主变压器结构各部件作用

主变压器结构各部件作用
主变压器结构各部件作用

运行培训教案

主变压器结构、各部件作用

运行部

二〇一〇年八月

主变压器结构、各部件作用

一、变压器的基本结构与分类

变压器是一种改变交流电源的电压、电流而不改变频率的静止电气设备,它具有两个(或几个)绕组,在相同频率下,通过电磁感应将一个系统的交流电压和电流转换为另一个(或几个)系统的交流电压和电流而借以传送电能的电气设备。通常,它所连接的至少两个系统的交流电压和电流值是不相同的。

由此可见,变压器是一种通过电磁感应而工作的交流电气设备。主变压器系统由线圈、铁芯、主变油箱、变压器油、调压装置、瓦斯继电器、油枕及油位计、压力释放器、测温装置、冷却系统、潜油泵等组成。另外,主变压器还安装了气相色谱在线监测装置,每周对变压器油进行溶解气体检测,以便判断设备运行状况。

变压器的分类有多种方法:按用途不同可分为电力变压器、工业用变压器及其他特种用途的专用变压器;按绕组与铁芯的冷却介质不同可分为油浸式变压器与干式变压器;按铁芯的结构型式不同可分为心式变压器与壳式变压器;按调压方式不同可分为无励磁调压变压器与有载调压变压器;按相数不同可分为三相变压器与单相变压器;按铁芯柱上的绕组数不同可分为双绕组变压器与多绕组变压器;按不同电压的绕组间是否有电的连接可分为独立绕组变压器与自耦变压器等等。

二、变压器的各部件作用

我厂500kV主变压器由日本三菱公司生产,共19台(一台备用)型号为SUW的单相、双卷、油浸式水冷无载分接升压壳式变压器组,三台单相变压器以Y0/△—11型接线组成与发电机组成单元接线,额定容量3×214MVA,额定电压550/18kV,无载分接范围550—4×2.5%,阻抗电压15%。高压侧出线经高压套管与SF6绝缘封闭母线联接,变压器中性点三相经穿墙套管联接在 B 相主变室经电缆接地;变压器的冷却方式为强迫油循环水冷(ODWF);每台单相变压器共三组冷却器,运行方式为两台优先、一台备用。主变压器高压侧中性点直接接地方式,低压侧经软连接辫与离相封闭母线联接,高压侧通过SF6管道母线与500kV电缆联接。

表1.主变压器主要参数

1.铁芯

铁芯是变压器中主要的磁路部分。通常由含硅量较高,厚度为 0.35 或 0.5 mm,表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成。铁芯分为铁芯柱和铁轭俩部分,铁芯柱套有绕组;铁轭闭合磁路之用。

铁芯结构的基本形式有心式和壳式两种。

二滩电厂为壳式变压器,铁芯由高质量、无时效、冷扎、晶粒取向、高磁导率的硅钢片叠成,有两个平行的磁回路,铁芯水平布置,这样铁芯能环绕线圈。壳式变压器有一个含有常规宽度硅钢穿孔的铁芯,这些硅钢穿孔在底部油箱法兰上层叠形成搭接接头,上部油箱降低到线芯和线圈的装置上,这样就能用焊接方式焊接到底箱上以达到对铁芯的固定。铁芯也因油箱侧板的张力作用被紧固在外部设备上,减小了噪音并排除在运行中发生松动的可能;同时狭小的铁芯大大提高了冷却效果。与传统心式变压器不同的是壳式变压器为外铁型结构,铁芯无须加装油道来改善铁芯的冷却效果。

2.绕组线圈

绕组是变压器的电路部分,它是用纸包的绝缘扁线或圆线绕成。

变压器线圈的导体元件用矩形断面具有高导电率的铜线制成,外部包以两层牛皮纸达到绝缘目的,n根铜线用绝缘纸连续层状包扎在一起做成线圈元件,线圈层间嵌相同材料的绝缘垫板,铜线数量依工作电压而定,这样的线圈元件层间具有足够的绝缘强度。在绝缘纸最外层使用胶结剂,每一包扎层都胶结在一起,构成了紧密的线

圈。为减小涡流损耗,在导体元件的预定位置进行线路交叉。壳式变压器的线圈为垂直固定,为防止错位,在线圈与铁芯间插入木楔,线圈所有端部都被线芯和油箱固定,外力平布于一个大区域内,使其机械强度大大提高。

线圈接线方式:二滩500KV壳式变压器采用的是Y/△-11的接线方式,具体方式如下图2所示:

图1.主变压器绕组接线图

3. 防电涌绝缘材料

三菱壳式变压器利用一个具有较高绝缘强度的防电涌线圈来抵抗脉冲电压的影响,由于壳式变压器使用了具有较大表面积的线圈,线圈间的串联电容大,当施加一电涌时,能将电压合理分配,该电涌线圈是一个无振荡绕组,可对由于脉冲电压引起的电压振荡起抑制作用。

4. 油箱

变压器的油箱由高抗张强度的钢板焊接而成,分为上下两个部分。壳式变压器的线圈完全用绝缘材料密封,并依次用线芯环绕,因此不会因外部影响而担心损伤,而且无须提供绝缘空间。基于此,壳式变压器铁芯与油箱内壁只留有一点装配空间,油箱与铁芯、绕组配合紧密,油箱为完全焊接结构,无螺栓把合,这与传统的变压器有着很大的差别。器身装在油箱内,油箱内充满变压器油。

变压器油是一种矿物油,具有很好的绝缘性能。变压器油起两个作用:①在变压器绕组与绕组、绕组与铁芯及油箱之间起绝缘作用。②变压器油受热后产生对流,对变压器铁芯和绕组起散热作用。油箱有许多散热油管,以增大散热面积。

5. 变压器的无载调压装置,

在变压器无载时对变压器高压绕组进行档位调整,主变高压绕组具有五个档分别各档位对应的高压侧额定电压及额定电流为下表:

表2.主变压器各档对应电流

在主变内部高压侧触头引线引至一个断路抽头变换器,可移动接点具有两对并联触点,被弹簧紧紧压在固定点上;断路抽头变换器的转动靠其连接的联杆,联杆与外部的操作杆通过齿轮联接配合,而操作杆接至变压器下部操作箱。操作分接头控制箱内的操作把手,通过各部件的伞齿轮配合,达到操作主变内部断路抽头变换器的动触头的位置。

图2.主变压器示意图

6. 保护装置

6.1 温度计

通常,变压器上安装的温度计用于温度测量与采集温度信号的控制。用于测量的有就地测量与远方测量两种;用于控制的有控制冷却设备的起停与温度报警。少数变压器还装设有模拟式绕组温度计,那是一种根据变压器的负载电流(通过套管式电流互感器测量)及事先调整好的比率间接反映绕组的平均温度或者热点温度。如果是测量绕组热点温度,这时的热点温升与平均温升间的差值通常是设计计算值。

还有一种国内外都极少直接在变压器上使用的光纤测温仪,是将光纤测温探头直接埋设在绕组的预期热点处测量绕组的热点温度。这种光纤测温仪往往仅在制造厂或研究部门的试验研究中应用,用以检验计算机程序等。

6.2 油枕

该设备通过在内部绝缘油表面上设置一合成橡胶室来避免绝缘油与空气直接接触。橡胶室采用具有较好抗油防雨特性的睛橡胶制成,橡胶室内的空气通过装有硅胶的呼吸器与外部的空气相通,从而防止了橡胶的变质。油枕内指示油位的装置为电磁式油位计,并将油位浮子位置的最大最小位移均分为10个刻度标示在刻度盘上,而不是将油量划分为均匀刻度。当油枕内由于某种原因导致油位下降至0时,油位计内触点闭合报警。

6.3 储油柜与吸湿器

大、中型变压器都装设有储油柜,储油柜一方面用于调节因温度变化而引起变压器油的体积变化;另一方面,它缩小了变压器油与大气接触的面积,减小了潮气(水分)与氧气进入变压器油的程度,从而减缓了油的变质。故障时,热量会使变压器油汽化,触动气体继电器发出报警信号或切断电源。如果是严重事故,变压器油大量汽

化,油气冲破安全气道管口的密封玻璃,冲出变压器油箱,避免油箱爆裂。

吸湿器则是变压器中的油随温度体积变化时,使进入储油柜的大气保持干燥状态。如果吸湿器采用变色硅胶吸潮,当硅胶颜色由蓝色变成红色时应及时更换硅胶或将其进行干燥恢复为蓝色。硅胶的吸潮效果与硅胶的干燥程度、空气的湿度、环境温度等有关。

胶囊式与隔膜式储油柜可以防止油与空气直接接触,防止外界的水分与氧气进入干燥的变压器油中。然而,橡胶隔膜除仍然有微量的透气性外,寿命往往是人们关注的问题。为了杜绝透气及人们对胶囊寿命的担心,又出现了用不锈钢薄板制作的波纹膨胀式储油柜,波纹膨胀式储油柜不仅解决了胶囊的寿命问题,也彻底杜绝了变压器运行中外部水分与氧气通过储油柜进入变压器油中的可能性。

为了防止胶囊或外油式波纹膨胀器在长期运行中内部储存水分,进入这些储油柜的空气也应通过吸湿器进行干燥。

6.4 瓦斯继电器

Buehholz瓦斯继电器安装在主变高压套管升高座与油枕的连接管道上,为浮子式,当变压器出现故障产生的气体聚集在瓦斯继电器的顶部达到450±10cc时,瓦斯继电器的浮标F1下降接通报警回路接点;当变压器内出现大的故障时,由于有大量的气体产生,油流出现浪涌,当油流的速度达到100cm/s时,浮标F2动作接通跳闸回路。目前二滩电厂应用的是开口杯挡板式瓦斯继电器,其主要结构为上下2个开口杯及平衡锤。变压器正常运行时,上开口杯和下开口杯都浸在油中,开口杯在油内的重力所产生的力矩小于平衡锤产生的力矩,因此开口杯向上倾斜,继电器触点不动作。当油箱内部发生轻微故障时,少量的气体上升后逐渐聚集在继电器的上部,迫使油面下降.使上开口杯漏出油面.此时由于浮子减小。开口杯的重力加上杯内油重所产生的力矩大于平衡锤所产生的力矩,从而使上开口杯的触点动作,发轻瓦斯保护动作信号。当变压器油箱内部发生严重故障时,大量的气体和油流直接冲击下开口杯的挡板,使下开口杯触点动作,从而使重瓦斯保护动作跳闸。

6.5 卸压装置

变压器卸压装置使用的是压力释放阀,该装置灵敏度高,可在2ms内立即释放完变压器内升高的压力,该装置通过一导管将释放的绝缘油排放至变压器下部油池。6.6 压力释放器

压力释放器实际上就是一个用弹簧压紧的阀门,该阀门具有对启动力瞬时放大的功能,用于释放变压器油箱中的瞬时压力增大而保护变压器的油箱,避免油箱损坏。当油箱内部压力被释放到小于弹簧压力时,弹簧的压力将会使该阀门自动关闭,避免过多的变压器油溢出。在压力释放器动作的同时,会发出报警信号。应当保持其信号接线盒的干燥,以免进水受潮时误报信号。同时,应注意弹簧的时效性,必要时应定期检测。

压力释放器通常安装于油箱顶部,以减小正常工作时的静压力。为了防止其动作时热油喷在设备上及人员身上,可用导油管将喷出的油限制在管内并流到基础的油池中。

油量超过一定量的大型变压器,应当需要装设两个压力释放器。

6.7 在线油中溶解气体分析仪

目前在电力系统中应用的在线油中溶解气体分析仪,主要有两种类型。一种是采用气体半透膜探头与变压器油接触,收集变压器油中的气体,其检测器有气敏半导体与燃料电池两种;另一种是采用气相或液相色谱分析技术进行在线油中溶解气体分析。

采用气体半透膜探头的产品既有国外的,也有国内的。总的说来,一般的分析精度都不高。特别是采用气敏半导体检测器的情况,通常只能对氢气做出反映;而对于采用燃料电池作为检测器的情况,除氢气外,其他气体只能检出一部分。例如,通常可以检出氢气(100%)、一氧化碳(18%)、乙烯(1.5%)、乙炔(8%)四种气体的混合总量。也就是说,所检测出的气体总量中主要是氢气。

例如,如果变压器油中实际溶解的气体的含量为:

氢气(2H )——610300-?; 一氧化碳(CO )——6

10500-? 乙烯(42H C )——610100-?; 乙炔(22H C )——6

105-? 则:仪器指示值()66103901008.05015.010018.05001300--?≈??+?+?+?=

采用燃料电池作为检测器的国外产品,例如有Hydran 公司的H201R 与H201i 等,前者为模拟型,后者为数字型。实际上,采用气体半透膜探头的在线油中溶解气体分析器具,可以认为仅仅是守护变压器油中溶解气体的‘狗’,如果其指示的油中溶解气体有异常情况发生,应当取样在实验室进行更精确的油中溶解气体分析。

另一种油中溶解气体分析仪,则是真正的进行油中溶解气体分析。可以分析6种或8种油中溶解气体,其分析精度通常在%10 。因其价格很贵,实际上很少在变压器上应用。

6.8 漏水监视

每一台变压器的冷却器配置一个漏水探测器,由于变压器冷却器管路为双层管,当冷却器的热交换器内层管道发生漏水时,该装置将发出报警信号,平时在巡回过程中可通过观察漏水探测器上的视察窗以观察其有无漏水。

6.9 油枕及油位计

油枕主要担负着变压器的补油及储油的功能,它安装于变压器油面的最高位,主要有油枕器身、橡胶气囊、油位计、油枕器身及橡胶囊通过管路等,油枕器身包含注油阀、排油阀、排气阀、取样阀;当负荷增加使变压器温度升高,绝缘油膨胀使油箱内的一部份绝缘油流入油枕,所占油枕空间的空气将通过气管及呼吸器排出,当负荷下降时使变压器温度降低,绝缘油密度增大使油枕中的一部绝缘油流入油箱进行补充。

油位计为盘形油位计,主要反映油枕中油位的元件。当油枕中的油发生变化时,油枕中的浮子将跟随油位的变化而上下移动,浮子联杆将带动齿轮转化为油枕外的油位计转子的转动,缚于定子磁体(永久磁体)上的指针通过转子磁体的转动而转动相应的角度,并通过电气接点来反映油位过低报警。油位计共设10个刻度来反映油枕内的油位,当油位指针指示为0时,将发出主变低油位报警信号。

7. 高、低压及中性点套管

变压器套管的作用是,将变压器内部高、低压引线弓到油箱外部,不但作为引线对地绝缘,而且担负着固定引线的作用,变压器套管是变压器载流元件之一,在变压器运行中,长期通过负载电流,当变压器外部发生短路时通过短路电流。因此,对变压器套管有以下要求:

(1)必须具有规定的电气强度和足够的机械强度。

(2)必须具有良好的热稳定性,并能承受短路时的瞬间过热。

(3)外形小、质量小、密封性能好、通用性强和便于维修。

高、低压及中性点套管均为油纸电容型套管。高压套管为为双法兰结构,一个法

兰用于将套管安装在变压器的顶部,第二个法兰用于与SF6管道母线相连,在两法兰之间引出电容试验抽头,套管的上半部密封于SF6管道中。套管出线与SF6管道母线相连。

低压套管与低压侧的封闭母线相连,两者间的连接为软连接。

三台单相变压器通过中性点套管连接在一起形成变压器组的中性点,该中性点在B相室内通过电流互感器直接接地。

8. 冷却系统

主变冷却系统为OWDF型强迫油循环水冷却,对变压器绝缘油进行冷却。主要包括:潜油泵、冷却器、示流器、检漏仪、进出水电动阀、进出水压力表、进水总流量计、出水流量计、出水水温计等。冷却器油管装于变压器器身的上下部联接,正常运行时主变绝缘油由潜油泵工作从变压器上部冷却器油管进入经过冷却器,再由变压器下部油管流入变压器下部。在冷却器中,冷却水流经冷却器的水管,油与水进行热交换,使主变绝缘油油温下降。在变压器中形成由下至上的油流,在油流流过各元件时,主变绝缘油与发热各元件进行热交换,以达到冷却变压器的目的。

冷却器由冷却油室、冷却水管、上下水室、漏水检测仪组成。冷却水管由36根双层铜管组成,外管为螺旋状翼型管,具有热传导系数大、抗压抗震性能好;内管为耐腐裸管,具有抗腐蚀性强。双层铜管经过“膨胀”处理固定于上下的两法兰上,且双层铜管中间空隙与固定法兰空室相通,下部固定法兰空室引接漏水检测仪,而冷却水管固定法兰固定于冷却器油室上下端。冷却器下端水室中间隔开,分别为进、出水室,上端水室相通,即冷却水由下端进水室流入,经冷却铜管进入上端水室,再经冷却管从下端水室流出。

冷却器中的冷却水流量可通过调整冷却器的进出水阀门。当双层冷却水管管壁发生破裂时,水或油将由经损坏处流入双层管之间,并经空隙流入最低处的漏水检测仪,当漏水检测仪中收集漏水为135CC时,检测仪中的浮子上升将电触点接通,发出冷却器漏水信号。

9.潜油泵

潜油泵被装于冷却器的进油管中间,其作用是强迫主变绝缘油进入冷却器,并辅助变压器内部绝缘油形成油流,油泵电机的各电气元件全部浸在油中,靠主变绝缘油来冷却及电机轴承润滑。“超前”设置的潜油泵的启动信号由主变低压侧电压互感器

带电发出,而备用泵的启动主要由绕组温度、上层油温、示流器、流量计,当达到设定值及当一台运行的潜油故障时启动。

三. 变压器的运行情况

在变压器的运行中,要严格按主变的运行规程进行操作及维护,变压器正常时,两台冷却器投入自动投入运行,一台冷却器投入备用,当备用泵自动启动时应进行检查备用泵启动的原因,备用泵自动启动的原因主要有:绕组温度达到105℃、上层油温达到80℃,运行中油流示流器指针RUN回到STOP、运行中的潜油泵故障,热继电器动作、出水管的流量计在水流小于 2.7×100L/min时;当只有一台冷却器运行时,变压器所带的负荷不得超过70%,满负荷运行时,运行时间不得超过30min,而空载运行时运行时间不得超过3小时;变压器正常运行时,绕组的温升不得超过65K、上层油温升不得超过55K,铁芯温升不得超过80K,油箱表面温升不得超过65K。而当变压器的负荷超过额定负荷时,要严格控制变压器的运行时间,当运行负荷为额定负荷的1.3倍时,持续运行时间不得超过120min, 当运行负荷为额定负荷的1.45倍时,持续运行时间不得超过80min, 当运行负荷为额定负荷的 1.5倍时,持续运行时间不得超过45min, 当运行负荷为额定负荷的2.0倍时,持续运行时间不得超过10min。

附录:

主变压器主要参数

变压器的工作原理讲课教案

第三章变压器 第一节变压器的工作原理、分类及结构 一、结构 1.铁心 如图,分铁心柱、磁轭两部分。 材料:0.35mm的冷轧有取向硅钢片,如:DQ320,DQ289,Z10,Z11等。 工艺:裁减、截短、去角、叠片、固定。 2.绕组 分同心式和交叠式两大类。 交叠式如右图。 同心式包括圆筒式、连续式、螺旋式等,见上图。 材料:铜(铝)漆包线,扁线。 工艺:绕线包、套线包。 3.其它部分 油箱(油浸式)、套管、分接开关等。

4.额定值 额定容量S N 额定电压U 1N U 2N 额定电流I 1N I 2N 对于单相变压器,有N N N N N I U I U S 2211== 对于三相变压器,有N N N N N I U I U S 221133== 注意一点:变压器的二次绕组的额定电压是指一次绕组接额定电压的电源,二次绕组开路时的线电压。 [讨论题]一台三相电力变压器,额定容量1600kV A ,额定电压10kV/6.3kV ,Y ,d 接法,求一次绕组和二次绕组的额定电流和相电流。 自己看[例3-1]。

总结:熟悉变压器额定值的规定。 二、变压器的工作原理 按照上图规定变压器各物理量的参考方向,有 dt d N e dt d N e φ φ2 211,-=-= 定义变比 2 121N N E E k == 工作原理: (1) 变压器正常工作时,一次绕组吸收电能,二次绕组释放电能; (2) 变压器正常工作时,两侧绕组电压之比近似等于它们的匝数之比; (3) 变压器带较大的负载运行时,两侧绕组的电流之比近似等于它们匝数的反比; (4) 变压器带较大的负载运行时,两侧绕组所产生的磁通,在铁心中的方向相反。 总结:牢记变压器的四条原理。 第二节 单相变压器的空载运行 一、空载运行时的物理情况 如图,变压器一次绕组接额定电压,二次绕组开路,称为变压器空载运行。此时,变压器一次绕组流过一个很小的电流,称为空载电流i 0,大约占额定电流的2%~5%,因此空载时变压器的铜损耗是很小的。为什么? 又, 11144.4N f E U m Φ=≈

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

高低高结构发电机变压器主绝缘结构分析

高低高结构发电机变压器主绝缘结构分析 随着电力行业的飞速发展,500kV电力变压器的市场竞争越来越激烈,发电机变压器的单台容量也越来越大,材料消耗也随之上升,如何在保证可靠性的前提下降低成本,成为保证各厂经济效益的前提。文章以电力变压器的主绝缘结构理论为依据,描述了高低高结构发电机变压器主绝缘结构 标签:高低高结构;发电机变压器;主绝缘 1 概述 目前我公司设计的发电机变压器在保证运输条件的前提下,优先采用高低高结构。以一台单相24万、阻抗为15%的变压器为例,高低高结构要比双柱结构器身轻约8吨左右,可见高低高结构在大容量和大阻抗变压器下的优势。 调查表明,变压器在运行中由于绝缘部件发生故障造成变压器失效占总失效数的一半左右,绝缘性能的良好对运行可靠性具有决定性意义,以电力变压器的主绝缘结构理论为基础,并以DFP-380000/500单相发电机变压器为例,对高低结构变压器的主绝缘结构进行描述,并进行简单分析。 2 电力变压器的主绝缘结构 目前,油浸式电力变压器的主绝缘采用油-隔板结构形式,主绝缘结构中的油隙靠纸筒来间隔。油的耐电强度在理论上是很高的,纯净的油的耐电强度高达4000kV/cm以上,标准油杯中击穿电压一般为40kV/2.5mm。1.0mm纸板的击穿强度为46-50kV/mm,1.5mm纸板的击穿强度为32-45kV/mm,2.0mm纸板的击穿强度为29-35kV/mm。 线圈间的绝缘结构采用薄纸筒小油隙结构。这种结构纸筒厚度为4mm及以下,油隙宽度小于15mm及以下。主绝缘的击穿先发生在油隙中的,而油隙一旦击穿,纸筒也就随着击穿,因此并不要求纸筒能承受住全部试验电压。此外,在电场较均匀的情况下,根据变压器油的体积效应,油隙耐电强度随油隙的减小而增大,因此在同一主绝缘距离,同一纸筒占绝缘距离百分数情况下,油隙分割越小,则耐电强度越高。由于纸筒只起到分割油隙的作用,所以不宜太厚,但由于机械强度的要求,纸筒也不能太薄。 在薄纸筒小油隙结构中,纸筒的总厚度一般占主绝缘的1/5左右。每个纸筒的厚度取决于机械强度。一般来说,最小为1.5mm,靠近线圈的纸筒为3mm,由2张1.5mm厚的纸板组成。紧靠线圈内径侧的纸筒由5mm以上的硬纸板滚压而成,纸板先在两端磨成斜梢,然后沿斜梢粘合成纸筒,线圈直接绕在纸筒上。 薄纸筒小油隙结构的最小击穿电压按下式计算:

12v电子变压器工作原理

电子变压器工作原理图 电子变压器就是开关稳压电源。它实际上就是一种逆变器。首先把交流电变为直流电,然后用电子元件组成一个振荡器直流电变为高频交流电。通过开关变压器输出所需要的电压然后二次整流供用电器使用。开关稳压电源具有体积小,重量轻,价格低等优点,所以被广泛用在各种电器中。开关稳压电源的原理较复杂。 下面一种电子变压器电路图的分析,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电子变压器电路图: 电子变压器工作原理电路如图所示。电子变压器原理与开关电源工作原理相似,二极管VD1~VD4 构成整流桥 把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻 R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。振荡变压器可自制,用音频线绕制在H7 X 10 X 6的磁环上。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm高强度漆包线绕8匝。二极管VD1~VD4选用IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。此电子变压器电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。如果电压不满足上述数值,或电子变压器电路不振荡,则应检查电路有无错焊、漏焊或虚焊。然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。整个电子变压器电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。引外,改变T2 a、b二线圈的匝数,则可改变输出的高频电压。

变压器的主绝缘和纵绝缘

4.14 变压器的主绝缘和纵绝缘 线圈的绝缘分为主绝缘和纵绝缘。 主绝缘是指线圈对它本身以外的其他结构部分的绝缘,包括它对油箱、铁心、夹件和压板的绝缘,对同一相内其他线圈的绝缘,以及对不同相线圈的绝缘(相间绝缘)。纵绝缘是指线圈本身内部的绝缘。它包括匝间绝缘、层间绝缘、线段间的绝缘等。 图4-23 干式变压器主绝缘 表4-16 干式变压器主绝缘尺寸

455R +δ= 表4-17 圆筒式线圈层绝缘 4.15 变压器绝缘半径计算 图4-24 圆筒式绕组绝缘半径 (1).圆筒式绕组绝缘半径计算(如图4-24所示) R 0——铁芯半径 ——铁芯对绕组绝缘距离 ——低压绕组内半径 ——低压绕组气道内侧绕组辐向厚度 ——低压绕组中气道宽度 ——低压绕组气道外侧绕组辐向厚度 ——低压绕组外半径 ——高低压绕组之间的气道宽度 ——高压绕组内半径 ——高压绕组气道内侧绕组辐向厚度 11S R +=L22B R +=233R +δ=L14 B R +=H26 B R +=

——高低压绕组之间的气道宽度 ——高压绕组气道外侧绕组辐向厚度 — 高压绕组外半径 ——高压绕组外直径 ——两铁芯柱中心距离 低压绕组DY2平均半径 12 122R R R += 低压绕组DY1平均半径 34 342R R R += 高压绕组GY2平均半径 56 562R R R += 高压绕组GY1平均半径 78 782 R R R += 高低压间漏磁空道平均半径 45 2HL R R Y += 低压气道平均半径 23 2L R R Y += 高压气道平均半径 67 2 H R R Y += (2).饼式(含螺旋式、连续式)绕组绝缘半径计算 R 0——铁芯半径 ——铁芯对绕组绝缘距离 ——低压绕组内半径 图4-25 ——低压绕辐向厚度 H1 8B R +=2D ?=6 0S M +=677R +δ=11S R +=L 2B R +=233 R +δ=

单相变压器的基本工作原理和结构

变压器是一种静止电器,它通过线圈间的电磁感应,将一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能. 3.1 变压器的基本工作原理和结构 3.2 单相变压器的空载运行 3.3 单相变压器的负载运行 3.4 变压器的参数测定 3.5 变压器的运行特性 隐形专家改编于2009-05

3.1 变压器的基本工作原理和结构 3.1.1 基本工作原理和分类 一、基本工作原理 变压器的主要部件是铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电联系。在一 次绕组中加上交变电压,产生交链一、二次绕 组的交变磁通,在两绕组中分别感应电动势。 1 u 1 e 2 e 2u 1i 2 i Φ 1 U 2 U 1 u 2u L Z 1 2 12d Φe =-N dt d Φe =-N dt 只要(1)磁通有 变化量;(2)一、二次绕组的匝数不同,就能达到改变压的 目的。

二、分类 按用途分:电力变压器和电子变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、三绕组变压器和多绕组变压器。 按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器、壳式变压器、环形变压器。 按工作频率分:低频(工频)与高频变压器

3.1.2基本结构 一、铁心 变压器的主磁路,为了提高导磁性能和减少铁损,用厚为 0.35-0.5mm、表面涂有绝缘漆的硅钢片叠成或卷绕而成。 二、绕组 变压器的电路,一般用绝缘铜线或铝线绕制而成。 三、胶心 胶心也可称骨架,用塑料压制而成,用来固定线圈。 四、固定夹 固定夹也可称牛夹,用铁板冲压而成,用来将变 压器固定在底板上。

第一章变压器的结构与工作原理试题

第一章 变压器的结构与工作原理 一、填空:(每空1分) 1. ★★一台单相变压器额定电压为380V/220V ,额定频率为50HZ ,如果误将低压侧接到 380V 上,则此时Φm ,0I , Fe p 。(增加,减少或不变) 答:Φm 增大,0I 增大, Fe p 增大。 2. ★一台额定频率为60HZ 的电力变压器接于50HZ ,电压为此变压器的5/6倍额定电压 的电网上运行,此时变压器磁路饱和程度 ,励磁电流 ,励磁电抗 ,漏电抗 。 答:饱和程度不变,励磁电流不变,励磁电抗减小,漏电抗减小。 3. 三相变压器理想并联运行的条件是(1) , (2) ,(3) 。 答:(1)空载时并联的变压器之间无环流;(2)负载时能按照各台变压器的容量合理地分担负载;(3)负载时各变压器分担的电流应为同相。 4. ★如将变压器误接到等电压的直流电源上时,由于E= ,U= , 空载电流将 ,空载损耗将 。 答:E 近似等于U ,U 等于IR ,空载电流很大,空载损耗很大。 5. ★变压器空载运行时功率因数很低,其原因为 。 答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。 6. ★一台变压器,原设计的频率为50HZ ,现将它接到60HZ 的电网上运行,额定电压 不变,励磁电流将 ,铁耗将 。 答:减小,减小。 7. 变压器的副端是通过 对原端进行作用的。 答:电磁感应作用。 8. 引起变压器电压变化率变化的原因是 。 答:负载电流的变化。 9. ★如将额定电压为220/110V 的变压器的低压边误接到220V 电压,则激磁电流 将 ,变压器将 。 答:增大很多,烧毁。 二、选择填空(每题1分) 1. 三相电力变压器磁势平衡方程为 。 A :原,副边磁势的代数和等于合成磁势 B :原,副边磁势的时间向量和等于合成磁势 C :原,副边磁势算术差等于合成磁势

变压器绝缘设计

材料 商品名称 初始磁导率 i 饱和磁通密度r /T B 典型工作频率 /Hz f 硅钢 3-97SiFe 1500 1.5-1.8 50-2k 铁氧体 MnZn 0.75-15k 0.3-0.5 10k-2M 铁氧体 NiZn 0.2-1.5k 0.3-0.4 0.2M-100M 镍铁磁性合金 50-50NiFe 2000 1.42-1.58 50-2k 玻莫合金 80-20NiFe 25000 0.66-0.82 1-25k 非晶材料 2605SC 1500 1.5-1.6 250k 非晶材料 2714A 200000 0.5-0.65 250k 铁基超微晶 Finemet FT-3M 3000000 1.0-1.2 20~100K 脉冲变压器绝缘设计 1. 设计要求 初级边主电容充电电压为1000V ,初级线圈需220匝,线径需大于0.38mm ;脉冲变压器次级边,需输出至少3000V 空载电压,至少500V 负载电压,次级线圈需660匝,线径需大于0.18mm 。初级、次级线圈间需耐受幅值60kV 、脉宽约几百μs 的冲击电压。设计此脉冲变压器的绝缘结构(铁芯可自选)。 2. 绝缘要求 本次设计采用油浸式封装,变压器绝缘主要包括原副边各绕组的纵绝缘(匝间绝缘和层间绝缘),两绕组间的主绝缘,高压绕组对铁轭的绝缘,高压绕组对油箱外壳绝缘,出线端绝缘等。 3. 具体设计选型过程 3.1 铁芯材料分析 表1 铁芯材料性能 如表1所示,铁基超微晶具有初始磁导率高并且饱和磁密相对较高的特点,由此选择该材料作为本次变压器设计所采用的铁芯。这种材料铁芯不宜切口,所以可用于小容量的手工绕组的变压器。 超微晶磁芯可向磁芯厂家定制特定的尺寸。 3.2 铁芯几何参数的选择 由于使用的是超微晶进行手工绕组,本次设计不同于一般的先选铁芯在确定绕组绝缘的过程,首先对绕组和绝缘的尺寸进行计算,然后确定铁芯尺寸,这样有利于充分使用窗口面积,方便绕组。经过绝缘设计后可得到如下

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

变压器绝缘结构设计课程设计(哈理工)

220 kV电力变压器绝缘设计 专业:电气工程及其自动化 班级: 学号: 姓名: 指导教师:

一.设计任务 1. 对一台双绕组220 kV级电力变压器进行绝缘结构设计,并进算绝缘结构在雷电冲击电压(全波),1min工频电压试验下的主、纵绝缘裕度。 2. 技术条件: a、全波雷电冲击试验电压945 kV b、1min工频试验电压400 kV(感应耐压试验)。 3. 变压器结构及其它条件: a、低压绕组外表面半径360mm,高压绕组内表面半径434mm,绕组间绝缘距离74mm b、高压绕组匝绝缘厚度1.95mm 低压绕组匝绝缘厚度0.45mm c、高压绕组为纠结式,高压绕组中部进线 d、高压绕组段间油道尺寸1,3,5向外油道为8mm;7,9,11向外油道为6mm;8,10,12向内油道为10mm;其他油道均为6mm;中断点为15mm e、全波梯度1,3,5油道为10;7,9,11油道为8;中断点为15. 4. 要求完成的内容: a、确定变压器主绝缘尺寸 b、计算主、纵绝缘在各种试验电压下的绝缘裕度 c、画出变压器绝缘装配图

d、攥写课程设计报告 5. 参考文献: a、路长柏等编著:电力变压器计算第五章; b、刘传彝:电力变压器设计计算方法与实践; c、路长柏:电力变压器绝缘技术; d、“电机工程手册”第二十五篇。 二.综述 针对上述设计要求对220 kV电力变压器绝缘结构设计如下:对于主绝缘,高低压线圈间主空道为了利用变压器油的体积效应,采用薄纸板小油隙的设计思想,线圈间主绝缘距离为74mm,变压器油与绝缘纸板交替排布,具体结构为(8+4+10+4+10+2+10+4+10+4+8),即∑Dy=60mm,∑Dz=14mm,靠近高压线圈的第一个绝缘纸筒厚度取为4意在增加其机械强度,以保证高压线圈能够稳固的固定于其上;低压线圈外半径r1=360mm,高压线圈内半径 r2=434mm;低压线圈(35 kV)与铁心间采用厚纸板大油隙的设计思想,其绝缘距离定为27mm;由于220 kV级电力变压器的高压线圈采用中部出线的出线方式,所以端部绝缘结构设计可按110 kV级绝缘水平设计,其结构为:端部设静电环,静电环采用1/4圆曲率半径,S值取为5,曲率半径取为10。静电环金属上表面距离压板为90mm,期间设一个端圈、两个角环和三个隔板,并加垫块以填充,期中为了增加沿面爬电距离,至上而下三个隔板 在高压线圈一侧分别探出50、30、15的长度。由于中部出线,上下端部的绝缘结构相似,下端部结构不再进行详细说明。具体结构尺寸见绝缘结构装配图。

变压器的工作原理

教学过程: 一、 导入新课 复习回忆变压器的知识点 二、 讲授新课 变压器的工作原理 一、变压器的工作原理 变压器是按电磁感应原理工作的,原线圈接在交流电源上,在铁心中产生交变磁通,从而在原、副线圈产生感应电动势,如图所示。 1.变换交流电压 原线圈接上交流电压,铁心中产生的交变磁通同时通过原、副线圈,原、副线圈中交变的磁通可视为相同。 设原线圈匝数为N 1,副线圈匝数为N 2,磁通为Φ ,感应电动势为 t N E t N E ??=??= Φ Φ2 211 , 由此得 2 1 21N N E E = 忽略线圈内阻得 K N N U U ==2 1 21 上式中K 称为变压比。由此可见:变压器原副线圈的端电压之比等于匝数比。 图变压器空载运行原理图

2 2 2 211I U N N Z ???? ??= 因为 22 2 Z I U = 所以 2 2 22 211Z K Z N N Z =??? ? ??= 可见,次级接上负载|Z 2|时,相当于电源接上阻抗为K 2 |Z 2|的负载。变压器的这种阻抗变换特性,在电子线路中常用来实现阻抗匹配和信号源内阻相等,使负载上获得最大功率。 解1:次级电流 Α255 110 222=== Z U I 初级电流 Α2110 2202121==≈= U U N N K Α12 2 21=== K I I 输入阻抗 Ω=== 2201220111I U Z 解2:变压比 2110 2202121==≈=U U N N K 【例】有一电压比为220/110 V 的降压变压器,如果次级 接上55 Ω 的电阻,求变压器初级的输入阻抗。

变压器的工作原理及结构

变压器工作原理: 当一个交流电压U1接到初级绕组的线圈时,由于交流电的强度和极性是不停地正、负交替变化,因此初级绕组的线圈所产生的磁力线数目也不停改变。由于磁场强度的不断变化,促使缠绕在同一铁芯上的另一端线圈产生感应电动势U2 .变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 理想变压器: 不计一次、二次绕组的电阻和铁耗, 其间耦合系数K=1 的变压器称之为理想变压器 描述理想变压器的电动势平衡方程式为e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化,则有不计铁芯损失,根据能量守恒原理可得由此得出一次、二次绕组电压和电流有效值的关系令K=N1/N2,称为匝比(亦称电压比) U1/U2=N1/N2 ,即对同一变压器的任意两个线圈,都有电压和匝数成正比。P入=P出,即无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率之和. https://www.360docs.net/doc/fb14858096.html,/view/30130.htm https://www.360docs.net/doc/fb14858096.html,/s/blog_4876e83b0100ru0s.html 变压器(transformer)是一种电磁设备,其功能大致可分为以下作用:Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 1可以随意把交流电压值或电流值增加或减少Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 2用作阻抗匹配的设备:变压器可用来匹配不平衡的阻抗。例如某个放大器的输出阻抗是20欧,而接往4欧的扬声器,这时必须用一个变压器以正确的匝数比率来匹配此二个阻抗。Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 3用做信号传输,有些信号要求有电的隔离,这时用变压器就有用了。Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 4用与振荡电路作反馈元件Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 变压器就是利用线圈的互感原理把电压改变。事实上一个电感器的磁场变化可以促使在近距

变压器的基本结构

变压器的用途与分类 变压器是变控电源电压的一种电气设备,为适应不同的使用目的和工作条件,变压器的类型很多,通常安变压器的不同用途、不同容量、绕组个数、相数、调压方式、冷却介质、冷却方式、铁心形式等等进行分类,以满足不同行业对变压器的需求。 一、按用途分类 ①电力变压器 ②电炉变压器 ③整流变压器 ④工频试验变压器 ⑤矿用变压器 ⑥电抗器 ⑦调压变压器 ⑧互感器 ⑨其他特种变压器 二、按容量分类 ①中小型变压器:电压在35KV以下,容量在10-6300KVA ②大型变压器:电压在63-110KV,容量在6300-63000KVA ③特大型变压器:电压在220KV以上,容量在31500-360000KVA 三、按相数分类 变压器按相数分类可分为单相变压器和三相变压器 四、按绕组数量分类 ①双绕组变压器 有高压绕组和低压绕组的变压器 ②三绕组变压器 有高压绕组、中压绕组和低压绕组的变压器 ③自耦电力变压器 自耦电力变压器的特点在于一、二绕组之间不仅有磁耦联系而且还有电的直接联系。采用自耦变压器比采用普通变压器能节省材料、降低成本、缩小变压器体积和减轻重量,有利于大型变压器的运输和安装。 五、按变压器的调压方式分类 按调压方式可分为无载调压变压器和有载调压变压器 六、按变压器的冷却介质分类 按冷却介质可分为油浸式变压器、干式变压器、充气式变压器、充胶式变压器和填砂式变压器等 七、按变压器的冷却方式分类 ①油浸自冷式变压器 ②油浸风冷式变压器 ③油浸强迫油循环风冷却式变压器 ④油浸强迫油循环水冷却式变压器 ⑤干式变压器 八、按铁心结构分类 ①心式变压器 ②壳式变压器

九、其他分类 ①按导线材料分类 有铜导线变压器和铝导线变压器 ②按中性绝缘水平分类 有全绝缘变压器和半绝缘变压器 ③按所连接发电机的台数分类 可分为双分裂与多分裂式变压器,双分列式变压器又可分为沿轴向分裂与沿辐向分裂变压器 ④按高压绕组有无电的联系分类 可分为普通电力变压器和自耦变压器

第一章变压器的结构与工作原理试题及答案

第一章变压器的结构与工作原理 一、填空:(每空1分) 1.★★一台单相变压器额定电压为380V/220V,额定频率为50H Z,如果误将低压侧接到 380V上,则此时①m , I o , p F。__________________ 。(增加,减少或不变) 答:①m增大,I 0增大,p Fe增大。 2.★一台额定频率为60HZ的电力变压器接于50HZ电压为此变压器的5/6倍额定电压 的电网上运行,此时变压器磁路饱和程度___________ ,励磁电流___________ ,励磁电抗__________ ,漏电抗 ____________ 。 答:饱和程度不变,励磁电流不变,励磁电抗减小,漏电抗减小。____ 3.三相变压器理想并联运行的条件是(1)_____________________________________ (2 )_______________________________________________________________________ (3)____________________________________ 。 答:(1)空载时并联的变压器之间无环流;(2)负载时能按照各台变压器的容量合理地 分担负载;(3)负载时各变压器分担的电流应为同相。 4.★如将变压器误接到等电压的直流电源上时,由于E= ____________ ,U= ___________ 空载电流将____________ ,空载损耗将___________ 。 答:E近似等于U , U等于IR,空载电流很大,空载损耗很大。 5.★变压器空载运行时功率因数很低,其原因为 答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。 6.★一台变压器,原设计的频率为50HZ,现将它接到60HZ的电网上运行,额定电压 不变,励磁电流将______ ,铁耗将____ 。 答:减小,减小。 7.变压器的副端是通过 __________________ 对原端进行作用的。 答:电磁感应作用。 8.引起变压器电压变化率变化的原因是 _____________________ 。 答:负载电流的变化。 9.★如将额定电压为220/110V的变压器的低压边误接到220V电压,则激磁电流 将__________ ,变压器将 ____________ 。 答:增大很多,烧毁。 二、选择填空(每题1分) 1._______________________________ 三相电力变压器磁势平衡方程为。

变压器的工作原理是什么

一.变压器的工作原理 变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件 1.变压器 ---- 静止的电磁装置 变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能 电压器的主要部件是一个铁心和套在铁心上的两个绕组。 变压器原理图(图3.1.2) 与电源相连的线圈,接收交流电能,称为一次绕组 与负载相连的线圈,送出交流电能,称为二次绕组 设 一次绕组的二次绕组的 电压相量 U1 电压相量 U2 电流相量 I1 电流相量 I2 电动势相量 E1 电动势相量 E2 匝数 N1 匝数 N2 同时交链一次,二次绕组的磁通量的相量为φm ,该磁通量称为主磁通 请注意图3.1.2 各物理量的参考方向确定。 2.理想变压器 不计一次、二次绕组的电阻和铁耗, 其间耦合系数 K=1 的变压器称之为理想变压器 描述理想变压器的电动势平衡方程式为 e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化, 则有

不计铁心损失,根据能量守恒原理可得 由此得出一次、二次绕组电压和电流有效值的关系 令 K=N1/N2,称为匝比(亦称电压比),则 二.变压器的结构简介 1.铁心 铁心是变压器中主要的磁路部分。通常由含硅量较高,厚度为 0.35 或 0.5 mm,表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成 铁心分为铁心柱和铁轭俩部分,铁心柱套有绕组;铁轭闭合磁路之用 铁心结构的基本形式有心式和壳式两种 心式变压器结构示意图(图3.1.6) 2.绕组 绕组是变压器的电路部分, 它是用纸包的绝缘扁线或圆线绕成 变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理(如上图):当一次侧绕组上加上电压ú1时,流过电流í1,在铁芯中就产生交变磁通?1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势é1,é2,感应电势公式为:E=4.44f N?m 式中:E--感应电势有效值 f--频率 N--匝数 ?m--主磁通最大值 由于二次绕组与一次绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻

变压器的基本工作原理

变压器的基本工作原理Orga nize en terprise safety man ageme nt pla nning, guida nee, in spect ion and decisi on-mak ing. en sure the safety status, and unify the overall pla n objectives

编制:____________________ 审核:____________________ 时间:____________________

变压器的基本工作原理 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、变压器的种类: 1. 按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。 2. 按防潮方式分类:开放式变压器、灌封式变压器、密封式 变压器。 3. 按铁芯或线圈结构分类:芯式变压器(插片铁芯、C型 铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器。 4. 按电源相数分类:单相变压器、三相变压器、多相变压器。 5. 按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器 二、变压器工作原理: 变压器的基本工作原理是:变压器是由一次绕组、二次绕组和铁心组成,当一次绕组加上交流电压时,铁心中产生交变磁

通,交变磁通在一次、二次绕组中感应电动势与在单匝上感应电动势的大小是相同的,但一次、二次侧绕组的匝数不同,一次、二次侧感应电动势的大小就不同,从而实现了变压的目的,一次、二次侧感应电动势之比等于一次、二次侧匝数之比。 当二次侧接上负载时,二次侧电流也产生磁动势,而主磁通由于外加电压不变而趋于不变,随之在一次侧增加电流,使磁动势达到平衡,这样,一次侧和二次侧通过电磁感应而实现了能量的传递。 三、变压器的主要部件结构作用: (2) 变压器组成部件:器身(铁芯、绕组、绝缘、引线)、变压器油、油箱和冷却装置、调压装置(即分接开关,分为无励磁调压和有载调压)、保护装置(吸湿器、安全气道、气体继电器、储油柜、净油器及测温装置等)和出线套管。 (3) 变压器主要部件的作用: (1)铁芯:作为磁力线的通路,同时起到支持绕组的作用。变压器通常由含硅量较高,厚度分别为0.35 mm\0.3mm\0.27 mm,表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成铁心分为铁

变压器的绝缘是如何设计的(DOC)

变压器的绝缘是如何设计的 变压器的纵绝缘包括匝间绝缘、层间绝缘以及段间绝缘这三个部分。纵绝缘设计时我们需要考虑的是作用在纵绝缘上的各种电压及其梯度分布;变压器的绕组制造的过程中的工艺度;特殊的情况下绕组间的相互影响;纵绝缘对主绝缘的影响,段间油隙大小对散热的影响等等。我们也要从这几方面考虑: 1、匝间绝缘。油式变压器的绕组一般是采用电缆纸包线绕制。因为采用纸作为变压器绕组的匝绝缘,是因为纸的介电常数与油相差不大,所以,可以使得电场分布的比较均匀,但是我们也要注意,不能按油隙完全击穿的数据来选择匝的绝缘厚度,我们还要保留足够的度才行。 2、层间和段间的绝缘。层间绝缘主要适用于圆筒式绕组。当两层间工作电压较高的时候,其层间绝缘就一定较厚,这样既使变压器绕组辐向尺寸增大,又不利于散热,使变压器绕组温度升高。 3、油式变压器的纵绝缘结构:三十五千伏及以下变压器;一百一十千伏以上的变压器的总绝缘。据了解,国内外的变压器的绝缘技术的不断发展,对变压器绕组的段间油道已经向六毫米以下不断延伸了,是变压器的绕组高度降低,并相应的提高了变压器的技术经济指标。 反激变压器 三个绕组的绕线方向一下顺时针,一下逆时针,这才是问题 要是1脚接的是电解电容正极,5脚接输出整流二极管的话,相位是没有问题的哟。1脚接电容正,5脚接整流二极管的话,相位反了变压器制作工艺上,一般都认为一个方向绕制,象这种标注顺逆方向的,应该算是不合规的,还配上标同名端的图是的,相位是反了,现在搞清楚了,我自己搞错了,是5脚起6脚收,顺时针绕!同名端,还是需要与相应的PCB 来确定的,否则没有啥讨论意义 图解高频变压器的绕线方法

高频变压器工作原理及用途

高频变压器工作原理及用途 简介 是作为开关电源最主要的组成部分。开关电源中的拓扑结构有很多。比如半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行变压,输出交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于35mm。而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。 工作原理 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 用途 高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz- 50kHz、50kHz-100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的情况下,功率器件一般采用IGBT,由于IGBT存在关断电流拖尾现象,所以工作频率比较低;传送功率比较小的,可以采用MOSFET,工作频率就比较高。 制造工艺 高频变压器的制造工艺要点一。 绕线

A 确定BOBBIN的参数 B 所有绕线要求平整不重叠为原则 C 单组绕线以单色线即可,双组绕线必需以双色线或开线浸锡来分脚位,以免绕错 D 横跨线必需贴胶带隔离 1. 疏绕完全均匀疏开 2. 密绕排线均匀紧密 3. 线圈两边与绕线槽边缘保持足够的安全距离A,B 4. 套管长度必须足够,一端伸入绕线管的安全胶带以内,另一端伸出BOBBIN上沿面,但不得靠近PIN 5. 最外层胶带切割在铁芯组合面,切割处必须被铁芯覆盖。 6. 胶带边缘与绕线槽平齐,胶带不歪斜,不反摺不破损。 7. 跨越线底下须贴胶带,保持跨越线与底下线圈绝缘。 高频变压器的制造工艺要点二。 缠线 A 立式BOBBIN 粗线: 0.8φ以上缠线1圈 细线0.2-0.8φ缠线1.5圈 极细线0.2φ以下缠线2-3圈 立式BOBBIN缠法之原则:缠线尽量压到底以不超过凸点为原则。 B 卧式BOBBIN :约缠2-3圈,疏绕不要压到底,以免焊锡时烫伤BOBBIN,如果有宽度限制且规格严格时才用此方式,将缠线压到底后焊锡,再剪边PIN,以减少整个变压器的宽度。 C 横式(卧式,BOBBIN之缠法:约缠2-3圈疏绕,不要压到底以免焊锡时烫伤BOBBIN。 注:如果产品有宽度限制且规格紧必须将缠线部分剪短时为特例,此时即必须将缠线尽量压到底。 高频变压器的制造工艺要点三. 套管

电力变压器基本型号及参数知识

电力变压器基本型号及参数知识 干式变压器: 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。 10的意示是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思是一次额定电压,0.4KV意思是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。(2)相数,涵义分:单相(D);三相(S)。(3)

绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。 变压器型号 一、电力变压器型号说明如下: 变压器的型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料的符号,以及变压器容量、额定电压、绕组连接方式组成。请问下列电力变压器型号代号含义是什么?

变压器的绝缘结构设计

变压器的绝缘结构设计 【摘要】随着中国经济持续健康高速发展,电力需求持续快速增长,中国电力建设的迅猛发展带动了中国变压器制造行业的发展。变压器是电力系统中极其重要的输变电设备,变压器在电力设备中属于一次设备的范畴,其行业发展与电力工业的整体发展密切相关。变压器在电网中运行时,除承受正常状况下的电压和电流的作用外,还要承受各种短时的异常电压和电流的作用。因此,变压器在设计和制造时,必须考虑在各种情况下有足够的安全可靠性。【关键词】变压器;绝缘结构;设计 0引言 随着全球经济的快速发展,社会生活对电气的依赖程度大大提高;随着系统容量的不断增大,对电力输送系统的可靠性也要求提高,因此系统对供电设备的质量要求也比过去严格。变压器作为电力系统的关键设备,其质量高低直接影响着这个电力系统的可靠性。电力变压器向高电压、大容量方向发展的同时,各种产品都向高可靠性、节能型、环保型、紧凑型、个性化方向发展。各变压器生产厂商,在研发高电压、大容量产品的同时,也在对现有产品性能进行提高。如何设计、制造出高质量的产品,已经成为广大电力系统的客户和各大制造厂家共同关注的问题。 1研究动态 国内变压器行业通过引进国外先进技术,使变压器产品品种、水平及高电压变压器容量都有了大幅提高。国内企业生产的变压器品种包括超高压变压器、换流变压器、全密封式变压器、环氧树脂干式变压器、卷铁心变压器、组合式变压器。此外,随着新材料、新工艺的不断应用,国内各变压器制造企业还不断研制和开发出各种结构形式的变压器。我们可从2006年至2008年3年的数据中看出变压器行业的迅速发展。 2006年1-12月,中国变压器、整流器和电感器制造行业实现累计工业总产值120,819,509,000元,比上年同期增长了31.07%;实现累计产品销售收入116,898,938,000元,比上年同期增长了33.60%;实现累计利润总额6,240,741,000元,比上年同期增长了36.76%。 2007年1-11月,中国变压器、整流器和电感器制造行业实现累计工业总产值149,318,503,000元,比上年同期增长了35.62%;实现累计产品销售收入145,353,473,000元,比上年同期增长了36.09%;实现累计利润总额9,221,092,000元,比上年同期增长了61.16%。 2008年1-11月,中国变压器、整流器和电感器制造行业实现累计工业总产值188,513,194,000元,比上年同期增长了28.89%;实现累计产品销售收入184,105,219,000元,比上年同期增长了29.73%;实现累计利润总额12,036,454,000元,比上年同期增长了40.14%。 随着新一轮的电力投资热潮来临,输变电设备制造企业在未来几年都将处于满负荷状态,呈现产销两旺、十分景气的局面。而作为输配电行业一个重要分支的变压器制造业更是一路高歌。由于中国西电东送,南北互供,全国联网的实施,变压器需求仍将保持平稳增长的态势。 同时,我国变压器行业也在向世界先进水平迈进,日前新增3项世界领先水平产品。在中国机械工业联合会组织召开“特变电工衡阳变压器有限公司(以下简称衡变公司)新产品

相关文档
最新文档