实验一 一元线性回归法拟合传感器的特性曲线

实验一 一元线性回归法拟合传感器的特性曲线
实验一 一元线性回归法拟合传感器的特性曲线

实验一一元线性回归法拟合传感器的特性曲线

一、 实验目的

1.了解应变传感器的特性、工作原理;

2.了解传感器的非线性修正方法;

3.掌握一元线性回归拟合的方法。

二、 实验内容

利用传感器实验台中的金属箔式应变片组成单桥电路,测出应变梁的变形量X,记下F/V表对应的输出值,然后按照一元线性回归法,求出回归方程,并判断回归方程的显著性。

测量系统的电路结构如图所示。

图(1)

三、 实验设备

直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、F/V表、主、副电源。

备注:旋钮初始位置:直流稳压电源打到±2V档,F/V表打到2V档,差动放大器增益

最大。

四、 实验步骤

1.了解所需单元、部件在实验仪上的位置,观察梁上的应变片,应变片为棕色衬底箔式结

构小方薄片。上下两片梁的外表面各贴两片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上可以上、下、前、后、左、右调节。

2.将差动放大器调零:用连线将差动放大器的正(+)、负(—)以及“地”短接。将差动

放大器的输出端与F/V表的输入接口Vi 相连;开启主、副电源;调节差动放大器的增

益到最大位置,然后调整差动放大器的调零旋钮,使F/V表显示为零,关闭主、副电源。

3.根据上图(1)接线。R1,R2、R3为电桥单元固定电阻;Rx为应变片。将稳压电源的

切换开关置±4V档,F/V表置20V档,调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。

4.将测微头转动到10mm刻度附近,安装到双平行梁的自由端(与自由端磁钢吸合),调

节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V表显示为零(细调零),这时的测微头刻度为零位的相应刻度。

5.往上或往下旋动测微头,使梁的自由端产生位移,记下F/V表显示的值。建议每旋动测

微头一周即△X=0.5mm记一个数值填入下表,根据所测得的结果找出它们之间的内在关系。

X (mm)

Y(mV)

X (mm)

Y(mV)

五、 实验结果处理与分析

1.按照一元线性回归法,求Y对X的线性回归方程

2.确定回归方程的显著水平α和残余标准差σ;

3.用MATLab软件处理测量数据,并将传感器试验曲线与回归曲线同时绘制在一个坐标图

上。

六、 思考题

1.分析实验数据不在同一直线(拟合直线)上的原因。

2.观察测量数据间是否存在非线性因素的影响,分析其产生的原因,并提出提高回归分析

精度的途径与措施。

传感器实验报告.doc

实验一金属箔式应变片性能—单臂电桥 1、实验目的了解金属箔式应变片,单臂单桥的工作原理和工作情况。 2、实验方法在CSY-998传感器实验仪上验证应变片单臂单桥的工作原理 3、实验仪器CSY-998传感器实验仪 4、实验操作方法 所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、F/V表、主、副电源。 旋钮初始位置:直流稳压电源打倒±2V档,F/V表打到2V档,差动放大增益最大。 实验步骤: (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。 (3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V 档,F/V表置20V档。开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,等待数分钟后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 (4) 将测微头转动到10㎜刻度附近,安装到双平行梁的右端即自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使V/F表显示值最小,再旋动测微头,使V/F表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5) 往下或往上旋动测微头,使梁的自由端产生位移记下V/F表显示的值,每旋动测微头一周即 压值的相应变化。

(1)用Excel作一元线性回归分析

实验四(1)用Excel作一元线性回归分析 实验名称:回归分析 实验目的:学会应用软件实验一元线性回归,多元线性回归和非线性回归模型的求解及应用模型解决相应地理问题。 1 利用Excel进行一元线性回归分析 第一步,录入数据 以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。录入结果见下图(图1)。 图1 第二步,作散点图 如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在 “插入”菜单中打开“图表(H)”。图表向导的图标为。选中数据后,数据变为蓝色(图2)(office2003)。插入-图表(office2007)

图2 点击“图表向导”以后,弹出如下对话框(图3): 图3 在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):

图4 第三步,回归 观察散点图,判断点列分布是否具有线性趋势。只有当数据具有线性分布特征时,才能采用线性回归分析方法。从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。回归的步骤如下: ⑴ 首先,打开“工具”下拉菜单,可见数 据分析选项(见图5) (office2003)。数据-数据分析(office2007) : 图5 用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):

图6 ⑵然后,选择“回归”,确定,弹出如下选项表(图7): 图7 进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。 或者:X、Y值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。 注意:选中数据“标志”和不选“标志”,X、Y值的输入区域是不一样的:前者包括数据标志: 最大积雪深度x(米)灌溉面积y(千亩) 后者不包括。这一点务请注意(图8)。

实验四 电容式传感器的位移特性实验

实验四 电容式传感器的位移特性实验 一、实验目的 了解电容传感器的结构及特点,电容传感器的位移测量原理。 二、实验仪器 电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源、绝缘护套 三、实验原理 电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器,它实质上是具有一个可变参数的电容器。利用平板电容器原理: d S d S C r ??= = εεε0 (4-1) 式中,S 为极板面积,d 为极板间距离,ε0真空介电常数,εr 介质相对介电常数,由此可以看出当被测物理量使S 、d 或εr 发生变化时,电容量C 随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。这里采用变面积式,如图4-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。 图4-1 差动电容传感器原理图 四、实验内容与步骤 1.按图4-2将电容传感器安装在传感器固定架上,将传感器引线插入电容传感器实验模块插座中。 图4-2 电容传感器安装示意图 2.将电容传感器模块的输出U O 接到数显直流电压表。 3.将实验台上±15V 电源接到传感器模块上。检查接线无误后,开启实验台电源,用

电压表2V档测量“电容传感器模块”的输出,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(2V档)。(Rw确定后不要改动) 4.旋动测微头推进电容传感器的共享极板(下极板),每隔0.2mm记下位移量X与输出电压值V的变化,填入下表4-1。 五、实验报告 1.根据表4-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

实验一电阻应变片传感器特性实验

实验一、二 电阻应变片传感器特性实验 一、 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥,全桥测量电路与单臂电桥的不同性能、了解各自的特点。 二、 基本原理: 敏感元件—金属箔在外力作用下,其电阻值会发生变化。即金属的电阻应变效应。根据推导可以得出: l l k l l l l l l R R ?=???++=?++?=?02121)()(ρρμρρμ “应变效应”的表达式。k 0称金属电阻的灵敏系数,从式(3)可见,k 0受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是) (ρερ ?,是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料 而言,以前者为主,则 μ210+≈k ,对半导体,0 k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸 比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数k 0=2左右。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4) 式中 σ——测试的应力; E ——材料弹性模量。 可以测得应力值σ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 单臂电桥:即应变片电阻接入电桥的一臂,测出其电阻变化值,结构比较简单,但是灵敏度较差; 半桥:把不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压UO2=EG ε/2。式中E 为电桥供电电压。 全桥:测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U 03=KE ε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善 三、需用器件与单元:应变式传感器实验模板、砝码、数显表、±15V 电源、±5V 电源、万用表。 四、实验内容与步骤: 1、应变片的安装位置如图(1-1)所示,应变式传感器已装到应变传感器模块上。传感器中各应变片已接入模板的左上方的R1、R 2、R 3、R4。可用万用表进行测量,R1=R2=R3=R4=350Ω。 R1 R2 R3R4 图1-1 应变式传感器安装示意图 图1-2 应变式传感器单臂电桥实验接线图 2、接入模板电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,顺时针调节Rw2使之大致位于中间位置,再进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。(注意:当Rw2的位置一旦确定,就不能改变。) 3、按图1-2将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图 9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

传感器与检测技术实验报告

“传感器与检测技术”实验报告 学号: 913110200229 姓名:杨薛磊 序号: 83

实验一电阻应变式传感器实验 (一)应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流 1位数显万用表(自备)。 稳压电源、电压表;应变式传感器实验模板、托盘、砝码; 4 2 四、实验步骤: 应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变片测量电路、差动放大器组成。实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器上的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。

传感器实验四报告

传感器与检测技术实验报告 课程名称:传感器与检测技术 实验项目:电势型传感器实验 实验地点: 专业班级: 学号: 姓名: 指导教师: 2013年11 月11 日

实验一线性霍尔传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:本实验采用的霍尔式位移传感器是由线性霍尔元件、永久磁钢组成,霍尔式位移传感器的工作原理和实验电路原理如图所示。将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0, (a)工作原理(b)实验电路原理 设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。当霍尔 元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大输出为V。V与X有一一对应的特性关系。 三、需用器件与单元: 主机箱中的±2V~±10V直流稳压电源、±15V直流稳压电源、电压表;霍尔传感器实验模板、霍尔传感器、测微头。 四、实验步骤: 调节测微头的微分筒,使微分筒的0刻度线对准轴套的10mm 刻度线。按示意图安装、接线,将主机箱上的电压表量程切换开关打到2V档,±2V~±10V直流稳压电源调节到±4V档。检查接线无误后,开启主机箱电源,移动测微头的安装套,使传感器的PCB板处在两园形磁钢的中点位置时,拧紧紧固螺钉。再调节RW1使电压表显示0。测位移使用测微头时,当来回调节微分筒使测杆产生位移的过程中本身存在机械回程差,为消除这种机械回差可用单行程位移方法实验:顺时针调节测微头的微分筒3周,记录电压表读数作为位移起点。以后,反方向调节测微头的微分筒,每隔△X=0.1mm从电压表上读出输出电压Vo值,将读数填入表 表17 霍尔传感器(直流激励)位移实验数据 根据表17数据作出V-X实验曲线,分析曲线在不同测量范围(±0.5mm、±1mm、 ±2mm)时的灵敏度和非线性误差。实验完毕,关闭电源。

传感器原理与应用实验报告

传感器原理与应用 实验报告 分校: 班级: 姓名: 学号:

实验一 电阻应变式传感器实验 实验成绩 批阅教师 一. 实验目的 1.熟悉电阻应变式传感器在位移测量中的应用 2.比较单臂电桥、双臂电桥和双差动全桥式电阻应变式传感器的灵敏度 3.比较半导体应变式传感器和金属电阻应变式传感器的灵敏度 4.通过实验熟悉和了解电阻应变式传感器测量电路的组成及工作原理 二.实验内容 1.单臂电桥、双臂电桥和双差动全桥组成的位移测量电路, 2.半导体应变式传感器位移测量电路。 三.实验步骤 1.调零。开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。调零后关闭仪器电源。 2.按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V 。 图(1) 测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。 3.接线无误后开启仪器电源,预热数分钟。调整电桥W D 电位器,使测试系统输出为零。 1. 旋动测微头,带动悬臂梁分别作向上和向下的运动,以悬臂梁水平状态下电路输出电压为零起点,向上和向下移动各6mm ,测微头每移动1mm 记录一 +

个差动放大器输出电压值,并列表。2.计算各种情况下测量电路的灵敏度S。S=△U/△x 表1 金属箔式电阻式应变片单臂电桥 表2 金属箔式电阻式应变片双臂电桥 表3 半导体应变片双臂电桥

自动化传感器实验报告四--直流全桥的应用——电子秤实验

广东技术师范学院实验报告 学院:自动化专业:自动化班级:08自动化 成绩: 姓名:学号: 组 别: 组员: 实验地点:实验日期:指导教师签名: 实验二项目名称:直流全桥的应用——电子秤实验 一、实验目的 了解应变直流全桥的应用及电路的标定。 二、基本原理 电子秤实验原理与实验三相同,利用全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始的电子秤。 三、需用器件和单元 传感器实验箱(二)中应变式传感器实验单元,应变式传感器实验模板、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。 四、实验内容与步骤 1.按实验一中的步骤2,将差动放大器调零,按图3-1全桥接线,打开直流稳压电源开关,调节电桥平衡电位器Rw1,使直流电压表显示为零。 2.将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节)使直流电压表显示为0.200V或-0.200V。 3.拿去托盘上的所有砝码,调节电位器Rw1(零位调节)使直流电压表显示为0.000V。 4.重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量量纲g,就可以称重,成为一台原始的电子秤。 5.把砝码依次放在托盘上,填入下表4-1。 表4-1电桥输出电压与加负载重量值 6. 误差:0% 非线性误差:0% 五、实验注意事项 1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。 2.电桥的电压为±5V,绝不可错接成±15V。

六、实验报告要求 1.记录实验数据,绘制传感器的特性曲线。 2.分析什么因素会导致电子秤的非线性误差增大,怎么消除,若要增加输出灵敏度,应采取哪些措施。 答:环境因素和实验器材的校正不准会导致非线性误差增大。通过多次校正,调节变位器可消除或减少误差。若要增加输出灵敏度可增加相形放大电路。

实验四 霍尔式传感器的静态位移特性—直流激励

南昌大学实验报告 学生姓名: 学 号: 专业班级: 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩: 实验四 霍尔式传感器的静态位移特性—直流激励 实验目的:了解霍尔式传感器的原理与特性。 所需单元及部件:霍尔片、磁路系统、电桥、差动放大器、V /F 表、直流稳压电源,测微头、振动平台。 有关旋钮的初始位置:差动放大器增益旋钮打到最小,电压表置2V 档,直流稳压电源置2V 档,主、副电源关闭。 实验步骤: (1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号,霍尔片安装在实验仪的振动圃盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔式传感器。 (2)开启主、副电源将差动放大器调零后,增益置接近最小,使得霍尔片在磁场中位移时V /F 表读数明显变化,关闭主,副电源,根据图1接线,W 1、r 为电桥单元的直流电桥平衡网络。 (3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。 (4)开启主、副电源,调整W1使电压表指示为零。 (5)上下旋动测微头,记下电压表读数,建议每隔0.2mm 读一个数,将读数填入下 表: 图1 接线图

做出V—X曲线,指出线性范围,求出灵敏度,关闭主、副电源。 可见,本实验测出的实际上是磁场情况,它的线性越好,位移测量的线性度也越好,它的变化越陡,位移测量的灵敏度也越大。 (6)实验完毕,关闭主、副电源,各旋钮置初始位置。 注意事项: (1)由于磁路系统的气隙较大,应使霍尔片尽量靠近极靴,以提高灵敏度。 (2)一旦调整好后,测量过程中不能移动磁路系统。 (3)激励电压不能过大,以免损坏霍尔片。(±4V就有可能损坏霍尔片)

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

传感器基本特性

第2章传感器的基本特性(知识点) 知识点1 传感器的基本特性 传感器的基本特性是指传感器的输入-输出关系特性,是传感器的内部结构参数作用关系的外部特性表现。不同的传感器有不同的内部结构参数,决定了它们具有不同的外部特性。 传感器所测量的物理量基本上有两种形式:稳态(静态或准静态)和动态(周期变化或瞬态)。前者的信号不随时间变化(或变化很缓慢);后者的信号是随时间变化而变化的。传感器所表现出来的输入-输出特性存在静态特性和动态特性。 知识点2 传感器的静态特性 传感器的静态特性是它在稳态信号作用下的输入-输出关系。静态特性所描述的传感器的输入-输出关系式中不含时间变量。 衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。2.1.1 线性度 ; 线性度(Linearity)是指传感器的输出与输入间成线性关系的程度。传感器的实际输入-输出特性大都具有一定程度的非线性,在输入量变化范围不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段,这就是传感器非线性特性的“线性化”。所采用的直线称为拟合直线,实际特性曲线与拟合直线间的偏差称为传感器的非线性误差,取其最大值与输出满刻度值(Full Scale,即满量程)之比作为评价非线性误差(或线性度)的指标。 灵敏度 灵敏度(Sensitivity)是传感器在稳态下输出量变化对输入量变化的比值。 对于线性传感器,它的灵敏度就是它的静态特性曲线的斜率;非线性传感器的灵敏度为一变量。 分辨率 分辨率(Resolution)是指传感器能够感知或检测到的最小输入信号增量,反映传感器能够分辨被测量微小变化的能力。分辨率可以用增量的绝对值或增量与满量程的百分比来表示。 2.1.4 迟滞 迟滞(Hysteresis),也叫回程误差,是指在相同测量条件下,对应于同一大小的输入信号,传感器正(输入量由小增大)、反(输入量由大减小)行程的输出信号大小不相等的现象。产生迟滞的原因:传感器机械部分存在不可避免的摩擦、间隙、松动、积尘等,引起能

传感器实验报告应变片测量

传感器实验报告 一、实验原理 利用电阻式应变片受到外力发生形变之后,金属丝的电阻也随之发生变化。通过测量应变片的电阻变化再反算回去应变片所受到的应变量。利用电桥将电阻变化转化成电压变化进行测量,电桥的输出电压经过应变放大仪之后输出到采集卡,labview 采集程序通过采集卡 读取到应变放大仪的输出。 1 4 电桥输出电压与导体的纵向应变ε之间的关系为: 1 4 v V K ε=??? (1.1) 其中K 为电阻应变片的灵敏系数,V 为供桥电压,v 为电桥输出电压。由上式可知通过测量电桥输出电压再代入电阻应变片的灵敏系数就可以求出导体的纵向应变,即应变片的纵向应变。 二、实验仪器 悬臂梁 一条 应变片 一片 焊盘 两个 502胶水 一瓶 电阻桥盒 一个 BZ2210应变仪 一台 采集卡 一个 电脑 一台 砝码 一盒 三、实验步骤 1、先用砂纸摩擦桥臂至光滑,再用无水乙醇擦拭桥臂; 2、拿出应变片和焊盘,将502胶水滴在应变片及焊盘背面,把其贴在桥臂上,并压紧应变片; 3、使用电烙铁将应变片和焊盘焊接起来,再将焊盘跟桥盒连接起来,这里采用的是1 桥的接法; 4、将桥盒的输出接入到应变放大仪的通道1; 5、应变仪的输出接到采集卡上; 6、运行labview 的采集程序进行测试;

7、改变砝码的重量,从采集程序记录得出的数据。 8、对所得的数据做数据处理。 四、实验数据

五、数据分析 1、线性度分析 取出实验数据的0~250g的部分做线性度分析,数据如表2所示。

对上述数据进行初步分析,第一组跟第三组数据都是呈线性的,而第二组数据在70g-100g 这里却有了0.0013的变化,变化较大,不符合理论值,所以在进行数据分析时排除第二组数据,仅适用第一、第三组数据进行数据分析。对第一、第三组数据使用MATLAB 进行分析,先将两组数据做曲线拟合,得到拟合曲线之后将x 代入拟合曲线中求出对应的值,再把两组数据的端点取出做直线,将两条线相减得到最大差值,分别求出两组数据的最大差值,再代入公式max =100%L FS L Y γ?± ? 求出每组数据的线性度。FS Y 指的是满量程输出,这里取重量为250g 的数据。 具体实现的MATLAB 代码: x=[0 10 20 30 40 50 70 100 120 150 170 200 250]; x0=[0 250]; y01=[2.8646 2.8734]; y03=[2.8736 2.8828]; y1=[2.8646 2.8646 2.8648 2.8652 2.8653 2.8687 2.8662 2.8677 2.8681 2.8696 2.8701 2.8715 2.8734];%第一组数据 y2=[2.8613 2.8615 2.8619 2.8623 2.8625 2.8629 2.8637 2.865 2.8657 2.8668 2.8836 2.8847 2.886];%第二组数据 y3=[2.8736 2.8739 2.8742 2.8745 2.8749 2.8752 2.876 2.8771 2.8778 2.879 2.8798 2.8807 2.8828];%第三组数据 p1=polyfit(x,y1,1); p2=polyfit(x,y2,1); p3=polyfit(x,y3,1); p4=polyfit(x0,y01,1); p5=polyfit(x0,y03,1);

带你认识基本的传感器特性参数

带你认识基本的传感器 特性参数 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

带你认识基本的传感器特性参数 传感器的关键性能参数有多种,其中最为基本的有:量程、灵敏度、线性度、迟滞、重复性、精度、分辨率、零点漂移、带宽,本文将对这些参数进行一一介绍。 量程 每个传感器都有自身的测量范围,被测量处在这个范围内时,传感器的输出信号才是有一定的准确性的。 传感器的量程X FS、满量程输出值Y FS、测量上限X max、测量下限X min的关系见下图。 灵敏度 传感器的灵敏度是指其输出变化量ΔY与输入变化量ΔX的比值,可以用k表示。对于一个线性度非常高的传感器来说,也可认为等于其满量程输出值Y FS与量程X FS的比值。灵敏度高通常意味着传感器的信噪比高,这将会方便信号的传递、调理及计算。 k=ΔY ΔX 线性度 传感器的线性度又称非线性误差,是指传感器的输出与输入之间的线性程度。理想的传感器输入-输出关系应该是程线性的,这样使用起来才最为方便。但实际中的传感器都不具备这种特性,只是不同程度的接近这种线性关系。 实际中有些传感器的输入-输出关系非常接近线性,在其量程范围内可以直接用一条直线来拟合其输入-输出关系。有些传感器则有很大的偏离,但通过进

行非线性补偿、差动使用等方式,也可以在工作点附近一定的范围内用直线来拟合其输入-输出关系。 选取拟合直线的方法很多,上图表示的是用最小二乘法求得的拟合直线,这是拟合精度最高的一种方法。实际特性曲线与拟合直线之间的偏差称之为传感器的非线性误差δ,其最大值与满量程输出值Y FS的比值即为线性度γL。 γL=± δ Y FS ×100% 迟滞 当输入量从小变大或从大变小时,所得到的传感器输出曲线通常是不重合的。也就是说,对于同样大小的输入信号,当传感器处于正行程或反行程时,其输出值是不一样大的,会有一个差值ΔH,这种现象称为传感器的迟滞。 产生迟滞现象的主要原因包括传感器敏感元件的材料特性、机械结构特性等,例如运动部件的摩擦、传动机构间隙、磁性敏感元件的磁滞等等。迟滞误差γH的具体数值一般由实验方法得到,用正反行程最大输出差值ΔH max的一半对其满量程输出值Y FS的比值来表示。 γH=±H max 2Y FS ×100% 重复性 一个传感器即便是在工作条件不变的情况下,若其输入量连续多次地按同一方向(从小到大或从大到小)做满量程变化,所得到的输出曲线也是会有不同的,可以用重复性误差γR来表示。 重复性误差是一种随机误差,常用正行程或反行程中的最大偏差ΔY max的一半对其满量程输出值Y FS的比值来表示。 γR=±Y max 2Y FS ×100%

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

传感器测试实验报告

实验一直流激励时霍尔传感器位移特性实验 一、实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生 电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍 尔电势 U H= K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中 沿水平方向移动,则输出的霍尔电动势为U H kx ,式中k—位移传感器的灵敏度。这样它就 可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场 梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座 中,实验板的连接线按图9-1进行。 1、 3 为电源±5V , 2、4 为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1 使数显表指示为零。 图 9-1直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填 入表 9-1。 表9- 1 X ( mm) V(mv)

作出 V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

传感器的静态特性

传感器静态特性的一般知识 传感器作为感受被测量信息的器件,总是希望它能按照一定的规律输出有用信号,因此需要研究其输出――输入的关系及特性,以便用理论指导其设计、制造、校准与使用。理论和技术上表征输出――输入之间的关系通常是以建立数学模型来体现,这也是研究科学问题的基本出发点。由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间而变化的量),理论上应该用带随机变量的非线性微分方程作为数学模型,但这将在数学上造成困难。由于输入信号的状态不同,传感器所表现出来的输出特性也不同,所以实际上,传感器的静、动态特性可以分开来研究。因此,对应于不同性质的输入信号,传感器的数学模型常有动态与静态之分。由于不同性质的传感器有不同的内在参数关系(即有不同的数学模型),它们的静、动态特性也表现出不同的特点。在理论上,为了研究各种传感器的共性,本节根据数学理论提出传感器的静、动态两个数学模型的一般式,然后,根据各种传感器的不同特性再作以具体条件的简化后给予分别讨论。应该指出的是,一个高性能的传感器必须具备有良好的静态和动态特性,这样才能完成无失真的转换。 1. 传感器静态特性的方程表示方法 静态数学模型是指在静态信号作用下(即输入量对时间t 的各阶导数等于零)得到的数学模型。传感器的静态特性是指传感器在静态工作条件下的输入输出特性。所谓静态工作条件是指传感器的输入量恒定或缓慢变化而输出量也达到相应的稳定值的工作状态,这时,输出量为输入量的确定函数。若在不考虑滞后、蠕变的条件下,或者传感器虽然有迟滞及蠕变等但仅考虑其理想的平均特性时,传感器的静态模型的一般式在数学理论上可用n 次方代数方程式来表示,即 2n 012n y a a x a x a x =+++?+ (1-2) 式中 x ――为传感器的输入量,即被测量; y ――为传感器的输出量,即测量值; 0a ――为零位输出; 1a ――为传感器线性灵敏度; 2a ,3a ,…,n a ――为非线性项的待定常数。 0a ,1a ,2a ,3a ,…,n a ――决定了特性曲线的形状和位置,一般通过传感器的校 准试验数据经曲线拟合求出,它们可正可负。 在研究其特性时,可先不考虑零位输出,根据传感器的内在结构参数不同,它们各自可

实验五-电容式传感器的位移特性实验

实验五 电容式传感器的位移特性实验 一、实验目的 了解电容式传感器的结构及其特点。 二、实验原理 平板电容器电容C =/s d ε,它的三个参数 ε、S 、d 中,保持两个参数不变,只改变其中一个参数,则可用于测量谷物干燥度(ε变)、测微小位移(变d )和测量液位(变S )等多种电容传感器。变面积型电容传感器中,平板结构对极距特别敏感,测量精度受到影响。圆柱形结构受极板径向变化的影响很小,且理论上具有很好的线性关系(但实际由于边缘效应的影响,会引起极板间的电场分布不均,非线性问题仍然存在,且灵敏度下降,但比变极距型好得多。)成为实际中最常用的结构,其中线位移单组式的电容量C 在忽略边缘效应时为: () 212ln r r l C πε= (1) 式中 l ——外圆筒与内圆柱覆盖部分的长度; 12r r 、——外圆筒内半径和内圆柱外半径。 当两圆筒相对移动l ?时,电容变化量C ?为: ()()()() 222 1110222ln ln ln r r r r r r l l l l l C C l πεπεπε-????= -== (2) 于是,可得其静态灵敏度为: ()()()()()222 111224/ln ln ln g r r r r r r l l l l C k l l πεπεπε ??+?-??= =-?=??????? (3) 可见灵敏度g K 与12r r 有关,12r r 与越接近,灵敏度越高,虽然内外极筒原始覆盖长度l 与灵敏度无关,但l 不可太小,否则边缘效应将影响到传感器的线性。 本实验为变面积式电容传感器,采用差动式圆柱形结构,如图5-1所示,此结构可以消除极距变化对测量精度的影响,并且可以减小非线性误差和增加传感器的灵敏度。其安装示意图如图5-2所示

测试技术与传感器实验报告..

测试技术与传感器 实验报告 班级: 学号: 姓名: 任课老师: 年月日

实验一:静压力传感器标定系统 一、实验原理: 压力传感器输入—输出之间的工作特性,总是存在着非线性、滞后和不重复性,对于线性传感器(如压力传感器)而言,就希望找出一条直线使它落在传感器每次测量时实际呈现的标准曲线内,并相对各条曲线上的最大偏离值与该直线的偏差为最小,来作为标定工作直线。标定工作线可以用直线方程=+表示。 y k x b 对压力传感器进行静态标定,就是通过实验建立压力传感器输入量与输出量 =+使它落之间的关系,得到实际工作曲线,然后,找出一条直线y kx b 在实际工作曲线内,由于方程中的x和y是传感器经测量得到的实验数据,因此一般采用平均斜率法或最小二乘法求取拟合直线。本实验通过最小二乘法求取拟合直线,并通过标定曲线得到其精度。即常用静态特性:工作特性直线、满量程输出、非线性度、迟滞误差和重复性。 二、准备实验: 1)调节活塞式压力计底座四个调节旋钮,使整个活塞式压力计呈水平状态如图6所示; 2)松开活塞筒缩紧手柄,将活塞系统从前方绕水平轴转动,使飞轮在水平转轴上方且活塞在垂直位置锁紧,调整活塞系统底座下部滚花螺母,使活塞筒上的水平仪气泡居于中间位置,如图6,并紧固调水平处的滚花螺母; 图6 调节好,已水平 3)被标定三个压力传感器接在截止阀上(参见下图7),打开截止阀、进气调速阀、进油阀,关闭进气阀和排气阀,将微调器的调节阀门旋出15mm左右位置; 4)打开空气压缩机,待空气压缩机压力达到0.4MPa时,关闭压气机。因为对于最大量程为0.25MPa的活塞式压力计,压力必须小于等于0.4MPa。 5)打开采集控制柜开关,检查串口连接情况。双击桌面的“压力传感器静态标定”软件,进入测试系统,如图7所示。

相关文档
最新文档