1.3简单曲线的极坐标方程课件

合集下载

圆的极坐标方程(2)

圆的极坐标方程(2)

=r
显然,使极点与圆心重 合时的极坐标方程在形 式 上比(1)简单。
思考:已知一个圆的方程是=5 3 cos 5sin 求圆心坐标和半径。
解:=5 3 cos 5sin 两边同乘以 得
=5 3 cos -5 sin 即化为直角坐标为
2
5 3 2 5 2 x y 5 3 x 5 y 即( x ) ( y ) 25 2 2 5 3 5 所以圆心为( , ), 半径是5 2 2
x ( y 2) 4
2 2
2、极坐标方程分别是 =cos和=sin 的两个 圆的圆心距是多少?
1 解:圆=cos 圆心的坐标是( , 0) 2 圆 sin cos( ) cos( ) 2 2 1 2 圆=sin 的圆心坐标是( , ), 所以圆心距是 2 2 2


3、极坐标方程 cos( )所表示的 4 曲线是 ( D )
A、双曲线 C、抛物线 B、椭圆 D、圆

解:该方程可以化为 =cos( ) 4 1 1 以( , )为圆心, 为半径的圆。 2 4 2

解:=cos cos
2

4
sin sin

4
2 2 cos sin 即 2 2 2 2 2 2 x y x y0 2 2 2 2 2 2 1 (x ) (y ) 4 4 4
2 2
你可以用极坐标方程直接来求吗?
解:原式可化为 3 1 =10(cos sin ) 10 cos( ) 2 2 6 所以圆心为(5, ), 半径为5 6

圆心为(a, )(a 0)半径为a 圆的极坐标方程为 =2a cos( ) 此圆过极点O

圆的极坐标方程(2)

圆的极坐标方程(2)

4、圆=10 cos( )的圆心坐标是 ( C ) 3 2 C、 , ) (5 (5 A、 ,0) B、 , ) (5 D、 , ) (5 3 3 3 5、写出圆心在点A(2, )处且过极点的圆的 2 极坐标方程,并把它化成直角坐标方程。 解:=4 cos( ) 4sin
练习
以极坐标系中的点(1,1)为圆心,1为 半径的圆的方程是 C
A. 2cos 4 C. 2cos 1
B. 2sin 4 D. 2sin 1
题组练习 1 求下列圆的极坐标方程 (1)中心在极点,半径为2;


3、极坐标方程 cos( )所表示的 4 曲线是 ( D )
A、双曲线 C、抛物线 B、椭圆 D、圆

解:该方程可以化为 =cos( ) 4 1 1 以( , )为圆心, 为半径的圆。 2 4 2

解:=cos cos
2

4
sin sin

4
2 2 cos sin 即 2 2 2 2 2 2 x y x y0 2 2 2 2 2 2 1 (x ) (y ) 4 4 4
x ( y 2) 4
2 2
2、极坐标方程分别是 =cos和=sin 的两个 圆的圆心距是多少?
1 解:圆=cos 圆心的坐标是( , 0) 2 圆 sin cos( ) cos( ) 2 2 1 2 圆=sin 的圆心坐标是( , ), 所以圆心距是 2 2 2
2 化为直角坐标系为 2=4 sin
2 2 2 2

即x y 4 y x ( y 2) 4
6、已知圆C1 : 2cos ,圆C2 : 2 2 3 sin 2 0, 试判断两圆的位置关系。

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

(4)∵ρ2cos 2θ=4, ∴ρ2cos 2θ-ρ2sin 2θ=4,即 x2-y2=4. 1 (5)∵ρ= , 2-cos θ ∴2ρ-ρcos θ=1. ∴2 x2+y2-x=1.化简,得 3x2+4y2-2x-1=0.
[悟一法]
直角坐标方程化为极坐标方程比较容易,只要运用公式x= ρcos θ及y=ρsin θ直接代入并化简即可;而极坐标方程化为直角 坐标方程则相对困难一些,解此类问题常通过变形,构造形如 ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同 乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程 进行变形时,方程必须同解,因此应注意对变形过程的检验.
[悟一法]
(1)圆的极坐标方程是曲线的极坐标方程的一种特殊情况,
其求解过程同曲线的极坐标方程的求法. (2)特别地,当圆心在极轴上即θ0=0时,方程为r2=ρ+ρ2 -2ρρ0cos θ;若再有ρ0=r,则其方程为ρ=2ρ0cos θ=2rcos θ; 若ρ0=r,θ0≠0,则方程为ρ=2rcos (θ-θ0),这几个方程经常用 来判断图形的形状和位置.
OP=OD· θ, cos ∵OP=ρ,OD=2r, ∴ρ=2rcos θ(ρ≠0,ρ≠2r). 这就是所求轨迹的方程.
[悟一法] (1)求曲线的极坐标方程的步骤如下:
①建立适当的极坐标系.
②设P(ρ,θ)是曲线上任一点. ③列出ρ,θ的关系式. ④化简整理. (2)极坐标中的坐标是由长度与角度表示的,因此,建立
极坐标方程常常可以在一个三角形中实现,找出这样的三角形
便形成了解题的关键.
[通一类] 1.设 M 是定圆 O 内一定点,任作半径 OA,连结 MA,过 M 作 MP⊥MA 交 OA 于 P,求 P 点的轨迹方程. 解:以 O 为极点,射线 OM 为极轴,建立极坐标系,如图.

人教A版数学【选修4-4】ppt课件:1-3第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-3第一讲-坐标系

2.曲线的极坐标方程与直角坐标方程的互相转化 与点的极坐标与直角坐标的互相转化一样, 以平面直角坐标系 的原点 O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的 长度单位.平面内的曲线(含直线)的极坐标方程与直角坐标方程也 可以进行互相转化,设曲线上任意一点 M 的直角坐标与极坐标分 别为(x,y)和(ρ,θ),则极坐标方程与直角坐标方程的互相转化公 式为:y=ρsinθ,x=ρcosθ,ρ2=x2+y2.
【例 3】
π 在极坐标系中,圆 ρ=4sinθ 的圆心到直线 θ=6(ρ
∈R)的距离是________.
【解析】
圆 ρ=4sinθ 的直角坐标方程为 x2+(y-2)2=4,其
π 圆心为 C(0,2),直线 l:θ= (ρ∈R)的直角坐标方程为 x- 3y=0; 6 |0-2 3| 所以点 C 到直线 l 的距离是 d= = 3. 2
【例 1】
求圆心在
并把它化为直角坐标方程. 【分析】 数形结合,先描绘圆的大致位置,找出圆上任一点 满足的几何条件.
【解】
如图,设 M(ρ,θ)为圆上除 O,B 外的任意一点,连
3 接 OM,MB,则有|OB|=4,|OM|=ρ,∠MOB=θ- π,∠BMO= 2 π 2.
从而△BOM 为直角三角形, 所以有|OM|=|OB|cos∠MOB. 即
与曲线 C 相交于 A,B,求|AB|.
【解】
x=ρcosθ, (1)因为 y=ρsinθ,
所以 ρ2=x2+y2,
由 ρ=2sinθ+4cosθ,得 ρ2=2ρsinθ+4ρcosθ, ∴x2+y2-4x-2y=0,即(x-2)2+(y-1)2=5. 曲线 C 的直角坐标方程为(x-2)2+(y-1)2=5.

极坐标

极坐标

化为
直角坐标方程. 解
方程变形为 r ( 2 sin 3 cos ) 1 ,
2 r sin 3 r cos 1 ,
2 y 3 x 1.
14
求圆心在(1,0)点,半径为2的圆的极坐标方程. 解 圆心在(1,0)极点,半径为2的圆的直角坐标方程为
( x 1) y 4
§1.3 极 坐 标
一、极坐标系
二、极坐标与直角坐标的互化
三、曲线的极坐标方程
1
一、极坐标系
1. 极坐标系的建立 在平面内取一个定点o,叫做极点, 引一条射线Ox,叫做极轴. 再选定一个长度单位和角度单 位及它的正方向(通常取逆时 针方向). 这样就建立了一个极坐标系.
o
x
2
2. 极坐标

P ( r , )
r2 x2 y2 y tan ( x 0) x
2. 直角坐标方程与极坐标方程与的互化 直角坐标方程化为极坐标方程; 简单的极坐标方程化为直角坐标方程. 3. 简单的极坐标方程会画略图.
26
作业
习题1-3 1. 2. 3 (24页)
27
笛卡儿 (1596~1650)

7 6
.
M ( 2,
7 6
)
9
三、曲线的极坐标方程
定义 如果曲线L上的点与方程 (r,)=0有如下关系 (1) 曲线L上任一点的坐标符合方程 (r,) = 0 ; (2)方程 (r,) =0的所有解为坐标的点都在曲线L上. 则曲线 L 的极坐标方程是 (r,) =0 .
28
华罗庚(1910~1985)
我国在国际上享有盛誉的数学家. 他在解析数论, 矩阵几何学, 典型群, 自守函数论, 多复变函数论, 偏微分方

选修4-4.1.3.极坐标方程 课件

选修4-4.1.3.极坐标方程 课件

2019/5/23
v:pzyandong
2
复习引入
一、复习: 曲线的方程概念:…… 二、讨论回答: 曲线的极坐标方程概念:……
2019/5/23
v:pzyandong
3
探究
如图,半径为a的圆的圆心坐标为C(a,0) (a>0),你能用一个等
式表示圆上任意一点的极坐标(,)满足的条件?
设圆和极轴的另一个交点是A,那么|OA|=2a,
v:pzyandong
10
高三数学 选修4-4
第一章 极坐标
一、复习已学知识
1、以极点O为圆心,r为半径的圆, 极坐标方程为:
r
M (, )

O rA x
2、以点C(a,0)为圆心,a为半径的圆,
M(, )
极坐标方程为:
2acos
O

c(a,0) A
x
3、以点C(a,φ)为圆心,a为半径的圆, M(,)
3
5
6
O
x
(2)过点(2,

3
),并且和极轴垂直的直线:
cos 1
3
二、例题选讲
例3 设点P的极坐标为 (1,1),直线l过点P且与极轴所成的角为 ,
求直线l的极坐标方程 。
分析: 如图,设M (, )为直线l上除点
M(, )
极坐标方程为:
2acos
O

c(a,0) A
x
3、以点C(a,φ)为圆心,a为半径的圆, M(,)
极坐标方程为:
2acos( )

c(a,)
O
Ax
2019/5/23
v:pzyandong

圆的极坐标方程(2)




3、极坐标方程 cos( )所表示的 4 曲线是 ( D )
A、双曲线 C、抛物线 B、椭圆 D、圆

解:该方程可以化为 =cos( ) 4 1 1 以( , )为圆心, 为半径的圆。 2 4 2

解:=cos cos
2

4
sin sin

4
2 2 cos sin 即 2 2 2 2 2 2 x y x y0 2 2 2 2 2 2 1 (x ) (y ) 4 4 4
练习
以极坐标系中的点(1,1)为圆心,1为 半径的圆的方程是 C
A. 2cos 4 C. 2cos 1
B. 2sin 4 D. 2sin 1
题组练习 1 求下列圆的极坐标方程 (1)中心在极点,半径为2;
解:方程可化为 - cos 4 2 即2 =4+x 两边平方得: 2=( x 4) 2 4 4 x 2 4 y 2 x 2 8 x 16 3x 8 x 4 y 16
2 2
4、圆=10 cos( )的圆心坐标是 ( C ) 3 2 C、 , ) (5 (5 A、 ,0) B、 , ) (5 D、 , ) (5 3 3 3 5、写出圆心在点A(2, )处且过极点的圆的 2 极坐标方程,并把它化成直角坐标方程。 解:=4 cos( ) 4sin
所以,等式(1)就是圆上任意一点的极 坐标( , ) 满足的条件,另一方面 ,可以验证,坐标适合 等式(1)的点都在这个圆上。

极坐标方程:
一般地,在极坐标系中 ,如果平面曲线 上任意 C 一点的极坐标中至少有 一个满足方程 ( , ) 0 f 并且坐标适合方程 ( , ) 0的点都在曲线 上, f C 那么方程f ( , ) 0叫做曲线C的极坐标方程。

高二数学(理)《简单曲线的极坐标方程:直线的极坐标方程》(课件)


2012年上学期
1. 说明下列极坐标方程表示什么 曲线,并画图。
5 ( 2) ( R) 6
湖南长郡卫星远程学校 制作 12 2012年上学期
2. 在极坐标系中,求适合下列条 件的直线或圆的极坐标方程:
(1)过极点,倾斜角是 的直线; 3 ( 2)过点( 2, ), 并且和极轴垂直的直线 。 3
l
o
湖南长郡卫星远程学校 制作 12
x
2012年上学期
例2.求过点A(a, 0)(a>0), 且垂直
于极轴的直线l的极坐标方程.
湖南长郡卫星远程学校
制作 12
2012年上学期
例3.设点P的极坐标为(ρ1, θ1), 直
线l过点P且与极轴所成的角为α, 求直
线l的极坐标方程.
湖南长郡卫星远程学校
制作 12
坐标方程。
湖南长郡卫星远程学校
制作 12
2012年上学期
探究2:

M

A1
湖南长郡卫星远程学校
N
F1
F2
制作 12
A2
2012年上学期
《考一本》P15-P17
湖南长郡卫星远程学校
制作 12
2012年上学期
简单曲线的极坐标方程:直线的极坐标方程
湖南长郡卫星远程学校
制作 12
2012年上学期
求曲线的极坐标方程的一般步骤:
①在曲线上任取一动点P(ρ, θ)
②利用几何法或坐标法建立ρ与θ的
方程.
湖南长郡卫星远程学校
制作 12
2012年上学期
例1.如图, 直线l经过极点, 从极轴到 直线l的角是

4
, 求直线l的极坐标方程。

1.3.1 圆的极坐标方程 课件 (北师大选修4-4)

M ( , )
探 究
O
C(a,0)
A
x
解:圆经过极点 。设圆与极轴的另一个 O 交点 是A,那么OA=2a, 设M ( , )为圆上除点O,A 以外的任意一点,那么 OM AM。在RtAMO 中 OM OA cos MOA即=2a cos .......... 1) .( 可以验证,点O(0, ), A(2a,0)的坐标满足等式1) ( 2
2 化为直角坐标系为 2=4 sin
2 2 2 2

即x y 4 y x ( y 2) 4
6、已知圆C1 : 2cos ,圆C2 : 2 2 3 sin 2 0, 试判断两圆的位置关系。
解:将两圆都化为直角 坐标方程为 C1 : ( x 1) 2 y 2 1,圆心O1 (1,0)半径为 1 C2 : x 2 ( y 3 ) 2 1,圆心O2 (0, 3 )半径为 1 O1O2 2所以两圆相外切。
所以,等式(1)就是圆上任意一点的极 坐标( , ) 满足的条件,另一方面 ,可以验证,坐标适合 等式(1)的点都在这个圆上。

极坐标方程:
一般地,在极坐标系中 ,如果平面曲线 上任意 C 一点的极坐标中至少有 一个满足方程 ( , ) 0 f 并且坐标适合方程 ( , ) 0的点都在曲线 上, f C 那么方程f ( , ) 0叫做曲线C的极坐标方程。
所以, 2a cos就是圆心在C (a,0)(a 0),半径 为a的圆的极坐标方程。
例1、已知圆O的半径为r,建立怎样的极坐 标系,可以使圆的极坐标方程简单?
M

O

r x
解:如果以圆心 为极点,从O出发的一条射线 O 为极轴建立坐标系(如 图),那么圆上各点的 几 何特征就是它们的极径 都等于半径r. 设M ( , )为圆上任意一点,则 OM r ,即

1.3.1 圆的极坐标方程 课件 (北师大选修4-4)


解:方程可化为 - cos 4 2 即2 =4+x 两边平方得: 2=( x 4) 2 4 4 x 2 4 y 2 x 2 8 x 16 3x 8 x 4 y 16
2 2


3、极坐标方程 cos( )所表示的 4 曲线是 ( D )
A、双曲线 C、抛物线 B、椭圆 D、圆

解:该方程可以化为 =cos( ) 4 1 1 以( , )为圆心, 为半径的圆。 2 4 2

解:=cos cos
2

4
sin sin

4
2 2 cos sin 即 2 2 2 2 2 2 x y x y0 2 2 2 2 2 2 1 (x ) (y ) 4 4 4
=2
(2)中心在C(a,0),半径为a;
=2acos (3)中心在(a,/2),半径为a; =2asin
(4)中心在C(0,0),半径为r。 2+ 0 2 -2 0 cos( - 0)= r2
题组练习2
1、曲线的极坐标方程 =4 sin 化为直角坐标 方程是什么?
7、从极点O作圆C:=8cos 的弦ON, 求ON的中点的轨迹方程。
M
N
解:如图,圆C的圆心(4, 0), 半径r OC 4,
O
C(4,0)
连结CM , M 是弦ON的中点 CM ON , 所以,动点M 的轨迹方程是=4 cos
练习 4 把极坐标方程= 化为直角坐标方程。 2-cos
1.3简单曲线的极坐标方程
曲线的极坐标 方程
一、定义:如果曲线C上的点与方程 f(,)=0有如下关系 (1)曲线C上任一点的坐标(所有坐标 中至少有一个)符合方程f(,)=0 ; (2)方程f(,)=0的所有解为坐标的点 都在曲线C上。 则曲线C的方程是f(,)=0 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档