5.1 2014年中考数学专题复习试卷:圆测试题
2014年全国中考数学试题汇编《圆》(08)

全国中考数学试题汇编《圆》(08)填空题211.(2009•锦州)图1中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,…依此规律,当正方形边长为2时,第n个图中所有圆的面积之和S n= _________.212.(2009•崇左)如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为_________.213.(2009•齐齐哈尔)已知相交两圆的半径分别为5cm和4cm,公共弦长为6cm,则这两个圆的圆心距是_________ cm.214.(2009•肇庆)已知正六边形的边长为2,那么它的边心距是_________.215.(2009•芜湖)小赵对芜湖科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成科学方舟模型.如图所示,该正五边形的边心距OB长为,AC为科学方舟船头A到船底的距离,请你计算AC+AB=_________.(不能用三角函数表达式表示)216.(2009•荆州)若一边长为40cm的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为_________cm.(铁丝粗细忽略不计)217.(2010•密云县)已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为_________cm(结果保留π).218.(2009•肇庆)75°的圆心所对的弧长是25πcm,则此弧所在圆的半径为_________cm.219.(2009•云南)已知圆上一段弧长为6π,它所对的圆心角为120°,则该圆的半径为_________.220.(2009•宜昌)如图,艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8米,所对的圆心角为100°,则弧长是_________米(π≈3).221.(2009•台州)如图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A 的对应点A′落在AB边的起始位置上时即停止转动,则点B转过的路径长为_________(结果保留π).222.(2009•泉州)已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120°,则该圆锥的母线长等于_________.223.(2009•宁夏)用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为_________.224.(2009•辽宁)已知:扇形OAB的半径为12厘米,∠AOB=150°,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是_________厘米.225.(2009•江西)用直径为80cm的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是_________cm.226.(2009•伊春)如图,将一个半径为6cm,圆心角为120°的扇形薄铁皮AOB卷成圆锥AOC的侧面(接缝无重叠,无缝隙),O′为圆锥的底面圆心,则O′A=_________cm.227.(2009•黄冈)矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是_________.228.(2009•抚顺)如图,已知圆锥的高AO为8cm,底面圆的直径BC长为12cm,则此圆锥的侧面展开图的圆心角为_________度.229.(2009•德城区)半径为18的圆中,120°的圆心角所对的弧长是_________.230.(2012•青海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为_________(结果保留π).231.(2009•包头)如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_________(保留π).232.(2009•湘西州)一个圆的半径是4,则圆的面积是_________.(答案保留π)233.(2009•咸宁)为庆祝祖国六十华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为_________ cm2(π取3)234.(2009•梧州)一个扇形所在圆的半径为3cm,扇形的圆心角为120°,则扇形的面积是_________cm2.(结果保留π)235.(2009•泰安)如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为_________.236.(2009•随州)如图,AC是汽车挡风玻璃前的刮雨刷.如果AO=65cm,CO=15cm,当AC绕点O旋转90°时,则刮雨刷AC扫过的面积为_________cm2.237.(2009•凉山州)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为_________cm2.238.(2009•兰州)翔宇中学的铅球场如图所示,已知扇形AOB的面积是36米2,弧AB的长度为9米,那么半径OA=_________米.239.(2009•河南)如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π)_________.240.(2012•庆阳)如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为_________.2009年全国中考数学试题汇编《圆》(08)参考答案与试题解析填空题211.(2009•锦州)图1中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,…依此规律,当正方形边长为2时,第n个图中所有圆的面积之和S n=π.第一个图中,圆的半径平方是正方形边长平方的第二个图中,所有圆的半径平方之和是正方形边长平方的212.(2009•崇左)如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.EAB===.213.(2009•齐齐哈尔)已知相交两圆的半径分别为5cm和4cm,公共弦长为6cm,则这两个圆的圆心距是(4±)cm.,C=cm=4+cm±cm214.(2009•肇庆)已知正六边形的边长为2,那么它的边心距是.×215.(2009•芜湖)小赵对芜湖科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成科学方舟模型.如图所示,该正五边形的边心距OB长为,AC为科学方舟船头A到船底的距离,请你计算AC+AB=.(不能用三角函数表达式表示)××EF=5×+DE×)BE=BEAB+2AC=5,AB=216.(2009•荆州)若一边长为40cm的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为20cm.(铁丝粗细忽略不计)×=20cm217.(2010•密云县)已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为2πcm(结果保留π).×=2218.(2009•肇庆)75°的圆心所对的弧长是25πcm,则此弧所在圆的半径为60cm.l=可得.219.(2009•云南)已知圆上一段弧长为6π,它所对的圆心角为120°,则该圆的半径为9.l=,解得220.(2009•宜昌)如图,艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8米,所对的圆心角为100°,则弧长是3米(π≈3).l=≈221.(2009•台州)如图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A 的对应点A′落在AB边的起始位置上时即停止转动,则点B转过的路径长为2π(结果保留π).转过的路径长是:=2222.(2009•泉州)已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120°,则该圆锥的母线长等于15.223.(2009•宁夏)用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为.,若底面半径是,则圆锥的高是224.(2009•辽宁)已知:扇形OAB的半径为12厘米,∠AOB=150°,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是5厘米.的扇形的弧长是的扇形的弧长是=10225.(2009•江西)用直径为80cm的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是20 cm.226.(2009•伊春)如图,将一个半径为6cm,圆心角为120°的扇形薄铁皮AOB卷成圆锥AOC的侧面(接缝无重叠,无缝隙),O′为圆锥的底面圆心,则O′A=2cm.的扇形的弧长是=4227.(2009•黄冈)矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是12π.228.(2009•抚顺)如图,已知圆锥的高AO为8cm,底面圆的直径BC长为12cm,则此圆锥的侧面展开图的圆心角为216度.,229.(2009•德城区)半径为18的圆中,120°的圆心角所对的弧长是12π.=12230.(2012•青海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为π﹣4(结果保留π).π×π231.(2009•包头)如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是(保留π).+AD=22=×=232.(2009•湘西州)一个圆的半径是4,则圆的面积是16π.(答案保留π)233.(2009•咸宁)为庆祝祖国六十华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为800cm2(π取3)S=﹣=234.(2009•梧州)一个扇形所在圆的半径为3cm,扇形的圆心角为120°,则扇形的面积是3πcm2.(结果保留π)s=求值即可.=3s=lr235.(2009•泰安)如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为4:9.,扇环的面积为(π236.(2009•随州)如图,AC是汽车挡风玻璃前的刮雨刷.如果AO=65cm,CO=15cm,当AC绕点O旋转90°时,则刮雨刷AC扫过的面积为1000πcm2.=1000237.(2009•凉山州)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为4πcm2.AC=2×238.(2009•兰州)翔宇中学的铅球场如图所示,已知扇形AOB的面积是36米2,弧AB的长度为9米,那么半径OA=8米.×s=lr239.(2009•河南)如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).OF=﹣1=240.(2012•庆阳)如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为﹣3π.=3×=9;扇形的面积是=39。
2014中考九上数学分类圆练习9(附答案)

(3)如图②,当 S 取最大值时,等腰梯形 ABCD 的四个顶点都在 O 上,点 E 和 点 F 分别是 AB 和 CD 的中点,求 O 的半径 R 的值.
30. (2014 湖北省黄冈市) 如图,在 Rt△ABC 中 ,∠ACB=90°,C 以 AC 为 直径的⊙O 与 AB 边交于点 D,过点 D 作⊙O 的切线,交 BC 于点 E(1)求 证:EB=EC;(2)若以点 O、D、E、C、为顶点的四边形是正方形,试判 断△ABC 的形状,并说明理由.
(1) 所对的圆心角∠AOB =
度;(3 分)
(2)求证:PA =PB;(3 分) (3)若 OA =3,求阴影部分的面积.(4 分)
23. (2014 贵州省遵义市) 如图,直角梯形 ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ ACD的外接圆⊙O 交 BC于 E 点,连接 DE并延长,交 AC于 P 点,交 AB延长 线于 F. (1)求证:CF=DB; (2)当 AD= 时,试求 E 点到 CF的距离.
B
M D
A
C O
21. 解: (1)120, (2)连结 PO,
∵ ∠PAO =∠PBO =90°, 又∵ AO =BO,PO =PO,
∴ Rt△PAO ≌ Rt△PBO(HL) ∴ PA =PB
(3)∵ Rt△PAO ≌ Rt△PBO
Hale Waihona Puke ∴∠APO=∠BPO
1 =2
∠APB
=30°,
∵ ∠PAO =90°,OA =3,
∴EH= ,
即 E 点到 CF的距离为 .
24. 解: (1)证明:∵P、C、B、D 四点共圆
∴∠1=∠D(同弧所对的圆周角相等) ∵∠1=∠C(已知) ∴∠C=∠D(等量代换) ∴CB//PD(内错角相等,两直线平行) (2)连接 OC、OD、BD
中考数学专题测试卷——圆

中考数学专题测试卷——圆一.选择题(共12小题)1.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD 2.如图,AB是⊙O的直线,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C 的度数是()A.50°B.60°C.25°D.30°3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.84.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.B.C.2D.5.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm6.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°7.如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π8.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10B.8C.4D.49.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5 10.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10B.20C.10πD.20π11.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.812.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2B.3C.4D.5二.填空题(共6小题)13.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.14.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是.15.如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是.16.如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为.17.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=.18.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.三.解答题(共8小题)19.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中阴影部分的面积.21.如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.22.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.23.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.25.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.26.如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.中考数学专题测试卷——圆参考答案一.选择题(共12小题)1.B;2.C;3.C;4.D;5.C;6.A;7.B;8.D;9.A;10.A;11.C;12.D;二.填空题(共6小题)13.10;14.70°;15.;16.6;17.44°;18.70°;三.解答题(共8小题)19.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.20.【解答】解:(1)连接OB,∵BC⊥OA,∴BE=CE,=,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)∵BC=6,∴CE=BC=3,在Rt△OCE中,OC==2,∴OE===,∵=,∴∠BOC=2∠AOC=120°,∴S阴影=S扇形OBC﹣S△OBC=4π﹣3(cm2).21.【解答】解:(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=4∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=22.【解答】解:(1)连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;(2)∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=,解得:r=2,∴⊙O的半径为2.23.【解答】解:(1)连接OA,如图1所示∵C为AB的中点,AB=8cm,∴AC=4cm 又∵CD=2cm设⊙O的半径为r,则(r﹣2)2+42=r2解得:r=5∴S=πr2=π×25=25π(2)OC=OD﹣CD=5﹣2=3,EC=EO+OC=5+3=8,∴EA===4∴EF===2∴OF===24.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.25.【解答】(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.26.【解答】解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD 平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O 的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP ,∴,∴,∴CP=16.9cm.第11页(共11页)。
2014圆的性质中考题汇编

二、填空题
1.(2014•四川巴中,第17题3分)如图,已知A、B、C三 点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是 70° 2.(2014•湖南张家界,第16题,3分)如图, AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6, MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF 上的任意一点,则PA+PC的最小值为 3.(2014•江西抚州,第13题,3分) 如图, △ABC内接于⊙O ,∠OAB=20°,则∠C的度数为 4. (2014•年山东东营,第16题4分)在 ⊙O中,AB是⊙O的直径,AB=8cm, = = , 8 cm. M是AB上一动点,CM+DM的最小值是
2014圆的有关性质中考题汇编
一 选择题
1. (2014•湖北宜昌,第12题3分)如图,点A,B,C,D都 2. 在⊙O上,AC,BD相交于点E,则∠ABD=(A ) A.∠ B.∠ADB C.∠AED D.∠ACB 2.(2014•重庆A,第9题4分)如图,△ABC的 顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90° 则∠AOC的大小是( C ) A.30° B.45° C.60° D.70° 3.(2014•山西,第8题3分)如图,⊙O是△ABC 的外接圆,连接OA、OB,∠OBA=50°,则∠C的 度数为( B ) A.30°B.40°C.50°D.80°
70
5.(2014•甘肃兰州,第18题4分)如图,△ABC为⊙O的内 接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°, 则∠BAC的度数等于 36° . 6.(2014•黑龙江龙东,第6题3分)直径为10cm 的⊙O中,弦AB=5cm,则弦AB所对的圆周角是 30°或150° 7.(2014•湖南衡阳,第17题3分)如图,AB为⊙O直径,CD 为⊙O的弦,∠ACD=25°,∠BAD的度数为 65° . 8.(2014•江西,第12题3分)如图,△ABC 3 内接于⊙O,AO=2,BC = 2 ,则∠ BAC的度数_______ 60° 9.(2014•四川成都,第14题4分)如图,AB是 ⊙O的直径,点C在AB的延长线上,CD切⊙O于点D ,连接AD.若∠A=25°,则∠C= 40 度.
2014年各地中考数学试卷汇编圆试题

2014年各地中考数学试卷解析版分类汇编圆(一)点直线与圆的位置关系一、选择题1. (2014•山东淄博)如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,E ,F 为圆上的两点,且∠CDE=∠ADF .若⊙O 的半径为,CD=4,则弦EF 的长为( )A .4B .2C .5D .62. (2014山东济南)如图,O ⊙的半径为1,ABC 是O ⊙的内接等边三角形,点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( )A .2B .3C .23D .233.(2014•四川宜宾)已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的点的个数为m ,给出下列命题:①若d >5,则m =0;②若d =5,则m =1;③若1<d <5,则m =3;④若d =1,则m =2;⑤若d <1,则m =4. 其中正确命题的个数是( ) A . 1 B . 2 C . 4 D .5ABCDE.O第13题图4.(2014•四川内江)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5 B.1.6 C.1.5 D.15.(2014•甘肃白银、临夏)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断二、填空题1. (2014•江苏苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.2.(2014•四川宜宾)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM= .三、解答题1. (2014•四川巴中)如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.2. (2014•山东威海)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.3. (2014•山东枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.4. (2014•山东潍坊)如图,在梯形ABCD中,AD∥BC,∠B=900,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.5.(2014•江西抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别交于A、B两点,连接AP 并延长分别交⊙P、x轴于点D、E,连接DC并延长交y轴于点F,若点F的坐标为(0 ,1),点D的坐标为(6 ,-1).⑴求证:DC FC⑵判断⊙P与x轴的位置关系,并说明理由.⑶求直线AD的解析式.6.(2014山东济南) 如图,AB 与O ⊙相切于C ,B A ∠=∠,O ⊙的半径为6,AB =16,求OA 的长.7.(2014•山东聊城)如图,AB ,AC 分别是半⊙O 的直径和弦,OD ⊥AC 于点D ,过点A 作半⊙O 的切线AP ,AP 与OD 的延长线交于点P .连接PC 并延长与AB 的延长线交于点F . (1)求证:PC 是半⊙O 的切线;(2)若∠CAB=30°,AB=10,求线段BF 的长.9. (2014年贵州黔东南)已知:AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD ⊥CP 于D . (1)求证:△ACB ∽△CDB ;(2)若⊙O 的半径为1,∠BCP=30°,求图中阴影部分的面积.AB CO第23题(2)图10.(2014•遵义)如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.11.(2014•十堰)如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.12.(2014•娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.13.(2014年湖北咸宁)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.(1)求证:AC平分∠DAB;(2)若点E为的中点,AD=,AC=8,求AB和CE的长.14.(2014年河南)如图,CD 是⊙O 的直径,且CD =2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线P A 、PB ,切点分别为点A 、B .(1)连接AC ,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP = cm 时,四边形AOBD 是菱形;②当DP = cm 时,四边形AOBP 是正方形.15. (2014•江苏盐城)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D=2∠CAD . (1)求∠D 的度数;(2)若CD=2,求BD 的长.16. (2014•年山东东营)如图,AB 是⊙O 的直径,OD 垂直于弦AC 于点E ,且交⊙O 于点D ,F 是BA 延长线上一点,若∠CDB=BFD .(1)求证:FD 是⊙O 的一条切线; (2)若AB=10,AC=8,求DF 的长.APCO DB17.(2014•山东临沂)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D 作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.18.(2014•四川遂宁)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)求证:PD2=PB•P A.(3)若PD=4,tan∠CDB=,求直径AB的长.19.(2014•四川凉山州)已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.20.(2014•四川泸州)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.21.(2014•四川宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=5,cos∠A=,求BE的长.22.(2014•甘肃白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.23.(2014•甘肃兰州)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.24.(2014•广东梅州)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.(1)求证:AB与⊙O相切;(2)若∠AOB=120°,AB=4,求⊙O的面积.。
2014年中考数学与圆有关的题试题汇编

2014年中考数学与圆有关的题试题汇编【题7】(2014•宁波26)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.【解答】:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.【题8】(2014•苏州28)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O 的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【考点】:圆的综合题.菁优网版权所有【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【题9】(2014•泰州25题)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D 在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M 的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.【题10】(2014年江苏徐州28)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O 与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.【点评】:本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG=∠ADB及∠FCE=∠ADB是解决本题的关键.【题11】(2014.连云港25题)为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O为圆心,半径为4km圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(-4,9)、(-13,-3).(1)求线段P1P2所在的直线对应的函数关系式;(2)求冰川的边界线移动到考察区域所需要的最短时间.。
2014年最新中考数学真题解析汇编:圆与圆的位置关系
圆与圆的位置关系一.选择题1. (2014•贵州黔西南州, 第6题4分)已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为()A.外离B.内含C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是3、5,O1O2=8,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出⊙O1和⊙O2的位置关系.解答:解:∵⊙O1、⊙O2的半径分别是3、5,O1O2=8,又∵3+5=8,∴⊙O1和⊙O2的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.2. (2014年广西钦州,第9题3分)如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A.60° B.45° C.30°D.20°考点:相交两圆的性质;等边三角形的判定与性质;圆周角定理分析:利用等圆的性质进而得出△AO1O2是等边三角形,再利用圆周角定理得出∠ACO2的度数.解答:解:连接O1O2,AO2,∵等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,∴AO1=AO2=O1O2,∴△AO1O2是等边三角形,∴∠AO1O2=60°,∴∠ACO2的度数为;30°.故选;C.点评:此题主要考查了相交两圆的性质以及等边三角形的判定和圆周角定理等知识,得出△AO1O2是等边三角形是解题关键.3.(2014•青岛,第5题3分)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2二.填空题1.2.三.解答题1. (2014•乐山,第26题12分)如图,⊙O1与⊙O2外切与点D,直线l与两圆分别相切于点A、B,与直线O1、O2相交于点M,且tan∠AM01=,MD=4.(1)求⊙O2的半径;(2)求△ADB内切圆的面积;(3)在直线l上是否存在点P,使△MO2P相似于△MDB?若存在,求出PO2的长;若不存在,请说明理由.4R=4BD=O2B=4,∠BD=4=2﹣MB=O2B=12;当△+RAM01=+R=2R R=4;BD=O2B=4BD=4===228MB=O2B==12=,即;=,即82.。
2014年全国中考数学试题汇编《圆》(07)
全国中考数学试题汇编《圆》(07)填空题181.(2009•綦江县)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=_________度.182.(2009•宁波)如图,⊙A、⊙B的圆心A、B在直线l上,两圆半径都为1cm,开始时圆心距AB=4cm,现⊙A、⊙B同时沿直线l以每秒2cm的速度相向移动,则当两圆相切时,⊙A运动的时间为_________秒.183.(2009•娄底)如图,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC=_________ cm.184.(2009•柳州)如图,∠MAB=30°,P为AB上的点,且AP=6,圆P与AM相切,则圆P的半径为_________.185.(2009•辽宁)已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=_________.186.(2009•伊春)如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=_________度.187.(2009•怀化)如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=_________度.188.(2009•衡阳)如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30°,弦EF∥AB,连接OC交EF于H点,连接CF,且CF=2,则HE的长为_________.189.(2009•河南)如图,AB为半圆O的直径,延长AB到点P,使BP=AB,PC切半圆O于点C,点D是上和点C不重合的一点,则∠CDB的度数为_________度.190.(2009•张家界)如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠EDF= _________度.191.(2009•宁夏)如图,⊙O是边长为2的等边三角形ABC的内切圆,则图中阴影部分的面积为_________.192.(2009•荆门)如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=_________.193.(2009•杭州)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是_________;②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=_________.194.(2009•锦州)如图所示,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径均为1cm,⊙A以每秒2cm的速度自左向右运动,与此同时,⊙A的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当点A出发后_________秒两圆相切.195.(2010•鄂尔多斯)如图,⊙O1和⊙O2的半径分别是1和2,连接O1O2,交⊙O2于点P,O1O2=5,若将⊙O1绕点P按顺时针方向旋转360°,则⊙O1与⊙O2共相切_________次.196.(2009•重庆)已知⊙O1的半径为3cm,⊙O2的半径为4cm,两圆的圆心距O1O2为7cm,则⊙O1与⊙O2的位置关系是_________.197.(2009•湛江)如图,⊙O1、⊙O2的直径分别为2cm和4cm,现将⊙O1向⊙O2平移,当O1O2=_________cm 时,⊙O1与⊙O2相切.198.(2009•宜昌)如图,日食图中表示太阳和月亮的分别为两个圆,这两个圆的位置关系是_________.199.(2009•襄阳)已知⊙O1和⊙O2的半径分别为3cm和2cm,且O1O2=1cm,则⊙O1与⊙O2的位置关系为_________.201.(2009•芜湖)两圆的半径分别为3cm和4cm,圆心距为5cm,则两圆的位置关系为_________.202.(2009•绥化)已知两圆的半径分别为5cm和4cm,圆心距是6cm,则这两个圆的位置关系是_________.203.(2009•绍兴)如图,⊙A、⊙B的半径分别为1cm、2cm,圆心距AB为5cm.如果⊙A由图示位置沿直线AB向右平移3cm,则此时该圆与⊙B的位置关系是_________.204.(2009•莆田)已知⊙O1和⊙O2的半径分别是一元二次方程(x﹣1)(x﹣2)=0的两根,且O1O2=2,则⊙O1和⊙O2的位置关系是_________.205.(2009•江津区)如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A半径为2,⊙B半径为1,需使⊙A与静止的⊙B相切,那么⊙A由图示的位置向左平移_________个单位长.206.(2009•济宁)已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是_________.207.(2009•佛山)已知△ABC的三边分别是a、b、c,两圆的半径r1=a,r2=b,圆心距d=c,则这两个圆的位置关系是_________.208.(2009•鄂尔多斯)相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为_________cm.209.(2009•黑河)已知相切两圆的半径分别为5cm和4cm,这两个圆的圆心距是_________.210.(2009•大连)若⊙O1和⊙O2外切,O1O2=10cm,⊙O1半径为3cm,则⊙O2半径为_________cm.2009年全国中考数学试题汇编《圆》(07)参考答案与试题解析填空题181.(2009•綦江县)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=27度.182.(2009•宁波)如图,⊙A、⊙B的圆心A、B在直线l上,两圆半径都为1cm,开始时圆心距AB=4cm,现⊙A、⊙B同时沿直线l以每秒2cm的速度相向移动,则当两圆相切时,⊙A运动的时间为或秒.或.183.(2009•娄底)如图,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC=cm.AP==∵BP=×BC=184.(2009•柳州)如图,∠MAB=30°,P为AB上的点,且AP=6,圆P与AM相切,则圆P的半径为3.185.(2009•辽宁)已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=5.OA==2R186.(2009•伊春)如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=58度.((187.(2009•怀化)如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=60度.188.(2009•衡阳)如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30°,弦EF∥AB,连接OC交EF于H点,连接CF,且CF=2,则HE的长为.,=189.(2009•河南)如图,AB为半圆O的直径,延长AB到点P,使BP=AB,PC切半圆O于点C,点D是上和点C不重合的一点,则∠CDB的度数为30度.∠190.(2009•张家界)如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠EDF= 55度.191.(2009•宁夏)如图,⊙O是边长为2的等边三角形ABC的内切圆,则图中阴影部分的面积为.AD=OAB=,即=,得0D=)192.(2009•荆门)如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=2.(=10(r=(193.(2009•杭州)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是:2;②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=21.GH=GFGH=DG=.由此可得,半圆的半径为a:194.(2009•锦州)如图所示,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径均为1cm,⊙A以每秒2cm的速度自左向右运动,与此同时,⊙A的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当点A出发后3、、11、13秒两圆相切.t=;、195.(2010•鄂尔多斯)如图,⊙O1和⊙O2的半径分别是1和2,连接O1O2,交⊙O2于点P,O1O2=5,若将⊙O1绕点P按顺时针方向旋转360°,则⊙O1与⊙O2共相切3次.196.(2009•重庆)已知⊙O1的半径为3cm,⊙O2的半径为4cm,两圆的圆心距O1O2为7cm,则⊙O1与⊙O2的位置关系是外切.197.(2009•湛江)如图,⊙O1、⊙O2的直径分别为2cm和4cm,现将⊙O1向⊙O2平移,当O1O2=1或3cm时,⊙O1与⊙O2相切.198.(2009•宜昌)如图,日食图中表示太阳和月亮的分别为两个圆,这两个圆的位置关系是相交.199.(2009•襄阳)已知⊙O1和⊙O2的半径分别为3cm和2cm,且O1O2=1cm,则⊙O1与⊙O2的位置关系为内切.201.(2009•芜湖)两圆的半径分别为3cm和4cm,圆心距为5cm,则两圆的位置关系为相交.202.(2009•绥化)已知两圆的半径分别为5cm和4cm,圆心距是6cm,则这两个圆的位置关系是相交.203.(2009•绍兴)如图,⊙A、⊙B的半径分别为1cm、2cm,圆心距AB为5cm.如果⊙A由图示位置沿直线AB向右平移3cm,则此时该圆与⊙B的位置关系是相交.204.(2009•莆田)已知⊙O1和⊙O2的半径分别是一元二次方程(x﹣1)(x﹣2)=0的两根,且O1O2=2,则⊙O1和⊙O2的位置关系是相交.205.(2009•江津区)如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A半径为2,⊙B半径为1,需使⊙A与静止的⊙B相切,那么⊙A由图示的位置向左平移2或4个单位长.206.(2009•济宁)已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是外离.207.(2009•佛山)已知△ABC的三边分别是a、b、c,两圆的半径r1=a,r2=b,圆心距d=c,则这两个圆的位置关系是相交.208.(2009•鄂尔多斯)相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为3(答案不唯一)cm.209.(2009•黑河)已知相切两圆的半径分别为5cm和4cm,这两个圆的圆心距是1cm或9cm.210.(2009•大连)若⊙O1和⊙O2外切,O1O2=10cm,⊙O1半径为3cm,则⊙O2半径为7cm.。
2014年中考数学圆的综合题试卷分类汇编
2014年中考数学圆的综合题试卷分类汇编中考数学圆的综合题试卷分类汇编 ,主要是汇总了2013年中考数学试题中关于圆的综合题,这类题型主要考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键。
中考数学圆的综合题试卷分类汇编 ,供大家下载练习。
1、(2013 温州)在△ABC中,C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是( ) 考点:圆的认识分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:△AB=4,AC=2,点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.2、(2013 孝感)下列说法正确的是( )A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交考点:圆与圆的位置关系;垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可解答:解:A、平分弦(不是直径)的直径垂直于弦,故本选项错误;B、半圆或直径所对的圆周角是直角,故本选项正确;C、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D、两圆有两个公共点,两圆相交,故本选项错误,故选B.点评:本题考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键.相关推荐2013年中考数学关于函数与四边形的模拟汇编 2013年中考模拟数学关于实数运算的试卷分类汇编 标签:模拟题汇编。
2014年中考数学复习试卷含答案解析
2014 年中考数学二轮精品复习试卷:圆学校: ___________姓名: ___________班级: ___________考号: ___________1、半径为 3 的圆中,一条弦长为4,则圆心到这条弦的距离是A . 3B. 4C.D.2、两个圆的半径分别为 2 和 3,当圆心距d=5 时,这两个圆的位置关系是【】A .内含B.内切C.相交D.外切3、如图,四边形 ABCD 是菱形,∠ A=60°, AB=2 ,扇形 BEF 的半径为 2,圆心角为 60°,则图中阴影部分的面积是A.B.C.D.4、如图,已知线段 OA 交⊙ O 于点 B ,且 OB = AB ,点 P 是⊙ O 上的一个动点,那么∠ OAP 的最大值是A . 90°B. 60°C.45°D. 30°5、如图, AB 是半圆的直径,点 D 是弧 AC 的中点,∠ ABC = 500,则∠ DAB 等于A . 55°B. 60°C.65°D. 70°6、如图, ABCD 的顶点 A 、B 、D 在⊙ O 上,顶点 C 在⊙ O 的直径 BE 上,∠ ADC=54°,连接AE ,则∠ AEB 的度数为A . 36°B . 46°C. 27°D. 63°7、一条排水管的截面如图所示,已知排水管的半径OB=10 ,水面宽 AB=16 ,则截面圆心O到水面的距离OC 是【】A.4B. 5C.6D.88、如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为 45°,则“蘑菇罐头”字样的长度为【】A .cm B.cm C.cm D. 7π cm9、已知和的半径分别为和,圆心距为,则和的位置关系是【】A .外离B.外切C.相交D.内切10、如图,点 A ,B ,C 在⊙ O 上,∠ A=50°,则∠ BOC 的度数为【】A . 40°B. 50°C.80°D. 100 °11、如图,⊙ O 的半径 OD ⊥弦 AB 于点 C,连结 AO 并延长交⊙ O 于点 E,连结 EC.若 AB=8 ,CD=2 ,则 EC 的长为【】A.B.8C.D.12、如图,半圆O 的直径 AB=10cm ,弦 AC=6cm , AD 平分∠ BAC ,则 AD 的长为【】A .cm B.cm C.cm D. 4 cm13、如图,圆心在y 轴的负半轴上,半径为 5 的⊙ B 与 y 轴的正半轴交于点A( 0,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京孙老师教育 成功一定有方法! 人教版2014年中考数学二轮专题复习试卷:圆测试题 (时间:120分钟 满分:120分) 一、选择题(本大题共15个小题,每小题3分,共45分) 1.两圆半径分别为3 cm和7 cm,当圆心距d=10 cm时,两圆的位置关系为( D ) A.外离 B.内切 C.相交 D.外切 2.如图,P是⊙O外一点,PA是⊙O的 切线,PO=26 cm,PA=24 cm,则⊙O的周长为(C ) A.18πcm B.16πcm C.20πcm D.24πcm 3.如图,⊙O的半径OD⊥弦AB 于点C,连接AO并延长交⊙O于点E,连接EC. 若AB=8,CD=2,则EC的长为( )
A.215 B.8 C.210 D.213 4.如图所示,在⊙O中, ABAC,∠A=30°,则∠B=( )
A.150° B.75° C.60° D.15° 5.如图,将边长为1 cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为( )
第5题 第7题 第9题 33A.cm? B.(2) cm224C.cmD.3 cm3
6.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( ) A.12 cm B.10 cm C.8 cm D.6 cm 7.如图,半圆O的直径AB=10 cm,弦AC=6 cm,AD平分∠BAC,则AD的长为( )
A.45 cmB.35 cmC.55 cmD.4 cm 8.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( ) A.r<6 B.r=6 C.r>6 D.r≥6 9.如图,把⊙O1向右平移8个单位长度得⊙O2,两圆相交于A,B,且O1A⊥O2A,则图中阴影部分的面积是( ) A.4π-8 B.8π-16 C.16π-16 D.16π-32 10.如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( ) A.-4和-3之间 B.3和4之间 北京孙老师教育 成功一定有方法! C.-5和-4之间 D.4和5之间 11.如图,P是⊙O外一点,PA是⊙O的切线,PO=26 cm,PA=24 cm,则⊙O的周长为( ) A.18π cm B.16π cm C.20π cm D.24π cm
12.如图7-26,点O是△ABC的外心,已知∠ACB=100O ,则劣弧AB所对的∠AOB度数为( )。 A.100° B.120° C.160° D.170°
第12题 第13题 第14题 第15题 13.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan ∠ODA的值为( ) 33A.B.23C.3D.2
14.(2012浙江宁波)如图,用邻边长分别为a,b(a矩形较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是( ) 51A.b3aB.ba25C.baD.b2a2
15.(2013湖北襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为23,则图中阴影部分的面积为( )
3A.B.99333332C.D.2223
二、填空题(本大题共6个小题,每小题3分,共18分) 16.(2012江苏扬州)已知一个圆锥的母线长为10 cm,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 cm. 17.(2013湖南株洲)如图,AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是 度. 北京孙老师教育
成功一定有方法!
18.(2013湖北襄阳)如图,水平放置的圆柱形排水管道的截面直径是1 m,其中水面的宽AB为0.8 m,则排水管内水的深度为 m. 19.如图,OC是⊙O的半径, AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC= °. 20.(2013重庆)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为 .(结果保留π)
20题 第22题 21.(2013湖北孝感)用半径为10 cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为 cm. 三、解答题(本大题共5个小题,共57分) 22.(本小题满分10分) (2013江苏镇江)如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O交AE于点F. (1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(图2).求证:点G是CD的中点.
23.(本小题满分10分) (2013广东梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长; (2)求图中阴影部分的面积. 北京孙老师教育
成功一定有方法! 24.(本小题满分10分) (2012浙江温州)如图,△ABC中,∠ACB=90°, D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D. (1)求证:AB是⊙O的切线; (2)若CD的弦心距为1,BE=EO,求BD的长.
25.(本小题满分12分) (2013广东)如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E. (1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.
26.(本小题满分15分) (2012浙江杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,
OB⊥AT于点B,已知∠EAT=30°,AE33,MN222. (1)求∠COB的度数; (2)求⊙O的半径R;
(3)点F在⊙O上(FME是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比. 北京孙老师教育
成功一定有方法! 参考答案 1.D 2.C 3.D 4.B 5.C 6.B 7.A 8.C 9.B 10.A 11.C 12.C 13.D 14.D 15.D 16.4 17.48 18.0.2 19.52 20.10-π 21.8 22.解:(1)∵∠ACB=90°,AB=5,BC=3, 由勾股定理得:AC=4, ∵AB=5,BD=3,∴AD=8, ∵∠ACB=90°,DE⊥AD, ∴∠ACB=∠ADE, ∵∠A=∠A,∴△ACB∽△ADE, BCACAB,DEADAE345,DE8AE
∴DE=6,AE=10, 即⊙O的半径为3; 过O作OQ⊥EF于Q, 则∠EQO=∠ADE=90°, ∵∠QEO=∠AED, ∴△EQO∽△EDA, EOOQ,AEAD3OQ,108
∴OQ=2.4, 即圆心O到弦EF的距离是2.4; (2)连接EG, ∵AE=10,AC=4, ∴CE=6, ∴CE=DE=6, ∵DE为直径, ∴∠EGD=90°, 北京孙老师教育 成功一定有方法! ∴EG⊥CD, ∴点G为CD的中点.
23.解:(1)∵在矩形ABCD中,AB=2DA,DA=2, ∴AB=AE=4,
DE23,
∴EC=CD-DE=423; (2)∵AD1sinDEAAE2, ∴∠DEA=30°, ∴∠EAB=30°, ∴图中阴影部分的面积为:
FABDAEEAB22
SSS90413048 22323.36023603
扇形扇形
24.(1)证明:连接OD. ∵∠DOB=2∠DCB,∠A=2∠DCB, ∴∠A=∠DOB. 又∵∠A+∠B=90°, ∴∠DOB+∠B=90°, ∴∠BDO=90°, ∴OD⊥AB,∴AB是⊙O的切线. (2)解:过点O作OM⊥CD于点M,
∵OD=OE=BE=12BO, ∠BDO=90°, ∴∠DBO=30°,∠DOB=60°.
∵∠DCO=12∠DOB, ∴∠DCO=30°, 又∵OM⊥CD,OM=1, ∴OC=2OM=2, ∴OB=4,OD=2,