥P﹣A1C1D的体积为定值,故B正确;在C中,异面直线AP与A1D所成角的取值范用是[60°,90°],故C错误;在D中,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,P(a,1,a),则D(0,0,0),A1(1,0,1),C1(0,1,1),1DA=(1,0,1),1DC=(0,1,1),1C P=(a,0,a﹣1),设平面A1C1D的法向量(),,n x y z=,则11n DA x zn DC y z⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x=1,得1,1,1n,∴直线C1P与平面A1C1D所成角的正弦值为:11||||||C P nC P n⋅⋅=22(1)3a a+-⋅=21132()22a⋅-+,∴当a=12时,直线C1P与平面A1C1D所成角的正弦值的最大值为6,故D正确.故选:ABD.【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解; (2)、用空间向量坐标公式求解.9.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D D D .四边形1BFD E 面积的最小值为62【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 6【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为162322⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.10.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则( )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD 【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾, 所以A 错;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =,其表面积为248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN ==,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。

高考数学的立体几何多选题含答案

高考数学的立体几何多选题含答案

高考数学的立体几何多选题含答案一、立体几何多选题1.已知球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的面积为24π,下列命题中正确的有( )A .异面直线AC 与1BC 所成的角为60°B .1BD ⊥平面11AC B C .球O 的表面积为36πD .三棱锥111B AC B -的体积为288 【答案】AD 【分析】连接11A C ,1A B ,通过平移将AC 与1BC 所成角转化为11A C 与1BC 所成角可判断A ;通过反证法证明B ;由已知平面11A C B 截球O 的面积为24π求出正方体棱长,进而求出内切球的表面积可判断C ;利用等体积法可求得三棱锥111B AC B -的体积可判断D. 【详解】对于A ,连接11A C ,1A B ,由正方体1111ABCD A B C D -,可知11//A C AC ,11AC B ∴∠为异面直线AC 与1BC 所成的角,设正方体边长为a,则1111AC A B BC ==,由等边三角形知1160A C B ∠=,即异面直线AC 与1BC 所成的角为60,故A 正确; 对于B ,假设1BD ⊥平面11A C B ,又1A B ⊂平面11A C B ,则11BD B A ⊥,设正方体边长为a ,则11A D a =,1A B =,1BD =,由勾股定理知111A D B A ⊥,与假设矛盾,假设不成立,故1BD 不垂直于平面11A C B ,故B 错误; 对于C ,设正方体边长为a,则11AC =,内切球半径为2a,设内切球的球心O 在面11A C B 上的投影为O ',由等边三角形性质可知O '为等边11A C B △的重心,则11123233O A AC a ='=⨯=,又12OA a =,∴球心O 到面11A C B 的距离6a ==,又球心与截面圆心的连线垂直于截面,∴=,又截面圆的面积2246S a ππ⎛⎫= ⎪ ⎪⎝⎭=,解得12a =,则内切球半径为6,内切球表面积214644S ππ==⨯,故C 错误;对于D ,由等体积法知111111111111212122812383B A C B B A C B A C B V V S a --==⨯⨯=⨯⨯=,故D 正确; 故选:AD【点睛】关键点点睛:本题考查了正方体和它的内切球的几何结构特征,关键是想象出截面图的形状,从而求出正方体的棱长,进而求出内切球的表面积及三棱锥的体积,考查了空间想象能力,数形结合的思想,属于较难题.2.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是43π 【答案】BD【分析】对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三线,,NE NF NC 共面共点,不可能;对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值),由余弦定理可得NC 是定值.对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是43π. 【详解】对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F , 则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥, 如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点, 不可能,故A 选项不正确;对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+ 故CN 为定值,故B 选项正确.对于C 选项:如图,取AM 中点O ,连接1,B O DO , 由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,体积是43π.故D 选项正确. 故答案为:BD . 【点睛】本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.3.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,PA ===同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为R '==,所以,截面圆的半径()()222226252r R d '=-≥-=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.4.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.5.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为球心,6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否. 【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC ,同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确.因为在直角三角1BA C 中,1A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥, 因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒, 故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE ,则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.M ,N 分别为菱形ABCD 的边BC ,CD 的中点,将菱形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,下列结论正确的有( )A .MN ∥平面ABDB .异面直线AC 与MN 所成的角为定值C .在二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径先变小后变大D .若存在某个位置,使得直线AD 与直线BC 垂直,则ABC ∠的取值范围是0,2π⎛⎫⎪⎝⎭【答案】ABD 【分析】利用线面平行的判定即可判断选项A ;利用线面垂直的判定求出异面直线AC 与MN 所成的角即可判断选项B ;借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,利用空间想象能力进行分析即可判断选项C;过A 作AH BC ⊥,垂足为H ,分ABC ∠为锐角、直角、钝角三种情况分别进行分析判断即可判断选项D. 【详解】对于选项A:因为M ,N 分别为菱形ABCD 的边BC ,CD 的中点,所以MN 为BCD ∆的中位线,所以//MN BD ,因为MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故选项A 正确;对于选项B :取AC 的中点O ,连接,DO BO ,作图如下:则,AC DO AC BO ⊥⊥,BO DO O =,由线面垂直的判定知,AC ⊥平面BOD ,所以AC BD ⊥,因为//MN BD ,所以AC MN ⊥,即异面直线AC 与MN 所成的角为定值90,故选项B 正确;对于选项C:借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,球心离开平面ABC ,但是球心在底面的投影仍然是ABC ∆外接圆圆心,故二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径不可能先变小后变大, 故选项C 错误;对于选项D:过A 作AH BC ⊥,垂足为H ,若ABC ∠为锐角,H 在线段BC 上;若ABC ∠为直角,H 与B 重合;若ABC ∠为钝角,H 在线段BC 的延长线上;若存在某个位置,使得直线AD 与直线BC 垂直,因为AH BC ⊥,所以CB ⊥平面AHD ,由线面垂直的性质知,CB HD ⊥,若ABC ∠为直角,H 与B 重合,所以CB BD ⊥,在CBD ∆中,因为CB CD =, 所以CB BD ⊥不可能成立,即ABC ∠为直角不可能成立;若ABC ∠为钝角,H 在线段BC 的延长线上,则在原平面图菱形ABCD 中,DCB ∠为锐角,由于立体图中DB DO OB <+,所以立体图中DCB ∠一定比原平面图中更小,,所以DCB ∠为锐角,CB HD ⊥,故点H 在线段BC 与H 在线段BC 的延长线上矛盾,因此ABC ∠不可能为钝角;综上可知,ABC ∠的取值范围是0,2π⎛⎫⎪⎝⎭.故选项D 正确; 故选:ABD 【点睛】本题考查异面垂直、线面平行与线面垂直的判定、多面体的外接球问题;考查空间想象能力和逻辑推理能力;借助极限状态和反证法思想的运用是求解本题的关键;属于综合型强、难度大型试题.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =∈,,则12PD =,即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=,可判断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =,,11DD =,则12PD P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.10.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D D D .四边形1BFD E 面积的最小值为62【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 6【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为162322=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.。

高考立体几何20-22(附答案)

高考立体几何20-22(附答案)

高考立体几何20-22一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12√3B.28√2C.563D.28√2 3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.2.如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足MN⊥OP的是()A.B.C.D.三、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

3.正三棱台高为1,上下底边长分别为3√3和4√3,所有顶点在同一球面上,则球的表面积是()A.100πB.128πC.144πD.192π四、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。

4.如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,记三棱锥E−ACD,F−ABC,F−ACE的体积分别为V1,V2,V3,则()A.V3=2V2B.V3=2V1C.V3=V1+V2D.2V3=3V1五、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

5.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.F C.G D.H的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,6.已知△ABC是面积为9√34则O到平面ABC的距离为()A.√3B.32C.1D.√32六、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.7.如图,PO是三棱锥P−ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)求证:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C−AE−B的正弦值.七、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.8.在四棱锥Q−ABCD中,底面ABCD是正方形,若AD=2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.答案解析部分1.【答案】D【解析】【解答】解:作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高,下底面面积S1=16,上底面面积S2=4,所以棱台的体积为V=13ℎ(S1+√S1S2+S2)=13×√2×(16+√16×4+4)=283√2故答案为:D【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 2.【答案】B,C【解析】【解答】解:对于A,如图(1)所示,连接AC,则MN//AC,故△POC(或其补角)为异面直线OP,MN所成的角.在直角三角形OPC中,OC=√2,CP=1,故tan∠POC=1√2=√22故MN△OP不成立,故A错误;对于B,如图(2)所示,取NT的中点Q,连接PQ,OQ,则OQ△NT,PQ△MN,由正方体SBCM-NADT可得SN△平面ANDT,而OQ⊂平面ANDT,故SN△OQ,而SN∩MN=N,故OQ△平面SNTM,又MN⊂平面SNTM,则OQ△MN,而OQ∩PQ=O,所以MN△平面OPQ,而OP⊂平面OPQ,故MN△OP.故B正确;对于C,如图(3)所示,连接BD,则BD//MN,由B的判断可得OP△BD,故OP△MN,故C正确;对于D,如图(4)所示,取AD的中点Q,AB的中点K,连接AC,PQ,OQ,PK,OK,则AC//MN,因为DP=PC,故PQ//AC,则PQ//MN,所以△QPO或其补角为异面直线PO,MN所成的角,因为正方体的棱长为2,故PQ=12AC=√2,OQ=√AO2+AQ2=√3,PO=√PK2+OK2=√5,则有QO2<PQ2+OP2故△QPO不可能是直角,故MN,OP不可能垂直故D错误.故答案为:BC【分析】根据线面垂直的判定定理可得BC的正误,平移直线MN构造所考虑的线线角后可判断AD 的正误.3.【答案】A【解析】【解答】设正三棱台上下底面所在圆面的半径r1,r2,所以2r1=3√3sin60∘,2r2=4√3sin60∘,即r1=3,r2=4,设球心到上下底面的距离分别为d1,d2,球的半径为R,所以d1=√R2−9,d2=√R2−16,故|d1−d2|=1或d1+d2=1,即|√R2−9−√R2−16|= 1或√R2−9+√R2−16=1,解得R2=25,所以球的表面积为S=4πR2=100π.故答案为:A【分析】根据题意可求出正三棱台上下底面所在圆面的半径r1,r2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而求出球的表面积.4.【答案】C,D【解析】【解答】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,A、B不符合题意;C、D符合题意.故答案为:CD【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3= V A−EFM+V C−EFM计算出V3,依次判断选项即可.5.【答案】A【解析】【解答】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E 故答案为:A【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.6.【答案】C【解析】【解答】设球O 的半径为R ,则 4πR 2=16π ,解得: R =2 .设 △ABC 外接圆半径为 r ,边长为 a , ∵△ABC 是面积为 9√34的等边三角形,∴12a 2×√32=9√34 ,解得: a =3 , ∴r =23×√a 2−a 24=23×√9−94=√3 ,∴ 球心 O 到平面 ABC 的距离 d =√R 2−r 2=√4−3=1 . 故答案为:C.【分析】根据球O 的表面积和 △ABC 的面积可求得球O 的半径R 和 △ABC 外接圆半径r ,由球的性质可知所求距离 d =√R 2−r 2 .7.【答案】(1)证明:连接 BO 并延长交 AC 于点 D ,连接 OA 、 PD ,因为 PO 是三棱锥 P −ABC 的高,所以 PO ⊥ 平面 ABC , AO ,BO ⊂ 平面 ABC , 所以 PO ⊥AO 、 PO ⊥BO ,又 PA =PB ,所以 △POA ≅△POB ,即 OA =OB ,所以 ∠OAB =∠OBA ,又 AB ⊥AC ,即 ∠BAC =90° ,所以 ∠OAB +∠OAD =90° , ∠OBA +∠ODA =90° , 所以 ∠ODA =∠OAD所以 AO =DO ,即 AO =DO =OB ,所以 O 为 BD 的中点,又 E 为 PB 的中点,所以 OE//PD ,又 OE ⊄ 平面 PAC , PD ⊂ 平面 PAC , 所以 OE// 平面 PAC(2)解:过点 A 作 AF‖OP ,以AB 为 x 轴,AC 为 y 轴,AF 为z 轴建立如图所示的空问直角坐标系.因为 PO =3,PA =5 ,由(1) OA =OB =4 ,义 ∠ABO =∠CBO =30° ,所以, AB =4√3 ,所以 P(2√3,2,3),B(4√3,0,0) ,A(0,0,0) , E(3√3,1,32) ,设 AC =a ,则 C(0,a ,0) ,平面AEB 的法向量设为 n1̅̅̅=(x ,y ,z),AB ⃗⃗⃗⃗⃗⃗ =(4√3,0,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32){AB ⃗⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 1=0,所以 {4√3x =03√3x +y +32z =0,所以 x =0 ,设 z =−2 ,则 y =3 ,所以 n ⃗ 1=(0,3,−2) : 平面AEC 的法向量设为 n 2⃗⃗⃗⃗ =(x ,y ,z),AC ⃗⃗⃗⃗⃗ =(0,a ,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32){AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2=0 ,所以 {ay =03√3x +y +32z =0 ,所以 y =0 ,设 x =√3 ,则 z =−6 ,阦以 n 2⃗⃗⃗⃗ =(√3,0,−6) : 所以 cos〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=n1⃗⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ 2|=√13×√39=13√3=4√313二面角 C −AE −B 的平面角为 θ ,则 sinθ=√1−cos 2θ=1113,所以二面角 C −AE −B 的正弦值为 1113。

高考数学试题-立体几何选择填空含答案解析

高考数学试题-立体几何选择填空含答案解析

选填训练4答案一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 如图,在四面体O −ABC 中,G 是底面△ABC 的重心,且OG ⃗⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,则log 3|xyz|等于 ( )A. −3B. −1C. 1D. 3【答案】A 解:连结AG ,OG ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AG ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=OA ⃗⃗⃗⃗⃗ +13(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=13OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,∴x =y =z =13, 则log 3|xyz|=log 3127=−3.2. 在△ABC 中A =30°,AC =4,BC =a ,若△ABC 仅一个解时,则a 的取值范围是( )A. a ≥4B. a =2C. a ≥4或a =2D. 无法确定【答案】C解:当a =ACsin30°=4×12=2时,以C 为圆心,以a =2为半径画弧,与射线AD 只有唯一交点, 此时符合条件的三角形只有一个,当a ⩾4时,以C 为圆心以a 为半径画弧时,在从垂足到A 点之间得不到交点,交点只能在垂足外侧,三角形也是唯一的, ∴a ≥4或a =2,故选C .3. 设两个向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 满足|e 1⃗⃗⃗ |=2,|e 2⃗⃗⃗ |=1,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 之间的夹角为60°,若向量2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ 与向量e 1⃗⃗⃗ +t e 2⃗⃗⃗ 的夹角为钝角,则实数t 的取值范围是( )A. (−7,−12)B. (−7,−√142)∪(−√142,−12) C. (−7,−√142)D. (−√142,−12)【答案】B解:由题意知(2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ )·(e 1⃗⃗⃗ +t e 2⃗⃗⃗ )<0,即2t 2+15t +7<0,解得−7<t <−12.又由2t ·t −7≠0,得t ≠±√142,∴t ∈(−7,−√142)∪(−√142,−12). 故选B .4. 已知向量a ⃗ =(1,2),a ⃗ ·b ⃗ =10,|a ⃗ +b ⃗ |=5√2,b ⃗ 方向上的单位向量为e⃗ ,则向量a ⃗ 在 向量b ⃗ 上的投影向量为( ) A. 12e ⃗ B. 2e ⃗ C.125e⃗ D. 52e⃗ 【答案】B解:由a ⃗ =(1,2)可得:|a ⃗ |=√12+22=√5,由|a ⃗ +b|⃗⃗⃗ =5√2两边平方得:|a ⃗ |2+2a ⃗ ·b ⃗ +|b⃗ |2=(5√2)2=50,即:5+2×10+|b⃗ |2=50,解得:|b ⃗ |=5, 设a ⃗ 和b ⃗ 的夹角为θ,则cosθ=a⃗ ·b ⃗|a ⃗ |·|b⃗ |=10√5×5=2√55, 所以向量a ⃗ 在向量b ⃗ 上的投影向量为:|a ⃗ |cosθ·b⃗ |b ⃗ |=√5×2√55e ⃗ =2e ⃗ .故选B .5. 如图所示,在直三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,AB =3,AC =AA 1=4,一只蚂蚁由顶点A 沿棱柱侧面经过棱BB 1爬到顶点C 1,蚂蚁爬行的最短距离为( )A. 4B. 4C.D.+【答案】B解:如图所示,把侧面展开,矩形对角线即为蚂蚁爬行的最短距离,∵AB ⊥AC ,AB =3,AC =AA 1=4,∴BC =√AB 2+AC 2=√32+42=5,由题已知AA 1=CC 1=4,∴蚂蚁爬行的最短距离=√(AB +BC )2+(CC 1)2=√(3+5)2+42=4√5,所以最小值为4√5,故选B .6.在四棱锥P−ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为( )A. B. C. D.【答案】A解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”,设AB的中点为N,因为侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB⊥AD,AB⊂底面ABCD,所以AB⊥侧面PAD,又PA⊂侧面PAD,所以AB⊥PA,根据题目条件可知△PAN≌△CBN,∴PN=CN,点N也符合“M为底面ABCD内的一个动点,且满足MP=MC”,故动点M的轨迹肯定过点D和点N,而到点P与到点C的距离相等的点为线段PC 的垂直平分面,线段PC的垂直平分面与平面ABCD的交线是一直线.故选A.7.如图,直角梯形ABCD,AB//CD,∠ABC=90°,CD=2,AB=BC=1,E是边CD中点,△ADE沿AE翻折成四棱锥D′−ABCE,则点C到平面ABD′距离的最大值为( )A. 12B. √3−1 C. √22D. √63【答案】C解:直角梯形ABCD ,AB//CD ,∠ABC =90°,CD =2,AB =BC =1,E 是边CD 中点,△ADE 沿AE 翻折成四棱锥D′−ABCE ,当D′E ⊥CE 时,点C 到平面ABD′距离取最大值,∵D′E ⊥AE ,CE ∩AE =E ,CE ,AE ⊂平面ABCE ,∴D′E ⊥平面ABCE , 以E 为原点,EC 为x 轴,EA 为y 轴,ED′为z 轴,建立空间直角坐标系,则A(0,1,0),C(1,0,0),D′(0,0,1),B(1,1,0), AB ⃗⃗⃗⃗⃗ =(1,0,0),AC ⃗⃗⃗⃗⃗ =(1,−1,0),AD′⃗⃗⃗⃗⃗⃗⃗ =(0,−1,1), 设平面ABD′的法向量n⃗ =(x,y,z),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =x =0n ⃗ ⋅AD′⃗⃗⃗⃗⃗⃗⃗ =−y +z =0,取y =1,得n ⃗ =(0,1,1),∴点C 到平面ABD′距离的最大值为d =|AC ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |=1√2=√22.故选C .8. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值【答案】D解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得R 1=12×DE sin∠DME,R 2=12×DFsin∠DMF ,又DE =DF ,sin∠DME =sin∠DMF , 可得R 1=R 2,可得λ=1.故选D .二、多选题(本大题共4小题,共20.0分。

(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)

(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)

专题7 立体几何(2)立体几何大题:10年10考,每年1题.第1小题多为证明垂直问题,第2小题多为体积计算问题(2014年是求高).1.(2019年)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解析】(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,∴ME∥B1C,又N为A1D的中点,∴ND=12A1D,由题设知A1B1//DC,∴B1C//A1D,∴ME//ND,∴四边形MNDE是平行四边形,∴MN∥ED,又MN⊄平面C1DE,∴MN∥平面C1DE.(2)过C作C1E的垂线,垂足为H,由已知可得DE⊥BC,DE⊥C1C,∴DE⊥平面C1CE,故DE⊥CH,∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由已知可得CE=1,CC1=4,∴C1E,故CH,∴点C 到平面C 1DE . 2.(2018年)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA . (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ﹣ABP 的体积.【解析】(1)∵在平行四边形ABCM 中,∠ACM =90°,∴AB ⊥AC , 又AB ⊥DA .且AD ∩AC =A , ∴AB ⊥面ADC ,∵AB ⊂面ABC , ∴平面ACD ⊥平面ABC ;(2)∵AB =AC =3,∠ACM =90°,∴AD =AM =∴BP =DQ =23DA = 由(1)得DC ⊥AB ,又DC ⊥CA ,∴DC ⊥面ABC ,∴三棱锥Q ﹣ABP 的体积V =11DC 33S ∆ABP ⨯ =C 121DC 333S ∆AB ⨯⨯=12113333323⨯⨯⨯⨯⨯⨯=1. 3.(2017年)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ﹣ABCD 的体积为83,求该四棱锥的侧面积.【解析】(1)∵在四棱锥P ﹣ABCD 中,∠BAP =∠CDP =90°, ∴AB ⊥PA ,CD ⊥PD , 又AB ∥CD ,∴AB ⊥PD , ∵PA ∩PD =P ,∴AB ⊥平面PAD , ∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .(2)设PA =PD =AB =DC =a ,取AD 中点O ,连结PO , ∵PA =PD =AB =DC ,∠APD =90°,平面PAB ⊥平面PAD ,∴PO ⊥底面ABCD ,且AD ,PO =2a , ∵四棱锥P ﹣ABCD 的体积为83, 由AB ⊥平面PAD ,得AB ⊥AD ,∴V P ﹣ABCD =CD 13S AB ⨯⨯PO 四边形=1D 3⨯AB⨯A ⨯PO =132a a ⨯⨯=313a =83, 解得a =2,∴PA =PD =AB =DC =2,AD =BC =PO ,∴PB =PC∴该四棱锥的侧面积:S 侧=S △PAD +S △PAB +S △PDC +S △PBC=1D 2⨯PA⨯P +12⨯PA⨯AB +1D DC 2⨯P ⨯+1C 2⨯B=11112222222222⨯⨯+⨯⨯+⨯⨯+⨯=6+4.(2016年)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解析】(1)∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG . 由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PG =PE = 在等腰直角三角形EFP 中,可得EF =PF =2. 所以四面体PDEF 的体积V =13×DE ×S △PEF =13×2×12×2×2=43.5.(2015年)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ﹣ACD【解析】(1)∵四边形ABCD 为菱形, ∴AC ⊥BD , ∵BE ⊥平面ABCD , ∴AC ⊥BE , 则AC ⊥平面BED , ∵AC ⊂平面AEC , ∴平面AEC ⊥平面BED ;(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC ,GB =GD =2x,∵BE ⊥平面ABCD ,∴BE ⊥BG ,则△EBG 为直角三角形,∴EG =12AC =AG =2x ,则BE x ,∵三棱锥E ﹣ACD 的体积V =11C GD 32⨯A ⨯⨯BE 3x 解得x =2,即AB =2, ∵∠ABC =120°,∴AC 2=AB 2+BC 2﹣2AB •BC cos ABC =4+4﹣2×1222⎛⎫⨯⨯-⎪⎝⎭=12,即AC =在三个直角三角形EBA ,EBD ,EBC 中,斜边AE =EC =ED , ∵AE ⊥EC ,∴△EAC 为等腰三角形, 则AE 2+EC 2=AC 2=12, 即2AE 2=12, ∴AE 2=6,则AE ,∴从而得AE =EC =ED ,∴△EAC 的面积S =11C 22⨯EA⨯E =3, 在等腰三角形EAD 中,过E 作EF ⊥AD 于F ,则AE ,AF =1D 2A =1212⨯=,则EF =∴△EAD 的面积和△ECD 的面积均为S =122⨯故该三棱锥的侧面积为3+6.(2014年)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【解析】(1)连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD∵AC ⊥AB 1,∴OA =12B 1C =12,由OH •AD =OD •OA ,可得AD ,∴OH =14,∵O 为B 1C 的中点,∴B 1到平面ABC ,∴三棱柱ABC ﹣A 1B 1C 1的高7.7.(2013年)如图,三棱柱ABC ﹣A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60° (1)证明:AB ⊥A 1C ; (2)若AB =CB =2,A 1C =,求三棱柱ABC ﹣A 1B 1C 1的体积.【解析】(1)如图,取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,160∠BAA =,故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C ;(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以1C O =OA =.又1C A =,则22211C C A =O +OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC ﹣A 1B 1C 1的高.又△ABC 的面积C S ∆AB故三棱柱ABC ﹣A 1B 1C 1的体积C 1V 3S ∆AB =⨯OA ==.8.(2012年)如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【解析】(1)由题意知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C , ∴BC ⊥平面ACC 1A 1,又DC 1⊂平面ACC 1A 1, ∴DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,∴∠CDC 1=90°,即DC 1⊥DC ,又DC ∩BC =C , ∴DC 1⊥平面BDC ,又DC 1⊂平面BDC 1, ∴平面BDC 1⊥平面BDC ;(2)设棱锥B ﹣DACC 1的体积为V 1,AC =1,由题意得V 1=1121132+⨯⨯⨯=12,又三棱柱ABC ﹣A 1B 1C 1的体积V =1, ∴(V ﹣V 1):V 1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.9.(2011年)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D﹣PBC的高.【解析】(1)因为∠DAB=60°,AB=2AD,由余弦定理得BD D,从而BD2+AD2=AB2,故BD⊥AD,又PD⊥底面ABCD,可得BD⊥PD,所以BD⊥平面PAD.故PA⊥BD.(2)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(1)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD,PB=2.根据DE•PB=PD•BD,得DE即棱锥D﹣PBC10.(2010年)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(1)证明:平面PAC⊥平面PBD;(2)若AB,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.。

高考数学理数立体几何大题训练(含答案)

高考数学理数立体几何大题训练(含答案)

高考数学理数立体几何大题训练(含答案)1.(2020·新课标Ⅲ·理)在长方体中,点P、Q分别在棱AB、CD上,且AP=CQ.(1)证明:点PQ平分长方体的体对角线;(2)若PQ在平面BCFE内,求二面角的正弦值.2.(2020·新课标Ⅱ·理)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M、N分别为BC、B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN 所成角的正弦值.3.(2020·新课标Ⅰ·理)如图,D为圆锥的顶点,O是圆锥底面的圆心,底面是内接正三角形ABC,P为上一点,AP为底面直径,DP⊥底面.(1)证明:DP平分∠ADC;(2)求二面角平面APD与平面ABC的余弦值.4.(2020·新高考Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.5.(2020·天津)如图,在三棱柱ABC-A1B1C1中,点P、Q分别在棱AB、A1B1上,且AP=A1Q,平面PQC1为棱BC1的中垂面,M为棱AC的中点.(Ⅰ)求证:PM∥B1Q,且PM=B1Q;(Ⅱ)求二面角平面PQC1与直线PM所成角的正弦值;(Ⅲ)求直线B1Q与平面PQC1所成角的正弦值.6.(2020·江苏)在三棱锥ABCD中,已知CB=CD=1,AC=2,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC上一点,DE⊥平面BCD,DE=1.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F-DE-C的大小为θ,求sinθ的值.7.(2020·北京)如图,正方体ABCD-EFGH中,E为AD的中点,P为BF上一点.(Ⅰ)求证:PE∥CG;(Ⅱ)求直线PE与平面CGH所成角的正弦值.8.(2020·浙江)如图,三棱台DEF-ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,XXX.(Ⅰ)证明:EF⊥DB;(Ⅱ)求DF与面DBC所成角的正弦值.9.(2020·扬州模拟)如图,在等边三角形ABC的三棱锥ABCD中,D为底面的中点,E为线段AD上一动点,记DE=λAD.(1)当λ=1时,求证:DE与平面ABC垂直;(2)当λ=2时,求直线BE与平面ACD所成角的正弦值.求证:直线AD与平面BCD垂直;2)若平面ABD与平面ACD所成二面角为,求二面角ABC与平面BCD所成二面角的正弦值。

高考数学的立体几何多选题及答案

高考数学的立体几何多选题及答案

高考数学的立体几何多选题及答案一、立体几何多选题1.如图,在直三棱柱111ABC A B C -中,12AC BC AA ===,90ACB ∠=︒,D ,E ,F分别为AC ,1AA ,AB 的中点.则下列结论正确的是( )A .1AC 与EF 相交B .11//BC 平面DEF C .EF 与1AC 所成的角为90︒D .点1B 到平面DEF 的距离为322【答案】BCD 【分析】利用异面直线的位置关系,线面平行的判定方法,利用空间直角坐标系异面直线所成角和点到面的距离,对各个选项逐一判断. 【详解】对选项A ,由图知1AC ⊂平面11ACC A ,EF 平面11ACC A E =,且1.E AC ∉由异面直线的定义可知1AC 与EF 异面,故A 错误;对于选项B ,在直三棱柱111ABC A B C -中,11B C //BC .D ,F 分别是AC ,AB 的中点, //∴FD BC ,11B C ∴ //FD .又11B C ⊄平面DEF ,DF ⊂平面DEF ,11B C ∴ //平面.DEF 故B 正确;对于选项C ,由题意,建立如图所示的空间直角坐标系,则(0C ,0,0),(2A ,0,0),(0B ,2,0),1(2A ,0,2),1(0B ,2,2),1(0C ,0,2),(1D ,0,0),(2E ,0,1),(1F ,1,0).(1EF ∴=-,1,1)-,1(2AC =-,0,2). 1·2020EF AC =+-=,1EF AC ∴⊥,1EF AC ∴⊥. EF 与1AC 所成的角为90︒,故C 正确;对于选项D ,设向量(n x =,y ,)z 是平面DEF 的一个法向量. (1DE =,0,1),(0DF =,1,0), ∴由n DE n DF ⎧⊥⎨⊥⎩,,,即·0·0n DE n DF ⎧=⎨=⎩,,,得00.x z y +=⎧⎨=⎩,取1x =,则1z =-,(1n ∴=,0,1)-, 设点1B 到平面DEF 的距离为d . 又1(1DB =-,2,2),1·102DB n d n-+∴===, ∴点1B 到平面DEF 的距离为2,故D 正确.故选:BCD 【点睛】本题主要考查异面直线的位置关系,线面平行的判定,异面直线所成角以及点到面的距离,还考查思维能力及综合分析能力,属难题.2.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -22222262213⎛⎫--⨯ ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.3.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 21530+【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d =当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:22|||sin |cos ,|||||5315n AE n AE n AE πθα⎛⎫++ ⎪⎝⎭====⨯⨯当且仅当4πθ=时,sin α有最大值222153015++=, 故D 正确 故选:CD 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.4.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.5.在三棱锥M ABC -中,下列命题正确的是( ) A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++ C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得.【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.6.在长方体1111ABCD A B C D -中,AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a,0a ⎡∈⎣,(2,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,,22)R λλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,2)D R λλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,22)(2)412440AR AC λλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时12282()()05555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则44()33R,142()33D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.7.已知直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,D 是AC 的中点,O 为1A C 的中点.点P 是1BC 上的动点,则下列说法正确的是( )A .当点P 运动到1BC 中点时,直线1A P 与平面111ABC 5 B .无论点P 在1BC 上怎么运动,都有11A P OB ⊥C .当点P 运动到1BC 中点时,才有1A P 与1OB 相交于一点,记为Q ,且113PQ QA = D .无论点P 在1BC 上怎么运动,直线1A P 与AB 所成角都不可能是30° 【答案】ABD 【分析】构造线面角1PA E ∠,由已知线段的等量关系求1tan EPPA E AE∠=的值即可判断A 的正误;利用线面垂直的性质,可证明11A P OB ⊥即可知B 的正误;由中位线的性质有112PQ QA =可知C 的正误;由直线的平行关系构造线线角为11B A P ∠,结合动点P 分析角度范围即可知D 的正误 【详解】直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==选项A 中,当点P 运动到1BC 中点时,有E 为11B C 的中点,连接1A E 、EP ,如下图示即有EP ⊥面111A B C∴直线1A P 与平面111A B C 所成的角的正切值:1tan EPPA E AE∠= ∵112EP BB =,22111152AE A B B E BB =+= ∴15tan PA E ∠=,故A 正确选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示由题意知,11B BCC 为正方形,即有11B C BC ⊥而AB BC ⊥且111ABC A B C -为直三棱柱,有11A B ⊥面11B BCC ,1BC ⊂面11B BCC ∴111A B BC ⊥,又1111A B B C B =∴1BC ⊥面11A B C ,1OB ⊂面11A B C ,故11BC OB ⊥ 同理可证:11A B OB ⊥,又11A B BC B ⋂=∴1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A P OB ⊥,故B 正确选项C 中,点P 运动到1BC 中点时,即在△11A B C 中1A P 、1OB 均为中位线∴Q为中位线的交点∴根据中位线的性质有:112PQQA=,故C错误选项D中,由于11//A B AB,直线1A P与AB所成角即为11A B与1A P所成角:11B A P∠结合下图分析知:点P在1BC上运动时当P在B或1C上时,11B A P∠最大为45°当P在1BC中点上时,11B A P∠最小为23arctan30>=︒∴11B A P∠不可能是30°,故D正确故选:ABD【点睛】本题考查了利用射影定理构造线面角,并计算其正弦值;利用线面垂直证明线线垂直;中位线的性质:中位线交点分中位线为1:2的数量关系;由动点分析线线角的大小8.如图,正方体1111ABCD A B C D-的棱长为1,线段11B D上有两个动点E,F,且2EF=则下列结论正确的是()A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC 【分析】对选项分别作图,研究计算可得. 【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,1112212224BEF S EF BB ∆∴=⋅=⨯=连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即22AO =112213312A BEF BEF V S AO -∆∴=⨯==A BEF V -∴是定值.选项B:连接11A C 与11B D 交于点M ,连接11,AD AB , 由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥ 在直角三角形EFT 中,221cos 452FT EF =⨯=⨯=12HG FT ∴== 选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角, 在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=2AR =由余弦定理得13cos AD R ∠= 故选:AC 【点睛】本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.9.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +170【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos AA AC AAC ''==∠=, 所以217042222()105AC '=+-⨯⨯⨯-=.故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.10.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则()A.BF⊥平面EABB.该二十四等边体的体积为20 3C.该二十四等边体外接球的表面积为8πD.PN与平面EBFN所成角的正弦值为2 2【答案】BCD【分析】A用反证法判断;B先补齐八个角成正方体,再计算体积判断;C先找到球心与半径,再计算表面积判断;D先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A,假设A对,即BF⊥平面EAB,于是BF AB⊥,90ABF∠=︒,但六边形ABFPQH为正六边形,120ABF∠=︒,矛盾,所以A错;对于B,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B对;对于C,取正方形ACPM对角线交点O,即为该二十四等边体外接球的球心, 其半径为2R =,其表面积为248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN ==,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何多项选择题(请将答案填写在各试题的答题区内)1.(2020春•市中区校级月考)如图,在正四棱锥S ABCD -中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论中恒成立的为( )A .EP AC ⊥B .//EP BDC .//EP 面SBDD .EP ⊥面SAC2.(2019秋•中山市期末)用a ,b ,c 表示三条不同的直线,γ表示平面,则下列命题正确的是( ) A .若//a b ,//b c ,则//a c B .若a b ⊥,b c ⊥,则a c ⊥ C .若//a γ,//b γ,则//a bD .若a γ⊥,b γ⊥,则//a b3.(2020•山东模拟)已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111A B C D 上的动点,给出下列四个结论中正确结论为( ) A .若3PD =,则满足条件的P 点有且只有一个B .若PD P 的轨迹是一段圆弧C .若//PD 平面1ACB ,则DP 长的最小值为2D .若//PD 平面1ACB ,且PD 则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π4.(2019秋•潍坊期中)正方体1111ABCD A B C D -的棱长为2,已知平面1AC α⊥,则关于α截此正方体所得截面的判断正确的是( ) A .截面形状可能为正三角形 B .截面形状可能为正方形C .截面形状可能为正六边形D .截面面积最大值为5.(2019秋•青岛期中)在正方体1111ABCD A B C D -中,下列直线或平面与平面1ACD 平行的有( ) A .直线1A BB .直线1BBC .平面11A DCD .平面11A BC6.(2019秋•建邺区校级期中)已知点P 是平行四边形ABCD 所在的平面外一点,如果(2AB =,1-,4)-,(4AD =,2,0),(1AP =-,2,1)-.下列结论正确的有( )A .AP AB ⊥B .AP AD ⊥C .AP 是平面ABCD 的一个法向量D .//AP BD7.(2019秋•南京期中)已知两条直线l ,m 及三个平面α,β,γ,下列条件中能推出αβ⊥的是( ) A .l α⊂,l β⊥ B .l α⊥,m β⊥,l m ⊥ C .αγ⊥,//βγ D .l α⊂,m β⊂,l m ⊥8.(2019秋•历下区校级月考)已知空间中两条直线a ,b 所成的角为50︒,P 为空间中给定的一个定点,直线l 过点P 且与直线a 和直线b 所成的角都是(090)θθ︒<︒,则下列选项正确的是( ) A .当15θ=︒时,满足题意的直线l 不存在B .当25θ=︒时,满足题意的直线l 有且仅有1条C .当40θ=︒时,满足题意的直线l 有且仅有2条D .当60θ=︒时,满足题意的直线l 有且仅有3条9.(2019春•思明区校级月考)如图所示,在正三棱柱111ABC A B C -中,2AC a =,13BB a =,D 是11A C 的中点,点F 在线段1AA 上,若CF ⊥平面1B DF .则AF 的长度为( )A .aBC .2aD .10.(2019秋•桥西区校级月考)如图正方体1111ABCD A B C D -的棱长为a ,以下结论正确的是( )A .异面直线1A D 与1AB 所成的角为60︒ B .直线1A D 与1BC 垂直 C .直线1AD 与1BD 平行D .三棱锥1A A CD -的体积为316a11.(2018秋•德州期末)一几何体的平面展开图如图所示,其中四边形ABCD 为正方形,E 、F 分别为PB 、PC 的中点,在此几何体中,给出的下面结论中正确的有( )A .直线AE 与直线BF 异面B .直线AE 与直线DF 异面C .直线//EF 平面PADD .直线DF ⊥平面PBC12.如图,PA 垂直于以AB 为直径的圆所在的平面,点C 是圆周上异于A ,B 的任一点,则下列结论中正确的是( )A .PB AC ⊥ B .PC BC ⊥C .AC ⊥平面PBCD .平面PAB ⊥平面PBCE .平面PAC ⊥平面PBC13.如图所示,在正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,其中正确的结论为()A .直线AM 与1C C 是相交直线B .直线AM 与BN 是平行直线C .直线BN 与1MB 是异面直线D .直线MN 与AC 所成的角为60︒14.正方体截面的形状有可能为( ) A .正三角形B .正方形C .正五边形D .正六边形15.已知m ,n 是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题,其中正确命题的是( )A .若//m β,//n β,m ,n α⊂,则//αβB .若αγ⊥,βγ⊥,m αβ=,n γ⊂,则m n ⊥C .若m α⊥,αβ⊥,n αβ=,那么//m nD .若//m α,//m β,n αβ=,那么//m n16.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,则上列命题中正确的是( ) A .若m α⊂,n α⊂,//m β,//n β,则//αβ B .若m α⊥,n β⊥且m n ⊥,则αβ⊥ C .若//l α,αβ⊥,则l β⊥ D .若l αβ=,m βγ=,n γα=,//l γ,则//m n17.在正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11A D 、1A A 、11A B 的中点,下列命題中正确的是( ) A .1EF B C ⊥B .1//BC 平面EFG C .1A C ⊥平面EPGD .异面直线FG 、1B C 所成角的大小为4π 18.下列四个命题中正确的是( )A .如果一条直线不在某个平面内,那么这条直线就与这个平面平行B .过直线外一点有无数个平面与这条直线平行C .过平面外一点有无数条直线与这个平面平行D .过空间一点必存在某个平面与两条异面直线都平行19.如图是正方体的平面展开图,则关于这个正方体的说法正确的是( )A .BM 与ED 平行B .CN 与BE 是异面直线C .CN 与BM 成60︒角D .DM 与BN 是异面直线20.如图,在四面体ABCD 中,点1B ,1C ,1D 分别在棱AB ,AC ,AD 上,且平面111//B C D 平面BCD ,1A 为BCD ∆内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,对于函数()V f x =,则下列结论正确的是( )A .当23x =时,函数()f x 取到最大值B .函数()f x 在2(,1)3上是减函数C .函数()f x 的图象关于直线12x =对称 D .不存在0x ,使得01()4A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积).立体几何多项选择题1.(2020春•市中区校级月考)如图,在正四棱锥S ABCD -中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论中恒成立的为( )A .EP AC ⊥B .//EP BDC .//EP 面SBDD .EP ⊥面SAC【分析】如图所示,连接AC 、BD 相交于点O ,连接EM ,EN .由正四棱锥S ABCD -,可得SO ⊥底面ABCD ,AC BD ⊥,进而得到SO AC ⊥.可得AC ⊥平面SBD .由已知E ,M ,N 分别是BC ,CD ,SC 的中点,利用三角形的中位线可得//EM BD ,//MN SD ,于是平面//EMN 平面SBD ,进而得到AC ⊥平面EMN ,AC EP ⊥.由异面直线的定义可知:EP 与BD 是异面直线,因此不可能//EP BD ; 平面//EMN 平面SBD ,可得//EP 平面SBD ;EM ⊥平面SAC ,可用反证法证明:当P 与M 不重合时,EP 与平面SAC 不垂直.【解答】解:如图所示,连接AC 、BD 相交于点O ,连接EM ,EN . 由正四棱锥S ABCD -,可得SO ⊥底面ABCD ,AC BD ⊥,SO AC ∴⊥. SOBD O =,AC ∴⊥平面SBD ,E ,M ,N 分别是BC ,CD ,SC 的中点,//EM BD ∴,//MN SD ,而EMM N N =,∴平面//EMN 平面SBD ,AC ∴⊥平面EMN ,AC EP ∴⊥.故A 正确.由异面直线的定义可知:EP 与BD 是异面直线,不可能//EP BD ,因此B 不正确; 平面//EMN 平面SBD ,//EP ∴平面SBD ,因此C 正确.EM ⊥平面SAC ,若EP ⊥平面SAC ,则//EP EM ,与EPEM E =相矛盾,因此当P 与M 不重合时,EP与平面SAC 不垂直.即D 不正确. 故选:AC .2.(2019秋•中山市期末)用a ,b ,c 表示三条不同的直线,γ表示平面,则下列命题正确的是( ) A .若//a b ,//b c ,则//a c B .若a b ⊥,b c ⊥,则a c ⊥ C .若//a γ,//b γ,则//a bD .若a γ⊥,b γ⊥,则//a b【分析】判断线与线、线与面、面与面之间的关系,可将线线、线面、面面平行(垂直)的性质互相转换,进行证明,也可将题目的中直线放在空间正方体内进行分析. 【解答】解:根据平行直线的传递性可知A 正确; 在长方体模型中容易观察出B 中a 、c 还可以平行或异面; C 中a 、b 还可以相交;D 是真命题,故选:AD .3.(2020•山东模拟)已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111A B C D 上的动点,给出下列四个结论中正确结论为( ) A .若3PD =,则满足条件的P 点有且只有一个B .若PD =P 的轨迹是一段圆弧C .若//PD 平面1ACB ,则DP 长的最小值为2D .若//PD 平面1ACB ,且PD BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π【分析】由题意画出图形,求出D 与上底面点的最大值判断A ;由PD 1PD 为定值判断B ;找出满足//PD 平面1ACB 的P 的轨迹,求出DP 长的最小值判断C ;由已知求出正四棱住的外接球的半径,进一步求出大圆面积判断D .【解答】解:如图正四棱柱1111ABCD A B C D -的底面边长为2,∴11B D =11AA =,∴13DB ==,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;(1,3)PD =,11DD =,则1PD =P 的轨迹是一段圆弧,故B 正确;连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP ,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,32,面积为94π,故D 正确. 故选:ABD .4.(2019秋•潍坊期中)正方体1111ABCD A B C D -的棱长为2,已知平面1AC α⊥,则关于α截此正方体所得截面的判断正确的是( ) A .截面形状可能为正三角形 B .截面形状可能为正方形C .截面形状可能为正六边形D .截面面积最大值为【分析】画出图形,得出结果.【解答】解:如图,显然A ,C 成立,下面说明D 成立,如图截得正六边形,面积最大,MN =,GH =OE ==, 所以162(222)332S =+=, 故D 成立,故选:ACD .5.(2019秋•青岛期中)在正方体1111ABCD A B C D -中,下列直线或平面与平面1ACD 平行的有( ) A .直线1A BB .直线1BBC .平面11A DCD .平面11A BC【分析】利用线线、线面、面面平行的判定定理逐项判断即可得解.【解答】解:对于A ,由于11//A B D C ,且1A B ⊂/平面1ACD ,可得直线1//A B 平面1ACD ; 对于B ,由于11//B B D D ,且1D D ⋂平面11ACD D =,可得直线1B B 不平行平面1ACD ; 对于C ,由于11A DAD ,1A D ⊂平面11A DC ,可得平面11A DC 不与平面1ACD 平行;对于D ,由于11//A B D C ,11//C B D A ,1A B ,1C B ⊂平面11A BC ,可得平面11//A BC 平面1ACD . 故选:AD .6.(2019秋•建邺区校级期中)已知点P 是平行四边形ABCD 所在的平面外一点,如果(2AB =,1-,4)-,(4AD =,2,0),(1AP =-,2,1)-.下列结论正确的有( )A .AP AB ⊥B .AP AD ⊥C .AP 是平面ABCD 的一个法向量D .//AP BD【分析】由0AB AP =得出AP AB ⊥,判断A 正确; 由0AP AD =得出AP AD ⊥,判断B 正确;由AP AB ⊥且AP AD ⊥得出AP 是平面ABCD 的一个法向量,判断C 正确;由AP 是平面ABCD 的法向量得出AP BD ⊥,判断D 错误.【解答】解:对于A ,2(1)(1)2(4)(1)0AB AP =⨯-+-⨯+-⨯-=,∴AP AB ⊥,即AP AB ⊥,A 正确; 对于B ,(1)422(1)00AP AD =-⨯+⨯+-⨯=,∴AP AD ⊥,即AP AD ⊥,B 正确; 对于C ,由AP AB ⊥,且AP AD ⊥,得出AP 是平面ABCD 的一个法向量,C 正确; 对于D ,由AP 是平面ABCD 的法向量,得出AP BD ⊥,则D 错误. 故选:ABC .7.(2019秋•南京期中)已知两条直线l ,m 及三个平面α,β,γ,下列条件中能推出αβ⊥的是( ) A .l α⊂,l β⊥ B .l α⊥,m β⊥,l m ⊥ C .αγ⊥,//βγD .l α⊂,m β⊂,l m ⊥【分析】在A 中,由面面垂直的判定定理得αβ⊥;在B 中,由面面垂直的判定定理得αβ⊥;在C 中,由面面垂直的判定定理得αβ⊥;在D 中,α,β相交或平行. 【解答】解:由两条直线l ,m 及三个平面α,β,γ,知:在A 中,l α⊂,l β⊥,则由面面垂直的判定定理得αβ⊥,故A 正确; 在B 中,l α⊥,m β⊥,l m ⊥,则由面面垂直的判定定理得αβ⊥,故B 正确; 在C 中,αγ⊥,//βγ,则由面面垂直的判定定理得αβ⊥,故C 正确; 在D 中,l α⊂,m β⊂,l m ⊥,则α,β相交或平行,故D 错误. 故选:ABC .8.(2019秋•历下区校级月考)已知空间中两条直线a ,b 所成的角为50︒,P 为空间中给定的一个定点,直线l 过点P 且与直线a 和直线b 所成的角都是(090)θθ︒<︒,则下列选项正确的是( ) A .当15θ=︒时,满足题意的直线l 不存在B .当25θ=︒时,满足题意的直线l 有且仅有1条C .当40θ=︒时,满足题意的直线l 有且仅有2条D .当60θ=︒时,满足题意的直线l 有且仅有3条【分析】为了讨论:过点O 与a 、b 所成的角都是(090)θθ︒︒的直线l 有且仅有几条,先将涉及到的线放置在同一个平面内观察,只须考虑过点O 与直线1a 、1b 所成的角都是(090)θθ︒︒的直线l 有且仅有几条即可,再利用12cos cos cos θθθ=.进行角之间的大小比较即得.【解答】解:过点O 作1//a a ,1//b b ,则相交直线1a 、1b 确定一平面α.1a 与1b 夹角为50︒或130︒,设直线OA 与1a 、1b 均为θ角,作AB ⊥面α于点B ,1BC a ⊥于点C ,1BD b ⊥于点D ,记1AOB θ∠=,22(25BOC θθ∠==︒或65)︒,则有12cos cos cos θθθ=. 因为1090θ︒︒, 所以20cos cos θθ.当225θ=︒时,由0cos cos25θ︒,得2590θ︒︒; 当265θ=︒时,由0cos cos65θ︒,得6590θ︒︒. 故当25θ<︒时,直线l 不存在; 当25θ=︒时,直线l 有且仅有1条; 当2565θ︒<<︒时,直线l 有且仅有2条; 当65θ=︒时,直线l 有且仅有3条; 当6590θ︒<<︒时,直线l 有且仅有4条; 当90θ=︒时,直线l 有且仅有1条. 故A ,B ,C 均正确,D 错误. 故选:ABC .9.(2019春•思明区校级月考)如图所示,在正三棱柱111ABC A B C -中,2AC a =,13BB a =,D 是11A C 的中点,点F 在线段1AA 上,若CF ⊥平面1B DF .则AF 的长度为( )A .aBC .2aD .【分析】可得CF DF ⊥.在矩形11ACC A 中,设AF m =.利用勾股定理联立解得m a =,或2m a =.即可.【解答】解:CF ⊥平面1B DF ,CF DF ∴⊥. 在矩形11ACC A 中,设AF m =.2222221110CD DF CF CC DC a =+=+=⋯① 2224CF a m =+,222(3)DF a m a =-+⋯②.联立①②解得m a =,或2m a =. 则AF 的长度为a 或2a . 故选:AC .10.(2019秋•桥西区校级月考)如图正方体1111ABCD A B C D -的棱长为a ,以下结论正确的是( )A .异面直线1A D 与1AB 所成的角为60︒ B .直线1A D 与1BC 垂直 C .直线1AD 与1BD 平行D .三棱锥1A A CD -的体积为316a【分析】如图所示,建立空间直角坐标系.利用正方体的性质、向量的夹角公式与数量积的关系、三棱锥的体积计算公式即可得出.【解答】解:如图所示,建立空间直角坐标系.A .1(A a ,0,)a ,(0D ,0,0),(A a ,0,0),1(B a ,a ,)a .∴1(A D a =-,0,)a -,1(0AB =,a ,)a ,∴21111111cos ,2||||22A D AB A D AB A D AB a a<>===-,∴异面直线1A D 与1AB 所成的角为60︒.B .1(0C ,a ,)a ,(B a ,a ,0).11(A D BC a =-,0,)(a a --,0,22)0a a a =-=.∴直线1A D 与1BC 垂直.C .1(0D ,0,)a .11(A D BD a =-,0,)(a a --,a -,22)0a a a =-=,∴直线1A D 与1BD 垂直,不平行;D .三棱锥1A A CD -的体积123111326C A AD V a a a -==⨯=.综上可知:只有C 不正确. 故选:ABD .11.(2018秋•德州期末)一几何体的平面展开图如图所示,其中四边形ABCD 为正方形,E 、F 分别为PB 、PC 的中点,在此几何体中,给出的下面结论中正确的有( )A .直线AE 与直线BF 异面B .直线AE 与直线DF 异面C .直线//EF 平面PADD .直线DF ⊥平面PBC【分析】把展开图恢复成四棱锥,作出图形,易知A 正确;由线面平行的判定定理可证C 正确;由AEFD 为等腰梯形可否定B ,D .【解答】解:如图,把几何体恢复原状,显然AE ,BF 异面,可知A 正确; //EF BC ,//BC AD , //EF AD ∴,//EF ∴平面PAD ,可知C 正确;易知AEFD 为等腰梯形,可知B ,D 错误. 故选:AC .12.如图,PA 垂直于以AB 为直径的圆所在的平面,点C 是圆周上异于A ,B 的任一点,则下列结论中正确的是( )A .PB AC ⊥ B .PC BC ⊥C .AC ⊥平面PBCD .平面PAB ⊥平面PBCE .平面PAC ⊥平面PBC【分析】由已知可得BC AC ⊥,再由PA ⊥平面ABC ,然后逐一分析五个选项得答案.【解答】解:由题意,BC AC ⊥,若PB AC ⊥,则AC ⊥平面PBC ,可得AC PC ⊥,与AC PA ⊥矛盾,故A 、C 错误;BC AC ⊥,又PA ⊥底面ABC ,PA BC ∴⊥,则BC ⊥平面PAC ,则BC PC ⊥,故B 、E 正确;平面PAC ⊥平面PBC ,若平面PAB ⊥平面PBC ,而平面PAB ⋂平面PAC PA =,则PA ⊥平面PBC ,可得PA PC ⊥,与AC PA ⊥矛盾,故D 错误. 故选:BE .13.如图所示,在正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,其中正确的结论为()A .直线AM 与1C C 是相交直线B .直线AM 与BN 是平行直线C .直线BN 与1MB 是异面直线D .直线MN 与AC 所成的角为60︒【分析】在A 中,直线AM 与1C C 是异面直线;在B 中,直线AM 与BN 是异面直线;在C 中,直线BN 与1MB 是异面直线;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线MN 与AC 所成的角为60︒.【解答】解:在正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点, 在A 中,直线AM 与1C C 是异面直线,故A 错误; 在B 中,直线AM 与BN 是异面直线,故B 错误; 在C 中,直线BN 与1MB 是异面直线,故C 正确;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设正方体1111ABCD A B C D -中棱长为2,则(0M ,1,2),(0N ,2,1),(2A ,0,0),(0C ,2,0), (0MN =,1,1)-,(2AC =-,2,0),则1cos ,2||||28MN AC MN AC MN AC <>===,∴直线MN 与AC 所成的角为60︒,故D 正确.故选:CD .14.正方体截面的形状有可能为( ) A .正三角形B .正方形C .正五边形D .正六边形【分析】画出用一个平面去截正方体得到的几何体的图形,即可判断选项. 【解答】解:画出截面图形如图:可以画出正三角形但不是直角三角形(如图1); 可以画出正方形(如图2)经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形(如图3);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形(如图4); 故选:ABD .15.已知m ,n 是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题,其中正确命题的是( )A .若//m β,//n β,m ,n α⊂,则//αβB .若αγ⊥,βγ⊥,m αβ=,n γ⊂,则m n ⊥C .若m α⊥,αβ⊥,n αβ=,那么//m nD .若//m α,//m β,n αβ=,那么//m n【分析】在A 中,若α与β相交或平行;在B 中,由面面垂直的性质定理得m n ⊥;在C 中,由线面垂直的性质定理得m n ⊥;在D 中,由线面平行的性质定理得//m n .【解答】解:由m ,n 是两条不重合的直线,α,β,γ是三个两两不重合的平面,知: 在A 中,若//m β,//n β,m ,n α⊂,则α与β相交或平行,故A 错误; 在B 中,若αγ⊥,βγ⊥,m αβ=,n γ⊂,则由面面垂直的性质定理得m n ⊥,故B 正确; 在C 中,若m α⊥,αβ⊥,n αβ=,那么由线面垂直的性质定理得m n ⊥,故C 错误;在D 中,若//m α,//m β,n αβ=,那么由线面平行的性质定理得//m n ,故D 正确.故选:BD .16.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,则上列命题中正确的是( )A .若m α⊂,n α⊂,//m β,//n β,则//αβB .若m α⊥,n β⊥且m n ⊥,则αβ⊥C .若//l α,αβ⊥,则l β⊥D .若l αβ=,m βγ=,n γα=,//l γ,则//m n【分析】A .α与β相交或平行;B .由面面垂直的判定定理得αβ⊥;C .l 与β相交、平行或l β⊂;D .由线面平行的性质定理得//m n .【解答】解:由α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,知:A .若m α⊂,n α⊂,//m β,//n β,则α与β相交或平行,故A 错误;B .若m α⊥,n β⊥,且m n ⊥,则由面面垂直的判定定理得αβ⊥,故B 正确;C .若//l α,αβ⊥,则l 与β相交、平行或l β⊂,故C 错误;D .若l αβ=,m βγ=,n γα=,//l γ,则由线面平行的性质定理得//m n .故D 正确. 故选:BD .17.在正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11A D 、1A A 、11A B 的中点,下列命題中正确的是( ) A .1EF B C ⊥B .1//BC 平面EFG C .1A C ⊥平面EPGD .异面直线FG 、1B C 所成角的大小为4π 【分析】由题意画出图形,利用空间中直线与直线,直线与平面,平面与平面位置关系逐一核对四个命题得答案.【解答】解:如图,A .连接1AD ,则11////EF AD BC ,而11BCBC ⊥,则1EF B C ⊥,故A 正确;B .1//BC EF ,EF ⊂平面EFG ,1BC ⊂/平面EFG ,1//BC ∴平面EFG ,故B 正确;C .1AC EF ⊥,1AC EG ⊥,EFEG E =,1A C ∴⊥平面EFG ,故C 正确;D .1//FG AB ,1AB C ∴∠为异面直线FG 、1B C 所成角,连接AC ,可得△1AB C 为等边三角形,则13AB C π∠=,即异面直线FG 、1B C 所成角的大小为3π,故D 错误. 故选:ABC .18.下列四个命题中正确的是( )A .如果一条直线不在某个平面内,那么这条直线就与这个平面平行B .过直线外一点有无数个平面与这条直线平行C .过平面外一点有无数条直线与这个平面平行D .过空间一点必存在某个平面与两条异面直线都平行【分析】由线面的位置关系可判断A ;由线面平行的判定定理可判断B ;由面面平行的判定定理可判断C ; 由异面直线的定义和线面平行的判定定理可判断D .【解答】解:A .如果一条直线不在某个平面内,那么这条直线就与这个平面平行或相交,故A 错误;B .过直线外一点有且只有一条直线和已知直线平行,过这条直线有无数个平面与这条直线平行,故B 正确;C .过平面外一点有无数条直线与这个平面平行,且这无数条直线在同一平面内,故C 正确;D .过空间一点不一定存在某个平面与两条异面直线都平行,可能与其中一条平行,经过另一条直线,故D 错误. 故选:BC .19.如图是正方体的平面展开图,则关于这个正方体的说法正确的是( )A .BM 与ED 平行B .CN 与BE 是异面直线C .CN 与BM 成60︒角D .DM 与BN 是异面直线【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【解答】解:把平面展开图还原原几何体如图:A .由正方体的性质可知,BM 与ED 异面且垂直,故A 错误;B .CN 与BE 平行,故B 错误;C .连接BE ,则//BE CN ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故C 正确;D .由异面直线的定义可知,DM 与BN 是异面直线,故D 正确.故选:CD .20.如图,在四面体ABCD 中,点1B ,1C ,1D 分别在棱AB ,AC ,AD 上,且平面111//B C D 平面BCD ,1A 为BCD ∆内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,对于函数()V f x =,则下列结论正确的是( )A .当23x =时,函数()f x 取到最大值B .函数()f x 在2(,1)3上是减函数C .函数()f x 的图象关于直线12x =对称 D .不存在0x ,使得01()4A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积).【分析】由题意可知△111B C D BCD ∆∽,设0A BCD V V -=,则111120()(1)A B B D V f x x x V -==-.利用导数性质求出当23x =时,函数()f x 取到最大值. 【解答】解:在棱长为(0)a a >的正四面体ABCD 中,点1B ,1C ,1D 分别在棱AB ,AC ,AD 上,且平面111//B C D 平面BCD ,∴由题意可知△111B C D BCD ∆∽,111C D AD x CD AD==,∴1112B C D BCD S x S ∆=. 棱锥1111A B C D - 与棱锥A BCD - 的高之比为1x -.设0A BCD V V -=,∴111120()(1)A B C D V f x x x V -==-.200()23f x xV x V ∴'=-, 当()0f x '>时,203x <<,当()0f x '<时,23x >, ∴当23x =时,函数()f x 取到最大值.故A 正确; 函数在函数()f x 在2(,1)3上是减函数,故B 正确;函数()f x 的图象不关于直线12x =对对称,故C 错误; 22224()()(1)33327A BCD A BCD f V V --=-=,∴不存在0x ,使得01()4A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积).故D 正确. 故选:ABD .。

相关文档
最新文档