2019年广东省高考文科数学一模试卷及答案解析
广东省2019年汕头市普通高考第一次模拟考试试题文科数学(精品解析)

汕头市2019届普通高考第一次模拟考试试题文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|log 1},{0,12,34}A x x B =>=,,,则A B =( )A .{0,12},B .{123},,C .{2,34},D .{3},4答案:D考点:集合的运算,对数函数。
解析:22{|log 1log 2}{|2}A x x x x =>=>=,所以,A B ={3},42.已知,i R a ∈是虚数单位,复数2i1ia z +=+,若2z =,则a = ( ) A .0 B .2 C .2-D .1答案:A考点:复数的概念与运算。
解析:2i (2)(1)221i 222a a i i a az i ++-+-===++,因为2z =, 所以,2222()()222a a +-+=,即2288a +=,解得:a =0 3.设,x y 满足约束条件1y xx y y ≤⎧⎪+≤⎨⎪≥⎩1-,则2z x y =+的最大值为( )A .2B .3C .4D .5答案:B考点:线性规划。
解析:不等式组表示的平面区域如下图,2z x y =+经过点C (2,-1)时,取得最大值为:34.现有甲、 乙、 丙、 丁 4 名学生平均分成两个志愿者小组到校外参加两项活动, 则乙、 丙两人恰好参加同一项活动的概率为A .12B .13C .16D .112答案:B考点:古典概型。
解析::甲、乙、丙、丁4 名学生平均分成两个小组共有3 种情形:{(甲、乙),(丙、丁)},{(甲、 丙),(乙、丁)},{(甲、丁),(乙、丙)}.乙、丙两人恰好在一起只有1 种情形{(甲、丁),(乙、丙)}.5.已知圆O :x 2+ y 2= 4 ( O 为坐标原点)经过椭圆C :22221(0)x y a b a b+=>>的短轴端点和两个焦点, 则椭圆C 的标准方程为A .22142x y += B .22184x y += C .221164x y += D .2213216x y += 答案:B考点:椭圆的性质。
2019年广州市一模试题及答案(文科数学)

文科数学试题 第1页(共19页)2019年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则A B =I(A ){}12x x -≤≤ (B ){}10x x -≤≤ (C ){}12x x ≤≤ (D ){}01x x ≤≤ (2)已知复数3i1iz +=+,其中i 为虚数单位,则复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(3)已知函数()2,1,1,1,1x x x f x x x⎧-≤⎪=⎨>⎪-⎩则()()2f f -的值为(A )12(B )15 (C )15- (D )12-(4)设P 是△ABC 所在平面内的一点,且2CP PA =u u u r u u u r,则△PAB 与△PBC 的面积之比是(A )13 (B )12 (C )23 (D )34(5)如果函数()cos 4f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为 (A )3 (B )6 (C )12 (D )24(6)执行如图所示的程序框图,如果输入3x =,则输出k 的值为(A )6 (B )8 (C )10 (D )12(7)在平面区域(){},0112x y x y ≤≤≤≤,内随机投入一点P ,则点P 的坐标(),x y 满足2y x ≤的文科数学试题 第2页(共19页)概率为 (A )14 (B )12 (C )23 (D )34(8)已知()sin 6f x x π⎛⎫=+⎪⎝⎭,若3sin 5α=2πα⎛⎫<<π ⎪⎝⎭,则12f απ⎛⎫+= ⎪⎝⎭(A )210-(B )210- (C )210(D )210 (9)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++=L ,则12n PF P F P F +++=L (A )10n + (B )20n + (C )210n +(D )220n +(10)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为(A )20π (B )2053π (C )5π (D )556π(11)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-;3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是(A )1 (B )2 (C )3 (D )4 (12)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A )88246+ (B )88226+(C )2226+ (D )126224++第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~文科数学试题第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分. (13)函数()33f x x x =-的极小值为 .(14)设实数x ,y 满足约束条件230,230,3x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩, 则23z x y =-+的取值范围是 .(15)已知双曲线C :22221x y a b-=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =u u u r u u u r g ,则双曲线C 的离心率为 .(16)在△ABC 中,点D 在边AB 上,CD BC ⊥,AC =,5CD =,2BD AD =,则AD 的长为 .三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 是等比数列,24a =,32a +是2a 和4a 的等差中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T .(18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1. (Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)用分层抽样的方法在区间[)45,75取一个容量为6个总体,从中任意抽取2件产品,求这件产品都在区间[)45,65内的概率.(19)(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面文科数学试题 第4页(共19页)21==AA AB .(Ⅰ)证明:BD ⊥平面1A CO ;(Ⅱ)若60BAD ∠=o,求点C 到平面1OBB 的距离.(20)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N . (Ⅰ)求椭圆C 的方程;(Ⅱ)在x 轴上是否存在点P ,使得无论非零实数k 怎样变化,总有MPN ∠为直角?若存在,求出点P 的坐标;若不存在,请说明理由.(21)(本小题满分12分)已知函数()e ln 1x f x m x =--.(Ⅰ)当1m =时,求曲线()y f x =在点()()11f ,处的切线方程; (Ⅱ)当1m ≥时,证明:()1f x >.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲文科数学试题 第5页(共19页)如图所示,△ABC 内接于⊙O ,直线AD 与⊙O 相切于点A ,交BC 的延长线于点D ,过点D 作DE CA P 交BA 的延长线于点E .(Ⅰ)求证:2DE AE BE =g ;(Ⅱ)若直线EF 与⊙O 相切于点F ,且4EF =,2EA =,求线段AC 的长.(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l:32x y t ⎧=⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.(24)(本小题满分10分)选修4-5:不等式选讲设函数()f x x x =+-. (Ⅰ)当1a =时,求不等式()12f x ≥的解集; (Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.文科数学试题 第6页(共19页)2016年广州市普通高中毕业班综合测试(一)文科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题(1)D (2)D (3)C (4)B (5)B (6)C (7)A (8)B(9)A(10)D(11)B(12)A二.填空题(13)2-(14)[]6,15- (15(16)5三.解答题(17)解:(Ⅰ)设数列{}n a 的公比为q ,因为24a =,所以34a q =,244a q =.…………………………………………1分因为32a +是2a 和4a 的等差中项,所以()32422a a a +=+.……………………2分即()224244q q +=+,化简得220q q -=.因为公比0q ≠,所以2q =.………………………………………………………4分所以222422n n n n a a q --==⨯=(*n ∈N ).…………………………………………5分(Ⅱ)因为2n na =,所以22log 121n nb a n =-=-.所以()212nn n a b n =-.……………………………………………………………7分 则()()231123252232212n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-, ①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-. ②………………9分文科数学试题 第7页(共19页)①-②得,()2312222222212n n n T n +-=+⨯+⨯+⋅⋅⋅+⨯--……………………………………10分()()()11142221262321212n n n n n ++-=+⨯--=-----,所以()16232n n T n +=+-.……………………………………………………………12分(18)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.03010421x x x +++⨯+++=,……………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)由(Ⅰ)得,区间[)45,55,[)55,65,[)65,75内的频率依次为0.3,0.2,0.1.用分层抽样的方法在区间[)45,75内抽取一个容量为6的样本,则在区间[)45,55内应抽取0.3630.30.20.1⨯=++件,记为1A ,2A ,3A .在区间[)55,65内应抽取0.2620.30.20.1⨯=++件,记为1B ,2B .在区间[)65,75内应抽取0.1610.30.20.1⨯=++件,记为C .…………………6分设“从样本中任意抽取2件产品,这2件产品都在区间[)45,65内”为事件M , 则所有的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}1,A C ,{}23,A A ,{}21,A B ,{}22,A B ,{}2,A C ,{}31,A B ,{}32,A B ,{}3,A C ,{}12,B B ,{}1,B C ,{}2,B C ,共15种.…………………………………………………………………8分事件M 包含的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10种.…………10分所以这2件产品都在区间[)45,65内的概率为102153=.………………………12分 (19)(Ⅰ)证明:因为1A O ⊥平面ABCD ,BD ⊂平面ABCD ,文科数学试题 第8页(共19页)所以1A O ⊥BD .……………………………………………………………………1分因为ABCD 是菱形,所以CO ⊥BD .……………………………………………2分因为1AO CO O =I ,1A O ,CO ⊂平面1A CO , 所以BD ⊥平面1A CO .……………………………………………………………3分 (Ⅱ)解法一:因为底面ABCD 是菱形,AC BD O =I ,21==AA AB ,60BAD ∠=o,所以1OB OD ==,OA OC ==4分所以OBC ∆的面积为112212OBC S OB OC ∆==⨯=⨯⨯.…………………5分 因为1A O ⊥平面ABCD ,AO ⊂平面ABCD ,所以1A O AO ⊥,11AO ==.………………………………………6分因为11A B P 平面ABCD ,所以点1B 到平面ABCD 的距离等于点1A 到平面ABCD 的距离1A O .…………7分 由(Ⅰ)得,BD ⊥平面1A AC .因为1A A ⊂平面1A AC ,所以BD ⊥1A A .因为11A A B B P ,所以BD ⊥1B B .………………………………………………8分 所以△1OBB 的面积为111121212OBB S OB BB ∆=⨯⨯==⨯⨯.……………………9分 设点C 到平面1OBB 的距离为d , 因为11C OBB B OBC V V --=,所以111133OBB OBC S d S A O D D =g g .………………………………………………10分所以111212OBC OBBS AO d S ∆∆⨯⋅===.所以点C 到平面1OBB的距离为2.……………………………………………12分文科数学试题 第9页(共19页)解法二:由(Ⅰ)知BD因为BD ⊂平面11BB D D 所以平面1A CO ⊥平面连接11A C 与11B D 交于点连接1CO ,1OO ,因为11AA CC =,11//AA CC ,所以11CAAC 为平行四边形. 又O ,1O 分别是AC ,11A C 的中点,所以11OA O C 为平行四边形.所以111O C OA ==.…………………………………………………………………6分 因为平面11OA O C 与平面11BB D D 交线为1OO ,过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .………………………………8分 因为11O C A O P ,1A O ⊥平面ABCD ,所以·1O C ⊥平面ABCD .因为OC ⊂平面ABCD ,所以·1O C ⊥OC ,即△1OCO 为直角三角形.………10分 所以1122O C OC CH OO ⋅===.所以点C 到平面1OBB 2.……………………………………………12分(20)(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.……………………………1分 设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==.………………………………………………………2分 所以a =2b =.………………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分文科数学试题 第10页(共19页)解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①…………………1分因为点(2B 在椭圆C 上,所以22421a b+=. ②…………………2分由①②解得,a =2b =.…………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 (Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A的坐标为()-.…………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =,0y =.………………………………………………6分所以直线AE的方程为y x =+.……………………………7分因为直线AE 与y 轴交于点M ,令0x =得y =,即点M ⎛ ⎝.……………………8分同理可得点N ⎛⎫ ⎝.…………………………………………………9分 假设在x 轴上存在点(,0)P t ,使得MPN ∠为直角,则0MP NP ⋅=u u u r u u u r.………10分即20t =,即240t -=.………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角.文科数学试题 第11页(共19页)………………………………12分 解法二: 因为椭圆C 的左端点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE的方程为y x =+.………………………………6分因为直线AE 与y 轴交于点M ,令0x =得y =M ⎛⎫⎝.……………………………7分同理可得点N ⎛⎫⎝.……………………………………………………8分 假设在x 轴上存在点(),0P t ,使得MPN ∠为直角,则0MP NP ⋅=u u u r u u u r.即20t =,即2220808y t x +=-. (※)…………9分因为点00(,)E x y 在椭圆C 上,所以2200184x y +=,即220082x y -=.……………………………………………10分 将220082x y -=代入(※)得240t -=.………………………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分 解法三:因为椭圆C 的左顶点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--.……6分 所以直线AE的方程为y x =+.………………………7分因为直线AE 与y 轴交于点M ,文科数学试题 第12页(共19页)令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.………………………………8分同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.………………………………………………………9分假设在x 轴上存在点(,0)P t ,使得MPN ∠为直角,则0MP NP ⋅=u u u r u u u r.………10分即22sin 2sin 0cos 1cos 1t θθθθ--+⨯=+-,即240t -=.…………………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分(21)(Ⅰ)解:当1m =时,()e ln 1xf x x =--,所以1()e x f x x'=-.………………………………………………………………1分 所以(1)e 1f =-,(1)e 1f '=-. …………………………………………………2分 所以曲线()y f x =在点()()11f ,处的切线方程为(e 1)(e 1)(1)y x --=--. 即()e 1y x =-.………………………………………………………………………3分 (Ⅱ)证法一:当1m ≥时,()e ln 1e ln 1xxf x m x x =--≥--.要证明()1f x >,只需证明e ln 20xx -->.……………………………………4分 以下给出三种思路证明e ln 20xx -->. 思路1:设()e ln 2xg x x =--,则1()e x g x x'=-. 设1()e x h x x =-,则21()e 0x h x x'=+>, 所以函数()h x =1()e x g x x '=-在0+∞(,)上单调递增.…………………………6分 因为121e 202g ⎛⎫'=-< ⎪⎝⎭,(1)e 10g '=->,所以函数1()e x g x x '=-在0+∞(,)上有唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭.…………8分文科数学试题 第13页(共19页)因为0()0g x '=时,所以01ex x =,即00ln x x =-.………………………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()000001()=e ln 220xg x g x x x x ≥--=+->. 综上可知,当1m ≥时,()1f x >.………………………………………………12分 思路2:先证明e 1xx ≥+()x ∈R .………………………………………………5分 设()e 1xh x x =--,则()e 1xh x '=-.因为当0x <时,()0h x '<,当0x >时,()0h x '>,所以当0x <时,函数()h x 单调递减,当0x >时,函数()h x 单调递增. 所以()()00h x h ≥=.所以e 1xx ≥+(当且仅当0x =时取等号).………………………………………7分 所以要证明e ln 20xx -->,只需证明()1ln 20x x +-->.……………………………………………………8分 下面证明ln 10x x --≥. 设()ln 1p x x x =--,则()111x p x x x-'=-=. 当01x <<时,()0p x '<,当1x >时,()0p x '>,所以当01x <<时,函数()p x 单调递减,当1x >时,函数()p x 单调递增. 所以()()10p x p ≥=.所以ln 10x x --≥(当且仅当1x =时取等号).………………………………10分由于取等号的条件不同, 所以e ln 20xx -->.综上可知,当1m ≥时,()1f x >.………………………………………………12分文科数学试题 第14页(共19页)(若考生先放缩ln x ,或e x、ln x 同时放缩,请参考此思路给分!) 思路3:先证明e ln 2x x ->.因为曲线e xy =与曲线ln y x =的图像关于直线y x =对称,设直线x t =()0t >与曲线e xy =,ln y x =分别交于点A ,B ,点A ,B 到直线y x = 的距离分别为1d ,2d , 则)122AB d d +. 其中12t d =22d ()0t >.①设()e t h t t =-()0t >,则()e 1t h t '=-. 因为0t >,所以()e 10t h t '=->.所以()h t 在()0,+∞上单调递增,则()()01h t h >=. 所以122t d =>. ②设()ln g t t t =-()0t >,则()111t g t t t -'=-=.因为当01t <<时,()0g t '<;当1t >时,()0g t '>,所以当01t <<时,()ln g t t t =-单调递减;当1t >时,()ln g t t t =-单调递增. 所以()()11g t g ≥=. 所以222d =≥ 所以)1222222AB d d =+>+=⎭. 综上可知,当1m ≥时,()1f x >.………………………………………………12分证法二:因为()e ln 1xf x m x =--,要证明()1f x >,只需证明e ln 20xm x -->.…………………………………4分以下给出两种思路证明e ln 20xm x -->.文科数学试题 第15页(共19页)思路1:设()e ln 2xg x m x =--,则1()e x g x m x'=-. 设1()e x h x m x =-,则21()e 0x h x m x'=+>. 所以函数()h x =()1e x g x m x'=-在()0+∞,上单调递增.……………………6分因为11221e 2e 202mm g m m m m ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭,()1e 10g m '=->, 所以函数1()e x g x m x '=-在()0+∞,上有唯一零点0x ,且01,12x m ⎛⎫∈⎪⎝⎭.……8分 因为()00g x '=,所以01ex m x =,即00ln ln x x m =--.……………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()()000001e ln 2ln 20xg x g x m x x m x ≥=--=++->. 综上可知,当1m ≥时,()1f x >.………………………………………………12分 思路2:先证明e 1()xx x ≥+∈R ,且ln 1(0)x x x ≤+>.……………………5分设()e 1xF x x =--,则()e 1xF x '=-.因为当0x <时,()0F x '<;当0x >时,()0F x '>, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 所以当0x =时,()F x 取得最小值(0)0F =.所以()(0)0F x F ≥=,即e 1xx ≥+(当且仅当0x =时取等号).……………7分由e 1()xx x ≥+∈R ,得1e x x -≥(当且仅当1x =时取等号).………………8分所以ln 1(0)x x x ≤->(当且仅当1x =时取等号).……………………………9分 再证明e ln 20xm x -->.因为0x >,1m ≥,且e 1xx ≥+与ln 1x x ≤-不同时取等号,文科数学试题 第16页(共19页)所以()()e ln 2112x m x m x x -->+---()()11m x =-+0≥.综上可知,当1m ≥时,()1f x >.………………………………………………12分(22)(Ⅰ)证明:因为AD 是⊙O 的切线,所以DAC B ∠=∠(弦切角定理). (1)因为DE CA P ,所以DAC EDA ∠=∠.……………………………2所以EDA B ∠=∠.因为AED DEB ∠=∠(公共角),所以△AED ∽△DEB .……………………………………………………………3分 所以DE AE BEDE=.即2DE AE BE =g .…………………………………………………………………4分 (Ⅱ)解:因为EF 是⊙O 的切线,EAB 是⊙O 的割线,所以2EF EA EB =g (切割线定理).……………………………………………5分 因为4EF =,2EA =,所以8EB =,6AB EB EA =-=.…………………7分 由(Ⅰ)知2DE AE BE =g ,所以4DE =.………………………………………8分 因为DE CA P ,所以△BAC ∽△BED . ………………………………………9分 所以BA ACBEED=.所以6438BA ED AC BE⋅⨯===. …………………………………………………10分(23)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分 因为222x y ρ=+,sin y ρθ=,…………………………………………………2分文科数学试题 第17页(共19页)所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-.………………7分 因为()220011x y +-=,解得02x =-或02x =. 所以点D的坐标为12⎛⎫ ⎪ ⎪⎝⎭,或32⎫⎪⎪⎝⎭,.……………………………………9分 由于点D到直线5y =+的距离最短,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………………………………10分 解法二:因为直线l的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l50y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分所以点D 到直线l的距离为d =2sin 3ϕπ⎛⎫=-+⎪⎝⎭.………………………………8分文科数学试题 第18页(共19页)因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 32⎫⎪⎪⎝⎭,,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………10分(24)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解;②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分 (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()f x x x =+-- ()01a ≤≤,当x ≤()f x x x =-=0<.当x <<时,()f x x x =2x =+≤=当x ≥()f x x x ==所以()max f x ⎡⎤⎣⎦=7分思路2:因为 ()f x x x =x x ≤=文科数学试题 第19页(共19页)=当且仅当x ≥ 所以()max f x ⎡⎤⎣⎦=7分因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,所以max b >.………………………………………………………8分以下给出三种思路求()g a 的最大值. 思路1:令()g a = 所以()21ga =+2212≤++=.=12a =时等号成立. 所以()maxg a =⎡⎤⎣⎦.所以b的取值范围为)∞.…………………………………………………10分思路2:令()g a =因为01a ≤≤,所以可设2cosa θ= 02θπ⎛⎫≤≤ ⎪⎝⎭,则()g a=cos sin 4θθθπ⎛⎫=+=+≤ ⎪⎝⎭当且仅当4θπ=时等号成立. 所以b的取值范围为)∞.…………………………………………………10分 思路3:令()g a =因为01a ≤≤,设x y ìï=ïíï=ïî则221x y +=()01,01x y##.问题转化为在221x y +=()01,01xy ##的条件下,求z x y =+的最大值.利用数形结合的方法容易求得z ,此时2x y ==.所以b 的取值范围为)∞.…………………………………………………10分。
2019-2020学年广东省广州市高考数学一模考试(文科)试题Word版含解析

2019-2020学年广东省广州市高考一模考试数学(文科)试题一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A.﹣2 B.﹣1 C.1 D.22.已知集合{x|x2+ax=0}={0,1},则实数a的值为()A.﹣1 B.0 C.1 D.23.已知tanθ=2,且θ∈,则cos2θ=()A.B.C. D.4.阅读如图的程序框图.若输入n=5,则输出k的值为()A.2 B.3 C.4 D.55.已知函数f(x)=,则f(f(3))=()A.B.C. D.﹣36.已知双曲线C的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=2,则|PF2|等于()A.4 B.6 C.8 D.107.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为()A.B.C.D.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.9.设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x))处的切线方程为x+y=0,则点P的坐标为()A.(0,0)B.(1,﹣1)C.(﹣1,1)D.(1,﹣1)或(﹣1,1)10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P﹣ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P﹣ABC的四个顶点都在球O的球面上,则球O的表面积为()A.8π B.12πC.20πD.24π11.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函数,直线y=与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为,则()A.f(x)在上单调递减B.f(x)在上单调递减C.f(x)在上单调递增D.f(x)在上单调递增12.已知函数f(x)=+cos(x﹣),则的值为()A.2016 B.1008 C.504 D.0二、填空题:本小题共4题,每小题5分.13.已知向量=(1,2),=(x,﹣1),若∥(﹣),则•= .14.若一个圆的圆心是抛物线x2=4y的焦点,且该圆与直线y=x+3相切,则该圆的标准方程是.15.满足不等式组的点(x,y)组成的图形的面积是5,则实数a的值为.16.在△ABC中,∠ACB=60°,BC>1,AC=AB+,当△ABC的周长最短时,BC的长是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{an }的前n项和为Sn,且Sn=2an﹣2(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{Sn }的前n项和Tn.18.某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?甲生产线乙生产线合计合格品不合格品合计附:(其中n=a+b+c+d为样本容量)P(K2≥k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82819.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD 沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(Ⅰ)求证:AB⊥平面ADC;(Ⅱ)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为,求点B到平面ADE的距离.20.已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由.21.已知函数f(x)=lnx+.(Ⅰ)若函数f(x)有零点,求实数a的取值范围;(Ⅱ)证明:当a≥时,f(x)>e﹣x.选修4-4:坐标系与参数方程22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.选修4-5:不等式选讲23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.2019-2020学年广东省广州市高考一模考试数学(文科)试题参考答案一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A.﹣2 B.﹣1 C.1 D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数==1﹣i的虚部是﹣1.故选:B.2.已知集合{x|x2+ax=0}={0,1},则实数a的值为()A.﹣1 B.0 C.1 D.2【考点】集合的表示法.【分析】集合{x|x2+ax=0}={0,1},则x2+ax=0的解为0,1,利用韦达定理,求出a的值.【解答】解:由题意,0+1=﹣a,∴a=﹣1,故选A.3.已知tanθ=2,且θ∈,则cos2θ=()A.B.C. D.【考点】二倍角的余弦.【分析】由已知利用同角三角函数关系式可求cosθ,进而利用二倍角的余弦函数公式即可计算求值得解.【解答】解:∵tanθ=2,且θ∈,∴cosθ===,∴cos2θ=2cos2θ﹣1=2×()2﹣1=﹣.故选:C.4.阅读如图的程序框图.若输入n=5,则输出k的值为()A.2 B.3 C.4 D.5【考点】循环结构.【分析】按照程序框图的流程写出前几次循环的结果;直到满足判断框中的条件,执行输出.【解答】解:经过第一次循环得到的结果为k=0,n=16,经过第二次循环得到的结果为k=1,n=49,经过第三次循环得到的结果为k=2,n=148,经过第四次循环得到的结果为k=3,n=445,满足判断框中的条件,执行“是”输出的k为3故选B5.已知函数f(x)=,则f(f(3))=()A.B.C. D.﹣3【考点】函数的值.【分析】由解析式先求出f(3),由指数的运算法则求出(f(3))的值.【解答】解:由题意知,f(x)=,则f(3)=1﹣,所以f(f(3))==4•=,故选A.6.已知双曲线C的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=2,则|PF2|等于()A.4 B.6 C.8 D.10【考点】双曲线的简单性质.【分析】由双曲线的方程、渐近线的方程求出a,由双曲线的定义求出|PF2|.【解答】解:由双曲线的方程、渐近线的方程可得=,∴a=3.由双曲线的定义可得|PF2|﹣2=6,∴|PF2|=8,故选C.7.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】列举出所有情况,求出满足条件的概率即可.【解答】解:由题意得:正面不能相邻,即正反正反,反正反正,3反一正,全反,其中3反一正中有反反反正,反反正反,反正反反,正反反反,故共7中情况,故P==,故选:B.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.【考点】简单空间图形的三视图.【分析】该几何体为正方体截去一部分后的四棱锥P﹣ABCD,作出图形,可得结论.【解答】解:该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为C.故选:C.9.设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x))处的切线方程为x+y=0,则点P的坐标为()A.(0,0)B.(1,﹣1)C.(﹣1,1)D.(1,﹣1)或(﹣1,1)【考点】利用导数研究曲线上某点切线方程.【分析】由曲线y=f(x)在点P(x0,f(x))处的切线方程为x+y=0,导函数等于﹣1求得点(x0,f(x))的横坐标,进一步求得f(x)的值,可得结论.【解答】解:∵f(x)=x3+ax2,∴f′(x)=3x2+2ax,∵函数在点(x0,f(x))处的切线方程为x+y=0,∴3x02+2ax=﹣1,∵x0+x3+ax2=0,解得x=±1.当x0=1时,f(x)=﹣1,当x0=﹣1时,f(x)=1.故选:D.10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P﹣ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P﹣ABC的四个顶点都在球O的球面上,则球O的表面积为()A.8π B.12πC.20πD.24π【考点】球的体积和表面积.【分析】由题意,PC为球O的直径,求出PC,可得球O的半径,即可求出球O的表面积.【解答】解:由题意,PC为球O的直径,PC==2,∴球O的半径为,∴球O的表面积为4π•5=20π,故选C.11.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函数,直线y=与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为,则()A.f(x)在上单调递减B.f(x)在上单调递减C.f(x)在上单调递增D.f(x)在上单调递增【考点】三角函数中的恒等变换应用.【分析】根据两角和的正弦函数化简解析式,由条件和诱导公式求出φ的值,由条件和周期共识求出ω的值,根据正弦函数的单调性和选项判断即可.【解答】解:由题意得,f(x)=sin(ωx+φ)+cos(ωx+φ)= [sin(ωx+φ)+cos(ωx+φ)]=,∵函数f(x)(ω>0,0<φ<π)是奇函数,∴,则,又0<φ<π,∴φ=,∴f(x)==,∵y=与f(x)的图象的两个相邻交点的横坐标之差的绝对值为,∴T=,则ω=4,即f(x)=,由得4x∈(0,π),则f(x)在上不是单调函数,排除A、C;由得4x∈,则f(x)在上是增函数,排除B,故选:D.12.已知函数f(x)=+cos(x﹣),则的值为()A.2016 B.1008 C.504 D.0【考点】数列的求和.【分析】函数f(x)=+cos(x﹣),可得f(x)+f(1﹣x)=0,即可得出.【解答】解:∵函数f(x)=+cos(x﹣),∴f(x)+f(1﹣x)=+cos(x﹣)++=1+0=1,则=2016=1008.故选:B.二、填空题:本小题共4题,每小题5分.13.已知向量=(1,2),=(x,﹣1),若∥(﹣),则•= .【考点】平面向量的坐标运算.【分析】利用向量共线定理即可得出.【解答】解: =(1﹣x,3),∵∥(﹣),∴2(1﹣x)﹣3=0,解得x=﹣.则•=﹣﹣2=﹣.故答案为:﹣.14.若一个圆的圆心是抛物线x2=4y的焦点,且该圆与直线y=x+3相切,则该圆的标准方程是x2+(y﹣1)2=2 .【考点】抛物线的简单性质.【分析】求出抛物线的焦点即圆心坐标,利用切线的性质计算点C到切线的距离即为半径,从而得出圆的方程.【解答】解:抛物线的标准方程为:x2=4y,∴抛物线的焦点为F(0,1).即圆C的圆心为C(0,1).∵圆C与直线y=x+3相切,∴圆C的半径为点C到直线y=x+3的距离d==.∴圆C的方程为x2+(y﹣1)2=2.故答案为:x2+(y﹣1)2=2.15.满足不等式组的点(x,y)组成的图形的面积是5,则实数a的值为 3 .【考点】简单线性规划;二元一次不等式(组)与平面区域.【分析】根据题意,将不等式组表示的平面区域表示出来,分析可得必有a>1,此时阴影部分的面积S=×2×1+×(a﹣1)×[a+1﹣(3﹣a)]=5,解可得a的值,即可得答案.【解答】解:根据题意,不等式组⇔或;其表示的平面区域如图阴影部分所示:当a≤1时,其阴影部分面积S<S=×2×1=1,不合题意,△AOB必有a>1,当a>1时,阴影部分面积S=×2×1+×(a﹣1)×[a+1﹣(3﹣a)]=5,解可得a=3或﹣1(舍);故答案为:3.16.在△ABC中,∠ACB=60°,BC>1,AC=AB+,当△ABC的周长最短时,BC的长是+1 .【考点】三角形中的几何计算.【分析】设A,B,C所对的边a,b,c,则根据余弦定理可得a2+b2+c2=2abcosC,以及b=c+可得c的长,再利用均值不等式即可求出答案.【解答】解:设A,B,C所对的边a,b,c,则根据余弦定理可得a2+b2+c2=2abcosC,将b=c+代入上式,可得a2+c+=ac+,化简可得c=,所以△ABC的周长l=a+b+c=++a,化简可得l=3(a﹣1)++,因为a>1,所以由均值不等式可得3(a﹣1)=时,即6(a﹣1)2=3,解得a=+1时,△ABC的周长最短,故答案为: +1.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{an }的前n项和为Sn,且Sn=2an﹣2(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{Sn }的前n项和Tn.【考点】数列的求和;数列递推式.【分析】(I)Sn =2an﹣2(n∈N*),可得n=1时,a1=2a1﹣2,解得a1.n≥2时,an=Sn﹣Sn﹣1,再利用等比数列的通项公式即可得出.(II)利用等比数列的求和公式即可得出.【解答】解:(I)∵Sn =2an﹣2(n∈N*),∴n=1时,a1=2a1﹣2,解得a1=2.n≥2时,an =Sn﹣Sn﹣1=2an﹣2﹣(2an﹣1﹣2),化为:an=2an﹣1,∴数列{an}是等比数列,公比为2.∴an=2n.(II)Sn==2n+1﹣2.∴数列{Sn }的前n项和Tn=﹣2n=2n+2﹣4﹣2n.18.某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?甲生产线乙生产线合计合格品不合格品合计附:(其中n=a+b+c+d为样本容量)P(K2≥k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828【考点】独立性检验的应用;频率分布直方图.【分析】(Ⅰ)利用(0.012+0.032+0.052)×5+0.076×(x﹣205)=0.5,即可估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)求出甲,乙两条流水线生产的不合格的概率,即可得出结论;(Ⅲ)计算可得K2的近似值,结合参考数值可得结论.【解答】解:(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x,因为0.48=(0.012+0.032+0.052)×5<0.5<(0.012+0.032+0.052+0.076)×5=0.86,…则(0.012+0.032+0.052)×5+0.076×(x﹣205)=0.5,…解得.…(Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为,…乙流水线生产的产品为不合格品的概率为,…于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为:.…(Ⅲ)2×2列联表:甲生产线乙生产线合计合格品354075不合格品151025合计5050100…则,…因为1.3<2.072,所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线的选择有关”.…19.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD 沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(Ⅰ)求证:AB⊥平面ADC;(Ⅱ)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为,求点B到平面ADE的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(Ⅰ)由题意结合面面垂直的性质可得BD⊥DC,有DC⊥平面ABD,进一步得到DC⊥AB,再由线面垂直的判定可得AB⊥平面ADC;(Ⅱ)由(Ⅰ)知DC⊥平面ABD,可得AC在平面ABD内的正投影为AD,求解直角三角形得到AB的值,然后利用等积法求得点B到平面ADE的距离.【解答】(Ⅰ)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,又BD⊥DC,∴DC⊥平面ABD,∵AB⊂平面ABD,∴DC⊥AB,又∵折叠前后均有AD⊥AB,DC∩AD=D,∴AB⊥平面ADC.(Ⅱ)解:由(Ⅰ)知DC⊥平面ABD,所以AC在平面ABD内的正投影为AD,即∠CAD为AC与其在平面ABD内的正投影所成角.依题意,AD=1,∴.设AB=x(x>0),则,∵△ABD~△BDC,∴,即,解得,故.由于AB⊥平面ADC,AB⊥AC,E为BC的中点,由平面几何知识得AE=,同理DE=,∴.∵DC⊥平面ABD,∴.设点B到平面ADE的距离为d,则,∴,即点B到平面ADE的距离为.20.已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆C的离心率为,且过点A(2,1),列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)法一:由∠PAQ的角平分线总垂直于x轴,知PA与AQ所在直线关于直线x=2对称.设直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).由,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.由点A(2,1)在椭圆C上,求出.同理,由此能求出直线PQ的斜率为定值.法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.由∠PAQ的角平分线总垂直于x轴,知,再由点P(x1,y1),Q(x2,y2)在椭圆C上,能求出直线PQ的斜率为定值.法三:设直线PQ的方程为y=kx+b,点P(x1,y1),Q(x2,y2),则y1=kx1+b,y2=kx2+b,直线PA的斜率,直线QA的斜率.由∠PAQ的角平分线总垂直于x轴,知=,由,得(4k2+1)x2+8kbx+4b2﹣8=0,由此利用韦达定理能求出直线PQ的斜率为定值.【解答】解:(Ⅰ)因为椭圆C的离心率为,且过点A(2,1),所以,.…因为a2=b2+c2,解得a2=8,b2=2,…所以椭圆C的方程为.…(Ⅱ)解法一:因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.设直线PA的斜率为k,则直线AQ的斜率为﹣k.…所以直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).设点P(xP ,yP),Q(xQ,yQ),由,消去y,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.①因为点A(2,1)在椭圆C上,所以x=2是方程①的一个根,则,…所以.…同理.…所以.…又.…所以直线PQ的斜率为.…所以直线PQ的斜率为定值,该值为.…解法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.所以kPA =﹣kQA,即,①…因为点P(x1,y1),Q(x2,y2)在椭圆C上,所以,②.③由②得,得,④…同理由③得,⑤…由①④⑤得,化简得x 1y 2+x 2y 1+(x 1+x 2)+2(y 1+y 2)+4=0,⑥… 由①得x 1y 2+x 2y 1﹣(x 1+x 2)﹣2(y 1+y 2)+4=0,⑦… ⑥﹣⑦得x 1+x 2=﹣2(y 1+y 2).… ②﹣③得,得.…所以直线PQ 的斜率为为定值.…解法三:设直线PQ 的方程为y=kx+b ,点P (x 1,y 1),Q (x 2,y 2), 则y 1=kx 1+b ,y 2=kx 2+b , 直线PA 的斜率,直线QA 的斜率.…因为∠PAQ 的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线x=2对称. 所以k PA =﹣k QA ,即=,…化简得x 1y 2+x 2y 1﹣(x 1+x 2)﹣2(y 1+y 2)+4=0.把y 1=kx 1+b ,y 2=kx 2+b 代入上式,并化简得2kx 1x 2+(b ﹣1﹣2k )(x 1+x 2)﹣4b+4=0.(*) …由,消去y 得(4k 2+1)x 2+8kbx+4b 2﹣8=0,(**)则,…代入(*)得,…整理得(2k ﹣1)(b+2k ﹣1)=0, 所以或b=1﹣2k .…若b=1﹣2k ,可得方程(**)的一个根为2,不合题意.… 若时,合题意.所以直线PQ的斜率为定值,该值为.…21.已知函数f(x)=lnx+.(Ⅰ)若函数f(x)有零点,求实数a的取值范围;(Ⅱ)证明:当a≥时,f(x)>e﹣x.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)法一:求出函数f(x)的导数,根据函数的单调性求出a的范围即可;法二:求出a=﹣xlnx,令g(x)=﹣xlnx,根据函数的单调性求出a的范围即可;(Ⅱ)问题转化为xlnx+a>xe﹣x,令h(x)=xlnx+a,令φ(x)=xe﹣x,根据函数的单调性证明即可.【解答】解:(Ⅰ)法1:函数的定义域为(0,+∞).由,得.…因为a>0,则x∈(0,a)时,f'(x)<0;x∈(a,+∞)时,f'(x)>0.所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.…当x=a时,[f(x)]=lna+1.…min当lna+1≤0,即0<a≤时,又f(1)=ln1+a=a>0,则函数f(x)有零点.…所以实数a的取值范围为.…法2:函数的定义域为(0,+∞).由,得a=﹣xlnx.…令g(x)=﹣xlnx,则g'(x)=﹣(lnx+1).当时,g'(x)>0;当时,g'(x)<0.所以函数g(x)在上单调递增,在上单调递减.…故时,函数g(x)取得最大值.…因而函数有零点,则.…所以实数a的取值范围为.…(Ⅱ)要证明当时,f(x)>e﹣x,即证明当x>0,时,,即xlnx+a>xe﹣x.…令h(x)=xlnx+a,则h'(x)=lnx+1.当时,f'(x)<0;当时,f'(x)>0.所以函数h(x)在上单调递减,在上单调递增.当时,.…于是,当时,.①…令φ(x)=xe﹣x,则φ'(x)=e﹣x﹣xe﹣x=e﹣x(1﹣x).当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.所以函数φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减.当x=1时,.…于是,当x>0时,.②…显然,不等式①、②中的等号不能同时成立.…故当时,f(x)>e﹣x.…选修4-4:坐标系与参数方程22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)将直线l的参数方程消去t参数,可得直线l的普通方程,将ρcosθ=x,ρsinθ=y,ρ2=x2+y2,带入ρ=2cos(θ﹣)可得曲线C的直角坐标方程.(Ⅱ)法一:设曲线C上的点为,点到直线的距离公式建立关系,利用三角函数的有界限可得最大值.法二:设与直线l平行的直线为l':x+y+b=0,当直线l'与圆C相切时,得,点到直线的距离公式可得最大值.【解答】解:(Ⅰ)由直线l的参数方程消去t参数,得x+y﹣4=0,∴直线l的普通方程为x+y﹣4=0.由=.得ρ2=2ρcosθ+2ρsinθ.将ρ2=x2+y2,ρcosθ=x,ρsinθ=y代入上式,得:曲线C的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.(Ⅱ)法1:设曲线C上的点为,则点P到直线l的距离为==当时,∴曲线C上的点到直线l的距离的最大值为;法2:设与直线l平行的直线为l':x+y+b=0.当直线l'与圆C相切时,得,解得b=0或b=﹣4(舍去).∴直线l'的方程为x+y=0.那么:直线l与直线l'的距离为故得曲线C上的点到直线l的距离的最大值为.选修4-5:不等式选讲23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(Ⅰ)通过讨论a的范围得到关于a的不等式,解出取并集即可;(Ⅱ)基本基本不等式的性质证明即可.【解答】解:(Ⅰ)因为f(1)<3,所以|a|+|1﹣2a|<3.①当a≤0时,得﹣a+(1﹣2a)<3,解得,所以;②当时,得a+(1﹣2a)<3,解得a>﹣2,所以;③当时,得a﹣(1﹣2a)<3,解得,所以;综上所述,实数a的取值范围是.(Ⅱ)因为a≥1,x∈R,所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.。
2019-2020学年广东省广州市高考数学一模试卷(文科)(有答案)

广东省广州市高考数学一模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={x|﹣1≤x ≤1},B={x|x 2﹣2x ≤0},则A∩B=( ) A .{x|﹣1≤x ≤2} B .{x|﹣1≤x ≤0}C .{x|1≤x ≤2}D .{x|0≤x ≤1}2.已知复数z 满足z=(i 为虚数单位),则复数z 所对应的点所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知函数则f (f (﹣2))的值为( )A .B .C .D .4.设P 是△ABC 所在平面内的一点,且=2,则△PAB 与△PBC 的面积之比是( )A .B .C .D .5.如果函数(ω>0)的相邻两个零点之间的距离为,则ω的值为( )A .3B .6C .12D .246.执行如图所示的程序框图,如果输入x=3,则输出k 的值为( )A .6B .8C .10D .127.在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( ) A .B .C .D .8.已知f (x )=sin (x+),若sinα=(<α<π),则f (α+)=( )A .B .﹣C .D .9.如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F|+|P 2F|+…+|P n F|=( ) A .n+10 B .n+20 C .2n+10D .2n+2010.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( ) A .20π B .C .5πD .11.已知下列四个命题:p 1:若直线l 和平面α内的无数条直线垂直,则l ⊥α; p 2:若f (x )=2x ﹣2﹣x ,则∀x ∈R ,f (﹣x )=﹣f (x ); p 3:若,则∃x 0∈(0,+∞),f (x 0)=1;p 4:在△ABC 中,若A >B ,则sinA >sinB . 其中真命题的个数是( ) A .1B .2C .3D .412.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为( )A .8+8+4B .8+8+2C .2+2+D . ++二.填空题:本大题共4小题,每小题5分. 13.函数f (x )=x 3﹣3x 的极小值为 .14.设实数x ,y 满足约束条件,则z=﹣2x+3y 的取值范围是 .15.已知双曲线C :(a >0,b >0)的左顶点为A ,右焦点为F ,点B (0,b ),且,则双曲线C 的离心率为 . 16.在△ABC 中,点D 在边AB 上,CD ⊥BC ,,CD=5,BD=2AD ,则AD 的长为 .三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =2log 2a n ﹣1,求数列{a n b n }的前n 项和T n .18.从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1. (Ⅰ)求这些产品质量指标落在区间[75,85]内的概率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.19.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(Ⅰ)证明:BD⊥平面A1CO;(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.20.已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2,)在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N(Ⅰ)求椭圆C的方程;(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.21.已知函数f(x)=me x﹣lnx﹣1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.(I)求证:DE2=AE•BE;(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.选修4-5:不等式选讲24.设函数f(x)=|x+|﹣|x﹣|.(I)当a=1时,求不等式f(x)≥的解集;(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,求实数b的取值范围.广东省广州市高考数学一模试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.{x|﹣1≤x≤2} B.{x|﹣1≤x≤0} C.{x|1≤x≤2} D.{x|0≤x≤1}【考点】交集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:B={x|x2﹣2x≤0}={x|0≤x≤2},则A∩B={x|0≤x≤1},故选:D2.已知复数z满足z=(i为虚数单位),则复数z所对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】根据复数的几何意义,即可得到结论.【解答】解:z===,对应的坐标为(2,﹣1),位于第四象限,故选:D.3.已知函数则f(f(﹣2))的值为()A.B.C.D.【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵函数,∴f(﹣2)=(﹣2)2﹣(﹣2)=6,f(f(﹣2))=f(6)==﹣.故选:C.4.设P是△ABC所在平面内的一点,且=2,则△PAB与△PBC的面积之比是()A.B.C.D.【考点】向量数乘的运算及其几何意义.【分析】由=2可知P为AC上靠近A点的三等分点.【解答】解:∵=2,∴P为边AC靠近A点的三等分点,∴△PAB与△PBC的面积比为1:2.故选:B.5.如果函数(ω>0)的相邻两个零点之间的距离为,则ω的值为()A.3 B.6 C.12 D.24【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】根据余弦函数的相邻两个零点之间的距离恰好等于半个周期,即可求得ω的值.【解答】解:函数(ω>0)的相邻两个零点之间的距离为,∴T=2×=,又=,解得ω=6.故选:B.6.执行如图所示的程序框图,如果输入x=3,则输出k的值为()A.6 B.8 C.10 D.12【考点】程序框图.【分析】根据框图的流程依次计算程序运行的结果,直到满足条件x>100,跳出循环体,确定输出k的值.【解答】解:模拟执行程序,可得x=3,k=0x=9,k=2不满足条件x>100,x=21,k=4不满足条件x>100,x=45,k=6不满足条件x>100,x=93,k=8不满足条件x>100,x=189,k=10满足条件x>100,退出循环,输出k的值为10.故选:C.7.在平面区域{(x,y)|0≤x≤1,1≤y≤2}内随机投入一点P,则点P的坐标(x,y)满足y≤2x的概率为()A.B.C.D.【考点】简单线性规划;几何概型.【分析】作出不等式组对应的区域,利用几何概型的概率公式,即可得到结论.【解答】解:不等式组表示的平面区域为D的面积为1,不等式y≤2x对应的区域为三角形ABC,则三角形ABC的面积S==,则在区域D内任取一点P(x,y),则点P满足y≤2x的概率为,故选:A.8.已知f(x)=sin(x+),若sinα=(<α<π),则f(α+)=()A.B.﹣C.D.【考点】两角和与差的正弦函数.【分析】根据同角的三角函数的关系,以及两角和的正弦公式,即可求出.【解答】解:∵<α<π,sinα=,∴cosα=﹣∵f(x)=sin(x+),∴f (α+)=sin (α++)=sin (α+)=sinαcos +cos αsin =﹣(﹣)=,故选:C .9.如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F|+|P 2F|+…+|P n F|=( ) A .n+10 B .n+20 C .2n+10 D .2n+20【考点】抛物线的简单性质. 【分析】由抛物线性质得|P n F|==x n +1,由此能求出结果. 【解答】解:∵P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点, 它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点, x 1+x 2+…+x n =10, ∴|P 1F|+|P 2F|+…+|P n F| =(x 1+1)+(x 2+1)+…+(x n +1) =x 1+x 2+…+x n +n =n+10. 故选:A .10.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( ) A .20π B .C .5πD .【考点】球的体积和表面积.【分析】作出六棱柱的最大对角面与外截球的截面,设正六棱柱的上下底面中心分别为O 1,O 2,球心为O ,一个顶点为A ,如右图.可根据题中数据结合勾股定理算出球的半径OA ,再用球的体积公式即可得到外接球的体积.【解答】解:作出六棱柱的最大对角面与外截球的截面,如右图,则该截面矩形分别以底面外接圆直径和六棱柱高为两边,设球心为O ,正六棱柱的上下底面中心分别为O 1,O 2,则球心O 是O 1,O 2的中点. ∵正六棱柱底面边长为1,侧棱长为1, ∴Rt △AO 1O 中,AO 1=1,O 1O=,可得AO==,因此,该球的体积为V=π•()3=.故选:D .11.已知下列四个命题:p1:若直线l和平面α内的无数条直线垂直,则l⊥α;p2:若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x);p 3:若,则∃x∈(0,+∞),f(x)=1;p4:在△ABC中,若A>B,则sinA>sinB.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】p1:根据线面垂直的判断定理判定即可;p2:根据奇函数的定义判定即可;p3:对表达式变形可得=x+1+﹣1,利用均值定理判定即可;p4:根据三角形角边关系和正弦定理判定结论成立.【解答】解:p1:根据判断定理可知,若直线l和平面α内两条相交的直线垂直,则l⊥α,若没有相交,无数的平行直线也不能判断垂直,故错误;p2:根据奇函数的定义可知,f(﹣x)=2﹣x﹣2x=﹣f(x),故∀x∈R,f(﹣x)=﹣f(x),故正确;p 3:若=x+1+﹣1≥1,且当x=0时,等号成立,故不存在x∈(0,+∞),f(x)=1,故错误;p4:在△ABC中,根据大边对大角可知,若A>B,则a>b,由正弦定理可知,sinA>sinB,故正确.故选:B.12.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为()A.8+8+4B.8+8+2C.2+2+D. ++【考点】由三视图求面积、体积.【分析】由三视图可知几何体为从边长为4的正方体切出来的三棱锥.作出直观图,计算各棱长求面积.【解答】解:由三视图可知几何体为从边长为4的正方体切出来的三棱锥A﹣BCD.作出直观图如图所示:其中A,C,D为正方体的顶点,B为正方体棱的中点.∴S△ABC ==4,S△BCD==4.∵AC=4,AC⊥CD,∴S△ACD==8,由勾股定理得AB=BD==2,AD=4.∴cos∠ABD==﹣,∴sin∠ABD=.∴S△ABD==4.∴几何体的表面积为8+8+4.故选A.二.填空题:本大题共4小题,每小题5分.13.函数f(x)=x3﹣3x的极小值为﹣2 .【考点】利用导数研究函数的极值.【分析】首先求导可得f′(x)=3x2﹣3,解3x2﹣3=0可得其根,再判断导函数的符号分析函数的单调性,即可得到极小值.【解答】解析:令f′(x)=3x2﹣3=0,得x=±1,可求得f(x)的极小值为f(1)=﹣2.故答案:﹣2.14.设实数x,y满足约束条件,则z=﹣2x+3y的取值范围是[﹣6,15] .【考点】简单线性规划.【分析】由题意作平面区域,化简z=﹣2x+3y为y=x+,从而结合图象求解.【解答】解:由题意作平面区域如下,化简z=﹣2x+3y为y=x+,故结合图象可知,在点B(3,0)处有最小值,在点C(﹣3,3)处有最大值,故﹣2×3+3×0≤z≤﹣2×(﹣3)+3×3,即z∈[﹣6,15],故答案为:[﹣6,15].15.已知双曲线C:(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且,则双曲线C的离心率为.【考点】双曲线的简单性质.【分析】设出A ,F 的坐标,运用向量的数量积的坐标表示,结合a ,bc 的关系和离心率公式,计算即可得到所求值.【解答】解:由题意可得A (﹣a ,0),F (c ,0),B (0,b ), 可得=(﹣a ,﹣b ),=(c ,﹣b ),由,可得﹣ac+b 2=0,即有b 2=c 2﹣a 2=ac , 由e=,可得e 2﹣e ﹣1=0, 解得e=(负的舍去).故答案为:.16.在△ABC 中,点D 在边AB 上,CD ⊥BC ,,CD=5,BD=2AD ,则AD 的长为 5 .【考点】三角形中的几何计算.【分析】根据题意画出图象,延长BC 、过A 做AE ⊥BC 、垂足为E ,根据平行线的性质和勾股定理依次求出AE 、CE 、BC 、BD ,由条件求出AD 的长.【解答】解:如图所示:延长BC ,过A 做AE ⊥BC ,垂足为E , ∵CD ⊥BC ,∴CD ∥AE , ∵CD=5,BD=2AD ,∴,解得AE=,在RT △ACE ,CE===,由得BC=2CE=5,在RT △BCD 中,BD===10,则AD=5, 故答案为:5.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =2log 2a n ﹣1,求数列{a n b n }的前n 项和T n . 【考点】数列递推式;等差数列与等比数列的综合.【分析】(Ⅰ)等比数列{a n }中,a 2=4,a 3+2是a 2和a 4的等差中项,有等比数列的首项和公比分别表示出已知条件,解方程组即可求得首项和公比,代入等比数列的通项公式即可求得结果; (Ⅱ)把(1)中求得的结果代入b n =2log 2a n ﹣1,求出b n ,利用错位相减法求出T n . 【解答】解:(Ⅰ)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,.)因为a 3+2是a 2和a 4的等差中项,所以2(a 3+2)=a 2+a 4. 即2(4q+2)=4+4q 2,化简得q 2﹣2q=0. 因为公比q ≠0,所以q=2. 所以(n ∈N *).(Ⅱ)因为,所以b n =2log 2a n ﹣1=2n ﹣1.所以.则,①, ,②,①﹣②得,.=,所以.18.从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1. (Ⅰ)求这些产品质量指标落在区间[75,85]内的概率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(I)由题意,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之和,利用之比为4:2:1,即可求出这些产品质量指标值落在区间[75,85]内的频率;(2)由频率分布直方图得从[45,65)的产品数中抽取5件,记为A,B,C,D,E,从[65,75)的产品数中抽取1件,记为a,由此利用列举法求出概率.【解答】解:(I)由题意,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之和为1﹣0.04﹣0.12﹣0.19﹣0.3=0.35,∵质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1,∴这些产品质量指标值落在区间[75,85]内的频率为0.35×=0.05,(Ⅱ)由频率分布直方图得:这些产品质量指标值落在区间[55,65)内的频率为0.35×=0.2,这些产品质量指标值落在区间[65,75)内的频率为0.35×=0.1,这些产品质量指标值落在区间[45,55)内的频率为0.03×10=0.30,所以这些产品质量指标值落在区间[45,65)内的频率为0.3+0.2=0.5,∵=∴从[45,65)的产品数中抽取6×=5件,记为A,B,C,D,E,从[65,75)的产品数中抽取6×=1件,记为a,从中任取两件,所有可能的取法有:(A,B),(A,C),(A,D),(A,E),(A,a),(B,C),(B,D),(B,E),(B,a),(C,D),(D(C,E),(C,a),(D,E),(D,a),(E,a),共15种,这2件产品都在区间[45,65)内的取法有10种,∴从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率=.19.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(Ⅰ)证明:BD⊥平面A1CO;(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定. 【分析】(Ⅰ)证明A 1O ⊥BD .CO ⊥BD .即可证明BD ⊥平面A 1CO .(Ⅱ)解法一:说明点B 1到平面ABCD 的距离等于点A 1到平面ABCD 的距离A 1O .设点C 到平面OBB 1的距离为d , 通过,求解点C 到平面OBB 1的距离.解法二:连接A 1C 1与B 1D 1交于点O 1,连接CO 1,OO 1,推出OA 1O 1C 为平行四边形.证明CH ⊥平面BB 1D 1D ,然后求解点C 到平面OBB 1的距离.【解答】(Ⅰ)证明:因为A 1O ⊥平面ABCD ,BD ⊂平面ABCD , 所以A 1O ⊥BD .…因为ABCD 是菱形,所以CO ⊥BD .… 因为A 1O∩CO=O,A 1O ,CO ⊂平面A 1CO , 所以BD ⊥平面A 1CO .…(Ⅱ)解法一:因为底面ABCD 是菱形,AC∩BD=O,AB=AA 1=2,∠BAD=60°, 所以OB=OD=1,.…所以△OBC 的面积为.…因为A 1O ⊥平面ABCD ,AO ⊂平面ABCD , 所以A 1O ⊥AO ,.…因为A 1B 1∥平面ABCD ,所以点B 1到平面ABCD 的距离等于点A 1到平面ABCD 的距离A 1O .… 由(Ⅰ)得,BD ⊥平面A 1AC . 因为A 1A ⊂平面A 1AC ,所以BD ⊥A 1A . 因为A 1A ∥B 1B ,所以BD ⊥B 1B .… 所以△OBB 1的面积为.…设点C 到平面OBB 1的距离为d , 因为,所以.…所以.所以点C 到平面OBB 1的距离为.…解法二:由(Ⅰ)知BD ⊥平面A 1CO , 因为BD ⊂平面BB 1D 1D , 所以平面A 1CO ⊥平面BB 1D 1D .… 连接A 1C 1与B 1D 1交于点O 1, 连接CO 1,OO 1,因为AA 1=CC 1,AA 1∥CC 1,所以CAA 1C 1为平行四边形. 又O ,O 1分别是AC ,A 1C 1的中点,所以OA 1O 1C 为平行四边形. 所以O 1C=OA 1=1.…因为平面OA 1O 1C 与平面BB 1D 1D 交线为OO 1, 过点C 作CH ⊥OO 1于H ,则CH ⊥平面BB 1D 1D .… 因为O 1C ∥A 1O ,A 1O ⊥平面ABCD ,所以O 1C ⊥平面ABCD .因为OC ⊂平面ABCD ,所以O •1C ⊥OC ,即△OCO 1为直角三角形.… 所以.所以点C 到平面OBB 1的距离为.…20.已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(﹣2,0),点B (2,)在椭圆C 上,直线y=kx (k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N (Ⅰ)求椭圆C 的方程;(Ⅱ)在x 轴上是否存在点P ,使得无论非零实数k 怎样变化,总有∠MPN 为直角?若存在,求出点P 的坐标,若不存在,请说明理由. 【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可设椭圆标准方程为+=1(a >b >0),结合已知及隐含条件列关于a ,b ,c 的方程组,求解方程组得到a 2,b 2的值,则椭圆方程可求;(Ⅱ)设F(x0,y),E(﹣x,﹣y),写出AE、AF所在直线方程,求出M、N的坐标,得到以MN为直径的圆的方程,由圆的方程可知以MN为直径的圆经过定点(±2,0),即可判断存在点P.【解答】解:(Ⅰ)由题意可设椭圆方程为+=1(a>b>0),则c=2,a2﹣b2=c2, +=1,解得:a2=8,b2=4.可得椭圆C的方程为+=1;(Ⅱ)如图,设F(x0,y),E(﹣x,﹣y),则+=1,A(﹣2,0),AF所在直线方程y=(x+2),取x=0,得y=,∴N(0,),AE所在直线方程为y=(x+2),取x=0,得y=.则以MN为直径的圆的圆心坐标为(0,),半径r=,圆的方程为x2+(y﹣)2==,即x2+(y+)2=.取y=0,得x=±2.可得以MN为直径的圆经过定点(±2,0).可得在x轴上存在点P(±2,0),使得无论非零实数k怎样变化,总有∠MPN为直角.21.已知函数f(x)=me x﹣lnx﹣1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求得m=1时,f(x)的导数,可得切点坐标和切线的斜率,由点斜式方程可得所求切线的方程;(Ⅱ)证法一:运用分析法证明,当m≥1时,f(x)=me x﹣lnx﹣1≥e x﹣lnx﹣1.要证明f(x)>1,只需证明e x﹣lnx﹣2>0,思路1:设g(x)=e x﹣lnx﹣2,求得导数,求得单调区间,可得最小值,证明大于0即可;思路2:先证明e x≥x+1(x∈R),设h(x)=e x﹣x﹣1,求得导数和单调区间,可得最小值大于0;证明x ﹣lnx﹣1≥0.设p(x)=x﹣lnx﹣1,求得导数和单调区间,可得最小值大于0,即可得证;思路3:先证明e x﹣lnx>2.:因为曲线y=e x与曲线y=lnx的图象关于直线y=x对称,结合点到直线的距离公式,求得两曲线上的点的距离AB>2,即可得证;证法二:因为f(x)=me x﹣lnx﹣1,要证明f(x)>1,只需证明me x﹣lnx﹣2>0.思路1:设g(x)=me x﹣lnx﹣2,求得导数和单调区间,求得最小值,证明大于0,即可得证;思路2:先证明e x≥x+1(x∈R),且lnx≤x+1(x>0).设F(x)=e x﹣x﹣1,求得导数和单调区间,可得最小值大于0,再证明me x﹣lnx﹣2>0,运用不等式的性质,即可得证.【解答】(Ⅰ)解:当m=1时,f(x)=e x﹣lnx﹣1,所以.…所以f(1)=e﹣1,f'(1)=e﹣1.…所以曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(e﹣1)=(e﹣1)(x﹣1).即y=(e﹣1)x.…(Ⅱ)证法一:当m≥1时,f(x)=me x﹣lnx﹣1≥e x﹣lnx﹣1.要证明f(x)>1,只需证明e x﹣lnx﹣2>0.…以下给出三种思路证明e x﹣lnx﹣2>0.思路1:设g(x)=e x﹣lnx﹣2,则.设,则,所以函数h (x )=在(0,+∞)上单调递增.…因为,g'(1)=e ﹣1>0,所以函数在(0,+∞)上有唯一零点x 0,且.…因为g'(x 0)=0时,所以,即lnx 0=﹣x 0.…当x ∈(0,x 0)时,g'(x )<0;当x ∈(x 0,+∞)时,g'(x )>0. 所以当x=x 0时,g (x )取得最小值g (x 0).… 故.综上可知,当m ≥1时,f (x )>1.… 思路2:先证明e x ≥x+1(x ∈R ).… 设h (x )=e x ﹣x ﹣1,则h'(x )=e x ﹣1.因为当x <0时,h'(x )<0,当x >0时,h'(x )>0,所以当x <0时,函数h (x )单调递减,当x >0时,函数h (x )单调递增. 所以h (x )≥h (0)=0.所以e x ≥x+1(当且仅当x=0时取等号).… 所以要证明e x ﹣lnx ﹣2>0, 只需证明(x+1)﹣lnx ﹣2>0.… 下面证明x ﹣lnx ﹣1≥0. 设p (x )=x ﹣lnx ﹣1,则.当0<x <1时,p'(x )<0,当x >1时,p'(x )>0,所以当0<x <1时,函数p (x )单调递减,当x >1时,函数p (x )单调递增. 所以p (x )≥p (1)=0.所以x ﹣lnx ﹣1≥0(当且仅当x=1时取等号).… 由于取等号的条件不同, 所以e x ﹣lnx ﹣2>0.综上可知,当m ≥1时,f (x )>1.…(若考生先放缩lnx ,或e x 、lnx 同时放缩,请参考此思路给分!) 思路3:先证明e x ﹣lnx >2.因为曲线y=e x 与曲线y=lnx 的图象关于直线y=x 对称,设直线x=t (t >0)与曲线y=e x ,y=lnx 分别交于点A ,B , 点A ,B 到直线y=x 的距离分别为d 1,d 2, 则.其中,(t >0).①设h (t )=e t ﹣t (t >0),则h'(t )=e t ﹣1. 因为t >0,所以h'(t )=e t ﹣1>0.所以h (t )在(0,+∞)上单调递增,则h (t )>h (0)=1. 所以.②设g (t )=t ﹣lnt (t >0),则.因为当0<t <1时,g'(t )<0;当t >1时,g'(t )>0,所以当0<t <1时,g (t )=t ﹣lnt 单调递减;当t >1时,g (t )=t ﹣lnt 单调递增. 所以g (t )≥g (1)=1. 所以.所以.综上可知,当m ≥1时,f (x )>1.… 证法二:因为f (x )=me x ﹣lnx ﹣1,要证明f (x )>1,只需证明me x ﹣lnx ﹣2>0.… 以下给出两种思路证明me x ﹣lnx ﹣2>0. 思路1:设g (x )=me x ﹣lnx ﹣2,则.设,则.所以函数h (x )=在(0,+∞)上单调递增.…因为,g'(1)=me ﹣1>0,所以函数在(0,+∞)上有唯一零点x 0,且.…因为g'(x 0)=0,所以,即lnx 0=﹣x 0﹣lnm .…当x ∈(0,x 0)时,g'(x )<0;当x ∈(x 0,+∞)时,g'(x )>0. 所以当x=x 0时,g (x )取得最小值g (x 0).…故.综上可知,当m≥1时,f(x)>1.…思路2:先证明e x≥x+1(x∈R),且lnx≤x+1(x>0).…设F(x)=e x﹣x﹣1,则F'(x)=e x﹣1.因为当x<0时,F'(x)<0;当x>0时,F'(x)>0,所以F(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.所以当x=0时,F(x)取得最小值F(0)=0.所以F(x)≥F(0)=0,即e x≥x+1(当且仅当x=0时取等号).…由e x≥x+1(x∈R),得e x﹣1≥x(当且仅当x=1时取等号).…所以lnx≤x﹣1(x>0)(当且仅当x=1时取等号).…再证明me x﹣lnx﹣2>0.因为x>0,m≥1,且e x≥x+1与lnx≤x﹣1不同时取等号,所以me x﹣lnx﹣2>m(x+1)﹣(x﹣1)﹣2=(m﹣1)(x+1)≥0.综上可知,当m≥1时,f(x)>1.…请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.(I)求证:DE2=AE•BE;(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)推导出△AED∽△DEB,由此能证明DE2=AE•BE.(Ⅱ)由切割线定理得EF2=EA•EB,由DE∥CA,得△BAC∽△BED,由此能求出AC.【解答】证明:(Ⅰ)∵AD是⊙O的切线,∴∠DAC=∠B,∵DE∥CA,∴∠DAC=∠EDA,∴∠EDA=∠B,∵∠AED=∠DEB,∴△AED∽△DEB,∴,∴DE2=AE•BE.解:(Ⅱ)∵EF是⊙O的切线,EAB是⊙O割线,∴EF2=EA•EB,∵EF=4,EA=2,∴EB=8,AB=EB﹣EA=6,由(Ⅰ)知DE2=AE•BE,∴DE=4,∵DE∥CA,∴△BAC∽△BED,∴,∴AC==.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)利用可把圆C的极坐标方程化为普通方程.(II)消去参数把直线l的参数方程化为普通方程,求出圆心C到直线l的距离d,得出直线与圆的位置关系即可得出.【解答】解:(1)曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π),即ρ2=2ρsinθ,化为x2+y2﹣2y=0,配方为x2+(y﹣1)2=1.(2)曲线C的圆心C(0,1),半径r=1.直线l:,(t为参数,t∈R)化为普通方程:﹣y﹣1=0,可得圆心C到直线l的距离d==1=0,∴直线l与圆C相切,其切点即为所求.联立,解得D.选修4-5:不等式选讲24.设函数f(x)=|x+|﹣|x﹣|.(I)当a=1时,求不等式f(x)≥的解集;(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,求实数b的取值范围.【考点】绝对值不等式的解法.【分析】(I)当a=1时,利用绝对值的意义求得不等式的解集.(Ⅱ)由题意可得b大于f(x)的最大值.再根据绝对值的意义可得f(x)的最大值为1,可得实数b的范围.【解答】解:(I)当a=1时,不等式f(x)≥,即|x+1|﹣|x|≥,即数轴上的x对应点到﹣1对应点的距离减去它到原点的距离大于,而﹣0.25对应点到﹣1对应点的距离减去它到原点的距离正好等于,故|x+1|﹣|x|≥的解集为{x|x≥﹣0.25}.(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,则b大于f(x)的最大值.而由绝对值的意义可得f(x)的最大值为1,故实数b>1.。
广东省2019届高三2019年普通高等学校招生全国统一考试文科数学模拟(一)试题(解析版)

2019年普通高等学校招生全国统一考试广东省文科数学模拟试卷(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】先求出集合,再求两集合的交集即可.【详解】在集合中,得,即,在集合中在上递增,且,所以,即,则.故选:D.【点睛】本题考查了集合的交集及其运算,也考查了指数函数的单调性,属于基础题.2.复数(为虚数单位)的虚部为()A. B. C. D.【答案】A【解析】【分析】利用复数代数形式的乘除运算化简即可得答案.【详解】=,所以z的虚部为.故选:A【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.3.双曲线的焦点坐标为()A. B. C. D.【答案】A【解析】【分析】将双曲线化成标准方程,可得,,即可得焦点坐标.【详解】将双曲线化成标准方程为:,得,,所以,所以,又该双曲线的焦点在x轴上,所以焦点坐标为.故选:A【点睛】本题考查双曲线的简单性质,将双曲线的方程化为标准形式是关键,属于基础题.4.若,则()A. B. C. D.【答案】B【解析】【分析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由诱导公式得,所以 .故选:B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.5.已知函数在上单调递减,且当时,,则关于的不等式的解集为()A. B. C. D.【答案】D【解析】【分析】当时,由=,得,由函数单调性的性质,即可得的解集.【详解】当时,由=,得或(舍),又因为函数在上单调递减,所以的解集为.故选:D【点睛】本题考查函数的单调性的应用,关键是理解函数单调性的性质,属于基础题.6.某几何体的三视图如图所示,则该几何体的体积为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】由三视图可知该几何体的直观图,从而求出几何体的体积.【详解】由三视图可知几何体为边长为2的正方体的一半,做出几何体的直观图如图所示,故几何体的体积为23=4.故选:B.【点睛】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状是解题的关键,属于中档题.7.设x1=18,x2=19,x3=20,x4=21,x5=22,将这5个数依次输入如图所示的程序框图运行,则输出S的值及其统计意义分别是()A. S=2,这5个数据的方差B. S=2,这5个数据的平均数C. S=10,这5个数据的方差D. S=10,这5个数据的平均数【答案】A【解析】【分析】根据程序框图,得输出的S是5个数据的方差,先求这5个数的均值,然后代入方差公式计算即可.【详解】根据程序框图,输出的S是x1=18,x2=19,x3=20,x4=21,x5=22这5个数据的方差,因为,∴由方差的公式S=.故选:A.【点睛】本题通过循环结构的程序框图考查了均值和方差,属于基础题.8.的内角所对的边分别是.已知,则的取值范围为()A. B. C. D.【答案】D【解析】【分析】由余弦定理化简,得,再由基本不等式求解即可.【详解】因为,得,所以,所以当且仅当取等号,且为三角形内角,所以. 故选:D【点睛】本题考查余弦定理解三角形和基本不等式的应用,属于基础题.9.已知,,三点不共线,且点满足,则()A. B.C. D.【答案】A【解析】【分析】运用向量的减法运算,把已知等式中的向量换为表示,整理后可求结果。
2019广东高考文科数学试卷及答案解析【word版】

2019年普通高等学校招生全国统一考试(广东卷)数学 (文科) 一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+答案:A111:()2,(),()22(),222(), A.x x xx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为 2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 000:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。
2019届广东省东莞市数学(文科)一模试题及答案解析
2019届广东省东莞市数学(文科)一模试题及答案解析一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={1,2,5},B ={x|x ≤2},则A ∩B =( )A. {1}B. {5}C. {1,2}D. {2,5}【答案】C【解析】解:集合A ={1,2,5},B ={x|x ≤2},则A ∩B =(1,2}. 故选:C .直接求解交集即可.本题考查集合的交集的求法,基本知识的考查.2. 已知i 是虚数单位,z =4(1+i)4−3i ,则|z|=( )A. 10B. √10C. 5D. √5【答案】B【解析】解:∵z =4(1+i)4−3i =4(2i)2−3i =−1−3i , ∴|z|=√(−1)2+(−3)2=√10. 故选:B .利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3. 现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为( )A. 12B. 13 C. 16 D. 112【答案】B【解析】解:现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件总数n =C 42C 22A 22⋅A 22=6,乙、丙两人恰好参加同一项活动包含的基本事件个数m =C 22C 22⋅A 22=2,∴乙、丙两人恰好参加同一项活动的概率p =m n=26=13.故选:B .先求出基本事件总数n =C 42C 22A 22⋅A 22=6,再求出乙、丙两人恰好参加同一项活动包含的基本事件个数m =C 22C 22⋅A 22=2,由此能求出乙、丙两人恰好参加同一项活动的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.双曲线x24−y2=1的焦点到渐近线的距离为()A. 1B. √2C. 2D. 3【答案】A【解析】解:双曲线中,焦点坐标为(±√5,0),渐近线方程为:y=±12x,∴双曲线x24−y2=1的焦点到渐近线的距离:d=√5|√1+4=1.故选:A.分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式,能求出结果.本题考查双曲线的焦点到渐近线的距离的求法,是基础题,解题时要熟练掌握双曲线的简单性质.5.由y=2sin(4x−14π)的图象向左平移π2个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A. y=2sin(8x−14π) B. y=2sin(2x+14π)C. y=2sin(2x−18π) D. y=2sin(2x−14π)【答案】D【解析】解:由y=2sin(4x−14π)的图象向左平移π2个单位,可得y=2sin(4x+2π−π4)=2sin(4x−π4)的图象,再把所得图象上所有点的横坐标伸长到原来的2倍后,可得y=2sin(2x−π4)的图象,故选:D.由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.6.函数y=log a(x+4)+2(a>0且a≠1)的图象恒过点A,且点A在角θ的终边上,则sin2θ=()A. −513B. 513C. −1213D. 1213【答案】C【解析】解:对于函数y =log a (x +4)+2(a >0且a ≠1),令x +4=1,求得x =−3,y =2,可得函数的图象恒过点A(−3,2),且点A 在角θ的终边上,∴tanθ=yx =−23,则sin2θ=2sinθcosθsin 2θ+cos 2θ=2tanθtan 2θ+1=−1213,故选:C .令对数的真数等于零,求得x 、y 的值,可得定点A 的坐标,再利用任意角的三角函数的定义求得tanθ,再利用同角三角函数的基本关系、二倍角的正弦公式,求得sin2θ的值.本题主要考查对数函数的图象经过定点问题,任意角的三角函数的定义,同角三角函数的基本关系、二倍角的正弦公式,属于基础题.7. 如图所示,△ABC 中,BD⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,点E 是线段AD 的中点,则( )A. AC ⃗⃗⃗⃗⃗ =34AD ⃗⃗⃗⃗⃗ +12BE ⃗⃗⃗⃗⃗ B. AC ⃗⃗⃗⃗⃗ =34AD ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ C. AC ⃗⃗⃗⃗⃗ =54AD ⃗⃗⃗⃗⃗ +12BE ⃗⃗⃗⃗⃗ D. AC ⃗⃗⃗⃗⃗ =54AD ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ 【答案】C【解析】解:如图所示,AC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ ,ED ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗⃗⃗ , ∴AC ⃗⃗⃗⃗⃗ =54AD ⃗⃗⃗⃗⃗ +12BE ⃗⃗⃗⃗⃗ . 故选:C .利用向量三角形法则、向量共线定理即可得出.本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力,属于基础题.8. 已知{a n }是等差数列,{b n }是正项等比数列,且b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6,则a 2018+b 9=( )A. 2274B. 2074C. 2226D. 2026【答案】A【解析】解:设等差数列{a n }的公差为d ,正项等比数列{b n }的公比为q >0,∵b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6, ∴q 2=q +2,q 3=2a 1+6d ,q 4=3a 1+13d , 解得q =2,a 1=d =1.则a 2018+b 9=1+2017+28=2274. 故选:A .利用等差数列与等比数列的通项公式即可得出.本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.9.设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是()A. α⊥β,α∩β=m,m⊥n⇒n⊥βB. α⊥β=n,m⊂α,m//β⇒m//nC. m⊥n,m⊂α,n⊂β⇒α⊥βD. m//α,n⊂α,⇒m//n【答案】B【解析】解:由m、n是两条不同的直线,α、β是两个不同的平面,得:在A中,α⊥β,α∩β=m,m⊥n,则n与β相交、平行或n⊂β,故选A;在B中,α⊥β=n,m⊂α,m//β,则由线面平行的性质定理得m//n,故B正确;在C中,m⊥n,m⊂α,n⊂β,则α与β相交或平行,故C错误;在D中,m//α,n⊂α,则m与n平行或异面,故D错误.故选:B.在A中,n与β相交、平行或n⊂β;在B中,由线面平行的性质定理得m//n;在C中,α与β相交或平行;在D中,m与n平行或异面.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数表结合思想,是中档题.10.三棱锥P−ABC中,PA⊥平面ABC,∠ABC=30∘,△APC的面积为2,则三棱锥P−ABC的外接球体积的最小值为()A. 4πB. 4π3C. 64π D. 32π3【答案】D【解析】解:设AC=x,由于PA⊥平面ABC,AC⊂平面ABC,∴PA⊥AC,则△APC的面积为S△APC=12AC⋅PA=2,则PA=4x,由正弦定理知,△ABC的外接圆直径为2r=ACsin∠ABC =xsin30∘=2x,所以,三棱锥P−ABC的外接球直径为2R=√PA2+(2r)2=√16x +4x2≥√2√16x⋅4x2=4,当且仅当16x2=4x2,即当x=√2时,等号成立,则R≥2.所以,该三棱锥P−ABC的外接球的体积为43πR3≥43π×23=323π.因此,三棱锥P−ABC的外接球体积的最小值为323π.故选:D.先证明PA−⊥AC,并设PA=x,利用△APC的面积得出PA=4x,然后利用正弦定理得出△ABC的外接圆直径2r的表达式,并利用公式2R=√PA2+(2r)2并结合基本不等式可得出外接球半径的最小值,最后利用球体体积公式可得出答案.本题考查球体体积的计算,考查利用基本不等式求最值,解决本题的关键在于找出合适的模型求出球体的半径,考查计算能力,属于中等题.11.在△ABC中,AB=2,C=π6,则AC+√3BC的最大值为()A. 4√7B. 3√7C. 2√7D. √7【答案】A【解析】解:△ABC中,AB=2,C=π6,则:2R=ABsinC=4,则:AC+√3BC,=4sinB+4√3sinA,=4sin(5π6−A)+4√3sinA,=2cosA+6√3sinA,=4√7sin(A+θ),由于:0<A<5π6,0<θ<π2所以:0<A+θ<4π3,所以最大值为4√7.故选:A.直接利用三角函数关系式的变换和正弦定理求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理的应用.12.设函数f(x)={1−log2x,x>121−x,x≤1,则满足f(x)≤2的x的取值范围是()A. [−1,2]B. [0,2]C. [1,+∞)D. [0,+∞)【答案】D【解析】解:当x≤1时,21−x≤2的可变形为1−x≤1,x≥0,∴0≤x≤1.当x>1时,1−log2x≤2的可变形为x≥12,∴x≥1,故答案为[0,+∞).故选:D.分类讨论:①当x≤1时;②当x>1时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可.本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.二、填空题(本大题共4小题,共20.0分)13.曲线y=e x−1x在点(1,f(1))处的切线的斜率为______.【答案】e +1【解析】解:曲线y =e x −1x ,可得y′=e x +1x 2,所以曲线y =e x −1x 在点(1,f(1))处的切线的斜率为:y′|x=1=e +1. 故答案为:e +1.求出函数的导数,代入x =1,得到切线的斜率即可.本题考查函数的导数的应用,切线的斜率的求法,考查计算能力.14. 若x ,y 满足约束条件{x −y −1≤02x −y +1≥0x ≥0,则z =−x2+y 的最小值为______.【答案】−1【解析】解:画出约束条件{x −y −1≤02x −y +1≥0x ≥0表示的平面区域如图所示,由图形知,当目标函数z =−12x +y 过点A 时取得最小值, 由{x −y −1=0x=0,解得A(0,−), 代入计算z =0+(−1)=−1, 所以z =−12x +y 的最小值为−1. 故答案为:−1.画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数z =−12x +y 的最小值.本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.15. 设双曲线x 29−y 26=1的左右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B两点,则|AF 2|+|BF 2|的最小值等于______.【答案】16【解析】解:根据双曲线x29−y26=1,得:a=3,b=√6,由双曲线的定义可得:|AF2|−|AF1|=2a=6…①,|BF2|−|BF1|=2a=6…②,①+②可得:|AF2|+|BF2|−(|AF1|+|BF1|)=12,∵过双曲线的左焦点F1的直线交双曲线的左支于A,B两点,∴|AF1|+|BF1|=|AB|,当|AB|是双曲线的通径时|AB|最小.∴|AF2|+|BF2|−(|AF1|+|BF1|)=|AF2|+|BF2|−|AB|=12.|BF2|+|AF2|=|AB|+12≥2b2a +12=2×63+12=16.故答案为:16.根据双曲线的标准方程可得:a=3,b=√6,再由双曲线的定义可得:|AF2|−|AF1|= 2a=6,|BF2|−|BF1|=2a=6,所以得到|AF2|+|BF2|−(|AF1|+|BF1|)=12,再根据A、B两点的位置特征得到答案.本题考查两条线段和的最小值的求法,是中档题,解题时要注意双曲线的简单性质的合理运用.16.圆锥底面半径为1,高为2√2,点P是底面圆周上一点,则一动点从点P出发,绕圆锥侧面一圈之后回到点P,则绕行的最短距离是______.【答案】3√3【解析】解:圆锥的侧面展开图为扇形,其弧长为底面圆的周长,即2π∵圆锥的母线长为3.扇形的圆心角2π3,∴一动点从点P出发,绕圆锥侧面一圈之后回到点P,则绕行的最短距离是:2×3√32=3√3.故答案为:3√3.利用圆锥的侧面展开图,确定扇形的圆心角,即可求得结论.本题考查旋转体表面上的最短距离,考查学生的计算能力,属于基础题.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}的首项a1=1,且a2+1、a3+1、a4+2构成等比数列.(1)求数列{a n}的通项公式(2)设b n=2a n a n+1,求数列{b n}的前n项和S n【答案】解:(1)等差数列{a n}的首项a1=1,公差设为d,a2+1、a3+1、a4+2构成等比数列,可得(a3+1)2=(a2+1)(a4+2),即为(2+2d)2=(2+d)(3+3d),解得d=2或−1,当d=−1时,a2+1=0,不成立,舍去,则d=2,a1=1,可得a n=2n−1;(2)b n=2a n a n+1=2(2n−1)(2n+1)=12n−1−12n+1,前n项和S n=1−13+13−15+⋯+12n−1−12n+1=1−12n+1=2n2n+1.【解析】(1)设公差为d,运用等比数列中项性质和等差数列的通项公式,解方程可得公差d,即可得到所求通项公式;(2)求得b n=2a n a n+1=2(2n−1)(2n+1)=12n−1−12n+1,由数列的裂项相消求和,化简计算可得所求和.本题考查等差数列的通项公式和等比数列的中项性质,考查数列的裂项相消求和,化简整理的运算能力,属于中档题.18.某公司培训员工某项技能,培训有如下两种方式:方式一:周一到周五每天培训1小时,周日测试方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.【答案】解:(1)设甲乙两组员工受训的平均时间分别为t1、t2,则t1=20×5+25×10+10×15+5×2060=10(小时)----------------------------------------(2分)t2=8×4+16×8+20×12+16×1660≈10.9(小时)----------------------------------------(4分)据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因10<10.9,据此可判断培训方式一比方式二效率更高.---------------------------------------------(6分)(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:630×10=2,--------------------------------------------------(7分)×20=4,----------------------------------------------------------------(8分来自乙组的人数为:630)记来自甲组的2人为:a、b;来自乙组的4人为:c、d、e、f,则从这6人中随机抽取2人的不同方法数有:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15种,----------------------------------------------(10分)其中至少有1人来自甲组的有:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),共9种,=故这2人中至少有1人来自甲组的概率P=9153.----------------------------------------------------------(12分)5【解析】(1)分别求出甲乙两组员工受训的平均时间,据此可判断培训方式一比方式二效率更高.(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为2,来自乙组的人数为4,记来自甲组的2人为:a、b;来自乙组的4人为:c、d、e、f,则从这6人中随机抽取2人,利用列举法能求出这2人中至少有1人来自甲组的概率.本题考查平均数、概率的求法,考查古典概型、列举法、分层抽样等基础知识,考查运算求解能力,是基础题.19.如图,四棱锥P−ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60∘,E是BC中点,M是PD的中点.(1)求证:平面AEM⊥平面PAD;(2)若F是PC上的中点,且AB=AP=2,求三棱锥P−AMF的体积.【答案】证明:(1)连结AC,∵底面ABCD为菱形,∠ABC=60∘,∴△ABC是正三角形,∵E是BC中点,∴AE⊥BC,又AD//BC,∴AE⊥AD,∵PA⊥平面ABCD,AE⊂平面ABCD,∴PA⊥AE,∵PA∩AD=A,∴AE⊥平面PAD,又AE ⊂平面AEM ,∴平面AEM ⊥平面PAD . 解:(2)∵F 是PC 上的中点,且AB =AP =2, ∴AD =2,AE =√3, ∴三棱锥P −AMF 的体积:V P−AMF =V M−APF =12V F−PAD =12×12V C−PAD=14V P−ACD =14×13×S △ACD ×PA =112×12×AD ×AE ×PA =124×2×√3×2=√36. 【解析】(1)连结AC ,推导出AE ⊥BC ,AE ⊥AD ,PA ⊥AE ,从而AE ⊥平面PAD ,由此能证明平面AEM ⊥平面PAD .(2)三棱锥P −AMF 的体积:V P−AMF =V M−APF =12V F−PAD =12×12V C−PAD ,由此能求出结果.本题考查面面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20. 已知椭圆E 的一个顶点为A(0,1),焦点在x 轴上,若椭圆的右焦点到直线x −y +2√2=0的距离是3. (1)求椭圆E 的方程;(2)设过点A 的直线l 与该椭圆交于另一点B ,当弦AB 的长度最大时,求直线l 的方程.【答案】解:(1)由题意:b =1,右焦点(c,0)(c >0)到直线x −y +2√2=0的距离为: d =√2|√2=3,∴c =√2,又∵a 2−b 2=c 2,∴a =√3,又∵椭圆E 的焦点在x 轴上,∴椭圆E 的方程为:x 23+y 2=1(2)①当直线l 的斜率不存在时,|AB|=2; ②当直线l 的斜率存在时,设l :y =kx +1, 联立{y =kx +1x 23+y 2=1,得:(1+3k 2)x 2+6kx =0,∵x A =0,∴x B =−6k 1+3k 2,∴|AB|=√1+k 2|x B −x A |=√1+k 2⋅6|k|1+3k 2, ∴|AB|2=36k 2(1+k 2)(1+3k 2)2,设1+3k 2=t ≥1,则k 2=t−13记f(t)=4(t 2+t−2)t 2=4[−2(1t )2+1t +1],∴1t =14,即t=4,k=±1时,|AB|=f(t)取得最大值92>2,此时直线l:y=x+1或y=−x+1.【解析】(1)根据点到直线的距离列式求得c,再求得a;(2)根据弦长公式求得弦长后,换元成二次函数求最值.本题考查了直线与椭圆的综合,属中档题.21.已知函数f(x)=xe x+a(lnx+x).(1)若a=−e,求f(x)的单调区间;(2)当a<0时,记f(x)的最小值为m,求证:m≤1.【答案】(1)解:当a=−e时,f(x)=xe x−e(lnx+x),f(x)的定义域是(0,+∞)……(1分)f′(x)=(x+1)e x−e(1x +1)=(x+1x)(xe x−e),…………………………………(2分)当0<x<1时,;当x>1时,0.'/> (3))所以函数f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).……………(4分) (2)证明:由(1)得f(x)的定义域是(0,+∞),f′(x)=x+1x(xe x+a),令g(x)=xe x+a,则g′(x)=(x+1)e x>0,g(x)在(0,+∞)上单调递增,………………………(5分)因为a<0,所以g(0)=a<0,g(−a)=−ae−a+a>−a+a=0,故存在x0∈(0,−a),使得g(x0)=x0e x0+a= 0.…………………………………………(6分)当x∈(0,x0)时,g(x)<0,f′(x)<0,f(x)单调递减;当x∈(x0,+∞)时,g(x)>0,f′(x)>0,f(x)单调递增;故x=x0时,f(x)取得最小值,即m=f(x0)=x0e x0+a(lnx0+x0),…………………………(8分)由x0e x0+a=0,得m=x0e x0+aln(x0e x0)=−a+aln(−a),………………………………(9分)令x=−a>0,h(x)=x−xlnx,则,当x∈(0,1)时,0'/>,h(x)=x−xlnx单调递增,………………………………(10分)当x∈(1,+∞)时,,h(x)=x−xlnx单调递减,………………………………(11分)故x=1,即a=−1时,h(x)=x−xlnx取最大值1,故m≤1.……………………(12分)【解析】(1)代入a的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间,得到m=x0e x0+aln(x0e x0)=−a+aln(−a),令x=−a>0,h(x)=x−xlnx,根据函数的单调性证明即可.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22. 已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:{y =1+tsinαx=tcosα(t 为参数,α∈[0,π)),曲线C 的极坐标方程为:ρ=4sinα.(1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于P ,Q 两点,若|PQ|=√15,求直线l 的斜率.【答案】解:(1)曲线C 的极坐标方程为:ρ=4sinα.转换为直角坐标方程为:x 2+y 2=4y .∴曲线C 的直角坐标方程为x 2+(y −2)2=4.(2)把 {y =1+tsinαx=tcosα代入x 2+y 2=4y ,整理得t 2−2tsinα−3=0设其两根分别为 t 1和t 2,则t 1+t 2=2sinα,t 1t 2=−3,∴|PQ|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=√4sin α+12=√15得sinα=√32,α=π3或2π3,∴直线l 的斜率为±√3.【解析】(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用一元二次方程根和系数关系的应用求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23. 设函数f(x)=|x +1|+|x −2|.(1)求不等式f(x)≤3的解集;(2)当x ∈[2,3]时,f(x)≥−x 2+2x +m 恒成立,求m 的取值范围.【答案】解:(1)f(x)=|x +1|+|x −2|={1−2x,x ≤−13,−1<x <22x −1,x ≥2,由f(x)≤3,解得:1≤x ≤2,故不等式的解集是{x|−1≤x ≤2};(2)当x ∈[2,3]时,f(x)=2x −1,由f(x)≥−x 2+2x +m ,得2x −1≥−x 2+2x +m ,即m ≤x 2−1在x ∈[2,3]恒成立,故m ≤3,即m 的范围是(−∞,3].【解析】(1)通过讨论x 的范围,得到关于x 的不等式组,解出即可;(2)问题转化为m ≤x 2−1在x ∈[2,3]恒成立,求出m 的范围即可.本题考查了解绝对值不等式问题,考查函数恒成立以及转化思想,分类讨论思想,是一道常规题.。
2019年广东省深圳市高考数学一模试卷(文科)
2019 年广东省深圳市高考数学一模试卷(文科)一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)已知集合 A {x | 1剟x 2}, B {1 ,2, 3},则 A B ()A . {1}B . {2}C . {1 , 2}D . {1 ,2, 3}2.(5 分)设 zA . 22 2i1 i),则 | z |(B .2C . 5D .33.(5 分)在平面直角坐标系 xOy 中,设角 的顶点与原点 O 重合,始边与 x 边过点 P (2, 1) ,则 sin(2)的值为 ()轴的非负半轴重合,若角 终A .45B .35C .35D .4 54.(5 分)设 x0剟x 3, y 满足约束条件 0剟y 4 ,则 z 3x y 的最大值为 ()2x y (6)A .7B .9C .13D .155.(5分)己知 f ( x ) 是定义在 R 上的偶函数,在区间 (,0] 为增函数,且 f (3)0 ,则不等式 f (12 x ) 0的解集为 ()A . (l ,0)B . (1,2)C . (0,2)D . (2, )6.(5分)如图所示,网格纸上小正方形的边长为1.粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三 视图,则该几何体的体积为 ()A .64B .68C .80D .1097.(5 分)已知圆锥的母线长为 5 ,底面半径为 2,则该圆锥的外接球表面积为 ()A .25 4B . 16C . 25D . 328.(5 分)古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出己知线段的 I(l)取线段AB 2,过点B作AB的垂线,并用圆规在垂线上截取BC12AB 1,连接AC ;(2)以C为圆心,B C为半径画弧,交AC于点D;(3)以A为圆心,以AD为半径画弧,交AB于点E.则点E即为线段AB的黄金分割点.若在线段AB上随机取一点F ,则使得BE剟AF AE的概率约为、(参考数据:5 2.236)()A.0.236B.0.382C.0.472D.0.6189.(5分)己知直线x 是函数f(x)sin(2x )(||62)与的图象的一条对称轴,为了得到函数y f(x)的图象,可把函数y sin2x的图象()A.向左平行移动B.向右平行移动66个单位长度个单位长度C.向左平行移动D.向右平行移动1212个单位长度个单位长度10.(5分)在长方体ABCD一A B C D中,AB 2,BC 2,C C 22,M 为AA的中点,则异面直线1 1 1 1 11AC与B M所成角的余弦值为()1A.66B.23C.D.3422311.(5分)己知F,F是椭圆12x2y21(a b 0)的左,右焦点,过F的直线与椭圆交于P,Q两点,PQ P F,a2b2且|QF |2|PF|1 1,则△PF F 与△QF F的面积之比为( )1 2 1 2A.23B.21C.2l D.2312.(5分)己知函数f(x)xlnx,x 0x 1,x0,若x x,且f(x)f(x)1 2 1 2,则|x x|1 2的最大值为( ) A.1B.2二、填空题:本大题共4小题,每小题5分.C.2D.2213.(5分)曲线y e x1在点(1,f(1))处的切线的斜率为.21r r 14.(5 分)已知平面向量 a , b 满足 | a |2 , | b |4 , | 2a b |4 3 ,则 a 与 b 的夹角为.15.(5分)己知 F ,F 是双曲线的两个焦点,以线段 F F 为直径的圆与双曲线的两条渐近线交于 A ,B ,C ,121 2D 四个点,若这四个点与 F , F 两点恰好是一个正六边形的顶点,则该双曲线的离心率为.12. 16.(5 分)在 ABC 中, ABC 150取到最大值时, AC, D 是线段 AC 上的点, DBC 30,若 ABC 的面积为 3 ,当 BD三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12 分)记 S 为等差数列 {a }的前 n nn(1)求数列 {a }的通项公式;n项和.已知 a 4 ,公差 d 0 , a 是 a 与 a 的等比中项.14281(2)求数列 { }前 n Sn项和为 T. n18.(12 分)工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y 进行检测,一共抽取了48 件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y 有关,具体见表.质量指标 Y[9.4 , 9.8)[9.8 , 10.2](10.2 , 10.6]频数一年内所需维护8224161次数(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标Y 的平均值(保留 两位小数);(2)用分层抽样的方法从上述样本中先抽取 6 件产品,再从 6 件产品中随机抽取 2 件产品,求这 2 件产品的 指标 Y 都在 [9.8 , 10.2] 内的概率;(3)已知该厂产品的维护费用为 300 元 /次.工厂现推出一项服务:若消费者在购买该厂产品时每件多加 100元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这 48 件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费 费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?19.(12 分)已知四棱锥 P ABCD 的底面 ABCD 为平行四边形, PD DC , AD P C .(1)求证: AC AP ;(2)若平面 APD 平面 ABCD , ADC 120;,AD DC 4 ,求点 B 到平面 PAC 的距离.r r r r r r20.(12分)设抛物线C:y24x,直线l:x my 20与C交于A,B两点.(1)若|AB |46,求直线l的方程;(2)点M为AB的中点,过点M作直线MN与y轴垂直,垂足为N.求证:以MN为直径的圆必经过一定点,并求出该定点坐标.21.(12分)已知函数f(x)(a x 2)e x x 2,其中a 2.(1)当a 0时,求函数f(x)在[1,0]上的最大值和最小值;(2)若函数f(x)为R上的单调函数,求实数a的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.(本小题满分10分)[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系x Oy中,直线l的参数方程为x 2t cosy t sin(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cos(1)求曲线C的直角坐标方程;,直线l与曲线C交于不同的两点A,B.(2)若点P为直线l与x轴的交点,求11的取值范围.|PA|2 |PB|2[选修4-5:不等式选讲]23.设函数f(x)|x 1||x 2|,g(x)x mx 1.(1)当m 4时,求不等式f(x)g(x)的解集;1(2)若不等式f(x)g(x)在[2,]2上恒成立,求实数m的取值范围.22019 年广东省深圳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的. 【解答】解:Q A {x | 1剟x 2} , B {1 ,2, 3};A B {1 , 2} .故选: C .【解答】解:Q z2 2i 1 i,| z||2 2i | 2 2i | 2 2| 2 . 1 i |1 i |2故选: B .【解答】解:Q 角 的顶点与原点重合,始边与 x x 2 , y1, r |O P | 5 ,轴非负半轴重合,终边过点 P (2, 1) ,s iny1r5, cosxr25, 则 sin 22sincos 2g 2 5g ( 1 4 ) , 554 s in(2) sin 2, 5故选: A .0剟x 3【解答】解:由 x , y 满足约束条件 0剟y 4 ,作出可行域如图,2x y (6)化目标函数 z 3x y 为 y3x z ,由图可知,当直线 y3x z 过 B (3,4) 时,直线在 y 轴上的截距最大,此时 z 有最大值为 3 3 4 13 .故选: C .I【解答】解:根据题意,f(x)是定义在R上的偶函数,在区间(一,0]为增函数,则函数f(x)在[0,)上为减函数,又由f(3)0,则不等式f (12x)0 f (12x)f(3)|12x| 3 ,解可得:1x2,即不等式的解集为(1,2) ;故选:B.【解答】解:该几何体为正四棱柱中挖去一个正四棱锥,如图所示,底面正方形的边长为4,高为5棱锥的高为3,1该几何体的体积为:44544364,3故选:A.【解答】解:如图,CB5,BE2,可得CE1,取CB中点D ,作DO CB交CE延长线于O,则O为ABC的外心,也即圆锥外接球的球心,设OE x,则OC1x,OB x2 4 ,(1x)2x24,得x 32,外接球半径R 52,25S 425.球故选:C .【解答】解:由勾股定理可得:AC 215,CD 1,则AD 51 1.236 ,则AE 1.236,BE 2AE 0.764 ,所以0.764剟AF 1.236,由几何概型中的线段型可知:使得BE剟AF AE的概率约为1.2360.76420.236,故选:A.【解答】解:令2xk 2,由x6是此方程的一个解,则k6,又||2,所以6,,即y f(x)sin(2x )sin2(x )612所以为了得到函数y f(x)的图象,可把函数y sin2x的图象向左平移故选:C .12个单位长度,42 2则 A ( 2 ,0, 0) , C (0 ,2, 0) ,B ( 2 ,2, 2 2) , M ( 2 ,0, 2) ,1uuur uuuur AC ( 2 ,2, 0) , B M(0 , 2, 2) ,1设异面直线 AC 与 B M 所成角为 ,1则 cos uuur uuuur| AC g B M | 4 2 uuur uuuur 1 .| AC |g | B M |6 g 6 3 1异面直线 AC 与 B M 所成角的余弦值为1故选: B .23. 【解答】解:可设 | PF |t 1, | QF |2 | PF |2t 11,由椭圆的定义可得 | PF |2a t 2| PQ |4a 3t ,, | QF |2a 2t 2,由 | PQ |2| PF |2 1|Q F |2 1,即 (4a3t ) 2 t 2 4t 2 ,即有 4a 3t 3t ,解得 t4 3 3a ,则△ PF F 与△ QF F 的面积之比为1 21 21 21| PF |g | PF | 2| QF |g | QF |g sin 301 21 32 3 ,3 11 42 23 ga g a2 3 3 3 3 1 8 2 3 2 1 g a g a g 2 3 3 3 3 2故选: D .1 2【解答】解:不妨设: xx 12,由 f ( x ) f ( x ) 12,要使 | xx | 12最大,转化为:求解( xx )12 max,问题转化为:(如图所示),A ( x 1, y ) 1到 y x 1(x 0) 距离的最大值问题,此时需过 A 点的切线与 y x 1 平行, 当 x 0 时, f (x) lnx 1 ,令 f (x) 1 则 x 1 ,1A (1,0) . x1所以 | xx | 212故选: C .最大值为:2,二、填空题:本大题共 4 小题,每小题 5 分.【解答】解:曲线 ye x1 1 ,可得 y e x, xx 2所以曲线 ye x1 x在点 (1 , f (1) ) 处的切线的斜率为: y | e 1. x 1故答案为: e 1 .r r r 【解答】解:由向量的模的运算有: (2a b ) 24a 2 b 2 4a g b 48 ,r 又 | a |2 , | b |4 ,r 所以 a g b 4 ,r设 a 与 b 的夹角为 ,则 cosr a g b 4 1 r r,| a || b | 2 4 2rr rrrr r又[0,180],所以60,故答案为:60.【解答】解:F,F是双曲线的两个焦点,以线段F F为直径的圆与双曲线的两条渐近线交于A,B,C,1 2 1 213D 四个点,若这四个点与F,F两点恰好是一个正六边形的顶点,可得第一象限内的点(c,22c),代入双曲线方程可得:c23c21,4a24b213e2可得:e21,e 1,44e24解得e 31.故答案为: 3 1.【解答】解:Q由题意可得:SABC11ac sin150ac 3,24解得:ac 43,设BD x,则:SBCDSABD13ax44cx 3,可得:x43a 3c,当且仅当a 3c时x取得最大值,a 23,c 2,由余弦定理可得:AC2AB2BC22A B g BC g cos ABC 22(23)22223(32)28,解得:AC 27.故答案为:27.三、解答题:解答应写出文字说明,证明过程或演算步骤.【解答】解:(1)Q a是a与a的等比中项,4 2 8a42a a,即(a 3d)2 8 12(a d)(a 7d),1 1(43d)(4d)(47d),解得d 4或d0.Q d 0,d 4 .122n (a a ) (2)Q S 1 n 2 2n 2 2n , 11 1 1 1 ( ) S 2n2 2n 2 n n 1 n, 则 Tn 1 1 1 1 1 1 1 1 1 1 1 [(1 ) ( ) ( )] (1 ) S S S 2 2 2 3 n n 1 2 n 11 2 n . 1 3 2 【解答】解:(1)指标 Y 的平均值为: 9.6 10 10.4 10.07 6 6 6(2)由分层抽样法知,先抽取的件产品中,指标 Y 在 [9.8 , 10.2] 内的有 3 件,记为 A , A , A ,1 2 3指标 Y 在 (10.2 , 10.6] 内的有 2 件,记为 B , B ,1 2指标 Y 在 [9.4 , 9.8) 内的有 1 件,记为 C ,从 6 件产品中,随机抽取 2 件产品,共有基本事件 15 个,分别为:.( A , A ) 1 2 , ( A , A ) 1 3 , ( A , B ) 1 1 , ( A , B ) 1 1 , ( A , B ) 1 2,( A , C ) , ( A , A ) 1 2 3 , ( A , B ) 2 1,( A , B ) , ( A , C ) , ( A , B ) , ( A , B ) , ( A , C ) ,2 2 23 1 3 2 3( B , B ) 1 2 , ( B , C ) , ( B , C ) ,1 2其中,指标 Y 都在 [9.8 , 10.2] 内的概率为 P3 1 . 15 5(3)不妨设每件产品的售价为 x 元,假设这 48 件样品每件都不购买该服务,则购买支出为 48 x 元,其中有 16 件产品一年内的维护费用为 300 元 / 件,有 8 件产品一年内的维护费用为 600 元 / 件, 此时平均每件产品的消费费用为1 48(48 x 16 300 8 600) x 200 元. 【解答】(1)证明:取 PC 中点 M ,连接 AM ,DM . Q PD DC ,且 M 为 PC 中点, D M P C .Q AD P C . AD DMD . PC 平面 ADM .Q AM 平面 ADM . PC A M .Q M 为 PC 中点, AC AP ;nI(2)过P作PH垂直AD延长线于点H,连接CH,Q平面APD 平面ABCD,平面APD 平面ABCD AD.PH 平面APD,PH A D,P H 平面ABCD.Q CH 平面ABCD,P H CH.Q PD CD,AD AD,AC AP,ADP ADC,ADC ADP 120.PD CD AD 4,AC AP 43.PH CH 23,PC 26.设点B到平面PAC的距离为d,由于VP ABC VB ACP11,可得S g PH Sg d.33Q SABC 134422143,S 264267.ACPd 477.点B到平面PAC的距离为477.x my 2【解答】解:(1)由,消去x 并整理可得yy24x24my 8 0,显然△16m2320,设A(x,y),B(x,y),1 12 2y y 4m,y y 8,1 2 1 2|AB |1m2g(y y)1224y y 1m122g4m2246,m21,即m 1,直线方程为x y 20或x y 20 ,(2)证明:设AB的中点M的坐标为(x,y)M M,则1y (y y )2m,M 1 2x my 22m M M 22,IABC ACP22M(2m2 2 ,2m),由题意可得N(0,2m),设MN为直径的圆经过点P(x0,y),uuuurPM (2m2uuur2x,2m y),PN (x,2m y),0 0 0 0uuuur u uur由题意可得PM g PN 0,即(42x )m24y m x2y22x 0 ,0 0 0 0 042x 0由题意可得4y 0x2y22x 00 0 0,解得x 2,y 0,0 0定点(2,0)即为所求【解答】解:(1)当a 0时,f(x)2e x 2,f (x)2e 1,由f (x)0,解得:x l n2,由f (x)0,解得:x l n2,故函数f(x)在[1,l n2]递减,在[l n2,0]递增,故f(x)minf(l n 2) ln21,2Q f(1)10,f(0)0,ef(x)maxf(0)0;(2)令g(x)f (x)(a x a 2)e则g (x)(a x 2a 2)e x,x 1,(i)当a 0时,由(1)知,与题意不符,2(ii)当a 0时,由g (x)0,解得:x (2)a,2由g(x)0,解得:x (2)a,故g(x)min g(2)ae aa10,Q g(0)a 10,故此时函数f (x)存在异号零点,与题意不符,2 (iii)当2a 0时,由g (x)0,解得:x (2)a,2由g(x)0,解得:x (2)a ,x x22222故g(x)在(,2)递增,在(2,)递减a a故g(x)max2g(2)ae a22a 1,由题意得:ae 22a 1…0恒成立,令22tt,则上述不等式等价于e t (1)a2,其中t 1,易证,当t 0时,e t t 1t21,又由(1)的结论知,当t (1,0]时,e t…t21成立,2由12 0a,解得:2a…1,综上,当2a…1时,函数f(x)为R的单调函数且递减.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.(本小题满分10分)[选修4-4:坐标系与参数方程]【解答】解:(1)曲线C的极坐标方程为2cos转换为直角坐标方程为:x2y22x 0.,(2)把直线l的参数方程为x 2t cosy t sin(t 为参数),代入x2y22x 0,得到:t26cos t 80.由已知得:△36cos 2320 ,故:cos 由于cos 228,9…1,所以:cos28(,1]9.设方程的两实数根为t1和t2,则由参数的几何意义可得:|PA||PB ||t t |6|cos1 2|PA||PB ||t g t |8.1 2|,11所以|PA|2 |PB|2(PA |PB)22PA PBPA|2 PB|29cos 2 416,8由于cos 2 (,1],99cos 2415故:(,],即: 1 1 9cos 2 4 1 5 ( , ] | PA |2 | PB |216 4 16 .[选修 4-5:不等式选讲]【解答】解:(1) f ( x ) |x 1| | x 2 | , 2x 1, x …1 f ( x ) 3,1x2 ,2x 1, x (2)当 m4时, g ( x ) x 2 4 x 1 ,①当 x …1时,原不等式等价于 x 2 2 x 0 ,解得: 2 x 0 ,故 2x … 1;②当 1x 2 时,原不等式等价于 x 24 x 2 0 , 解得: 2 2 x 2 2 ,故 1x 2 2 ;③ x …2 时, g ( x )… g (2) 11,而 f ( x )…f (2) 3 , 故不等式 f (x ) g ( x ) 的解集是空集;综上,不等式 f ( x ) g ( x ) 的解集是 (2, 2 2) ;(2)①当 2剟x1时, f ( x ) g ( x ) 恒成立等价于 mx x 又 x 0 ,故 m x 2 ,故 m4; 1 ②当 1x … 时, f (x ) , g ( x ) 恒成立 2等价于 g ( x ) 3 恒成立,即 g ( x )3 , min 2 2 x ,只需 g (1)…3 m … 3 1 9 g ( ) 3 m 2 2 , 综上, 9 m (, ) . 2即可,即。
2019年广东省高考数学试卷(文科)(附详细答案)
则下列结论一定正确的是(
)
第 1 页(共 19 页)
A.l1⊥l4 B.l1∥l4
C.l1 与 l4 既不垂直也不平行
D. l1 与 l4 的位置关系不确定
10.(5 分)对任意复数 ω1,ω2,定义 ω1* ω2=ω1 2,其中 2 是 ω2 的共轭复数,
对任意复数 z1,z2, z3 有如下命题:
【解答】 解:在正方体中,若 AB 所在的直线为 l 2,CD 所在的直线为 l3,AE 所在
的直线为 l1,
若 GD 所在的直线为 l4,此时 l1∥l4,
第 8 页(共 19 页)
若 BD 所在的直线为 l4,此时 l1⊥l4, 故 l1 与 l4 的位置关系不确定, 故选: D.
【点评】 本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.
log2a1+log2a2+log2a3+log2a4+log2a5=
.
(二)(14-15 题,考生只能从中选做一题) 【坐标系与参数方程选做题】 14.(5 分)在极坐标系中,曲线 C1 与 C2 的方程分别为 2ρco2sθ =sin 与θ ρ cos θ,=1
以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,
10.(5 分)对任意复数 ω1,ω2,定义 ω1* ω2=ω1 2,其中 2 是 ω2 的共轭复数,
对任意复数 z1,z2, z3 有如下命题:
①( z1+z2) *z3=(z1*z 3)+(z2*z3) ② z1* ( z2+z3)=(z1*z 2)+(z1*z3)
③( z1*z2) *z3=z1* (z2*z3); ④ z1*z2=z2*z1
广东省汕头市2019届高三第一次模拟考试文科数学试题(解析版)
广东省2019年汕头市普通高考第一次模拟考试试题文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A.B.C.D.【答案】D 【解析】 【分析】 先分别求出集合,由此能求出,得到答案.【详解】由题意,集合,所以,故选D.【点睛】本题主要考查了对数的运算性质,以及集合的交集运算问题,其中解答中正确求解集合A ,再根据集合的交集运算是解答的关键,着重考查了运算与求解能力,属于基础题. 2.已知是虚数单位,复数,若,则 ( )A.0 B. 2C.D. 1【答案】A 【解析】 【分析】通过复数的除法运算得到,再由模的求法得到方程,求解即可.【详解】,因为,,即,解得:0故选:A【点睛】本题考查了复数的运算法则、复数模的求法,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算. 3.设满足约束条件,则的最大值为( )A. 2B. 3C. 4D. 5【答案】B 【解析】【分析】由题意,画出约束条件画出可行域,结合图象,确定目标函数的最优解,即可求解.【详解】由题意,画出约束条件画出可行域,如图所示,目标函数可化为,当直线过点A时,此时在轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选B.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.4.现有甲、乙、丙、丁 4 名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A. B. C. D.【答案】B【解析】【分析】求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.5.已知圆O:x2+ y2= 4 ( O为坐标原点)经过椭圆C:的短轴端点和两个焦点,则椭圆C 的标准方程为A. B. C. D.【答案】B【解析】由题设可得,故,应选答案B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省高考文科数学一模试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|12}A x x =-<,{|1216}x B x =<<,则(A B =I ) A .(,8)-∞B .(,3)-∞C .(0,8)D .(0,3)2.(5分)复数5(1i z i i=-为虚数单位)的虚部为( )A .12-B .12C .12i -D .12i3.(5分)双曲线229161x y -=的焦点坐标为( ) A .5(12±,0) B .5(0,)12±C .(5,0)±D .(0,5)±4.(5分)若33sin()2πα+=,则cos2(α= ) A .12-B .13-C .13D .125.(5分)已知函数()f x 在(,)-∞+∞上单调递减,且当[2x ∈-,1]时,2()24f x x x =--,则关于x 的不等式()1f x <-的解集为( ) A .(,1)-∞-B .(,3)-∞C .(1,3)-D .(1,)-+∞6.(5分)某几何体的三视图如图所示,则该几何体的体积为( )A .3πB .4πC .6πD .8π7.(5分)执行如图的程序框图,依次输入117x =,219x =,320x =,421x =,523x =,则输出的S 值及其统计意义分别是( )A .4S =,即5个数据的方差为4B .4S =,即5个数据的标准差为4C .20S =,即5个数据的方差为20D .20S =,即5个数据的标准差为208.(5分)ABC ∆的内角A ,B ,C 所对的边分别是a ,b ,c ,已知cos cos 1b bC A c a+=,则cos B 的取值范围为( )A .1(,)2+∞B .1[,)2+∞C .1(2,1)D .1[2,1)9.(5分)已知A ,B ,C 三点不共线,且点O 满足161230OA OB OC --=u u u r u u u r u u u r r,则( ) A .123OA AB AC =+u u u r u u u r u u u r B .123OA AB AC =-u u u r u u u r u u u r C .123OA AB AC=-+u u u r u u u r u u u rD .123OA AB AC =--u u u r u u u r u u u r10.(5分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足510.618AC BC AB AC -==≈.后人把这个数称为黄金分割数,把点C 称为线段AB 的黄金分割点在ABC ∆中,若点P ,Q 为线段BC 的两个黄金分割点,在ABC ∆内任取一点M ,则点M 落在APQ ∆内的概率为( )A 51-B 52 C 51-D 52-11.(5分)已知F 为抛物线2:4C x y =的焦点,直线112y x =+与曲线C 相交于A ,B 两点,O 为坐标原点,则(OAB S ∆= )ABCD.12.(5分)函数()(2)f x kx lnx =-,()2g x lnx x =-,若()()f x g x <在(1,)+∞上的解集中恰有两个整数,则k 的取值范围为( ) A .1[122ln -,41)33ln - B .1(122ln -,41]33ln - C .41[33ln -,12)22ln -D .41(33ln -,12]22ln -二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)已知函数,1(),1x lnx x f x e x >⎧=⎨⎩„,则(f f (2))= .14.(5分)设x ,y 满足约束条件321102101x y x y x +-⎧⎪--⎨⎪⎩„„…,则2z x y =+的最大值为 .15.(5分)在三棱锥P ABC -中,AP ,AB ,AC两两垂直,且AP AB AC ===三棱锥P ABC -的内切球的表面积为 .16.(5分)已知函数1()sin()(0)62f x x πωω=++>,点P ,Q ,R 是直线(0)y m m =>与函数()f x 的图象自左至右的某三个相邻交点,且32||||2PQ QR π==,则m ω+= . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)设数列{}n a 的前n 项和为n S ,1(*)n n S a n N =-∈. (1)求数列{}n a 的通项公式; (2)设2log n n b a =,求数列11{}n n b b +的前n 项和n T . 18.(12分)在五面体ABCDEF 中,四边形CDEF 为矩形,2224CD DE AD AB ====,AC =30EAD ∠=︒.(1)证明:AB ⊥平面ADE ;(2)求该五面体的体积.19.(12分)某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x 与乘客等候人数y 之间的关系,经过调查得到如下数据: 间隔时间x (分钟) 10 11 12 13 14 15等候人数y (人)23 25 26 29 28 31调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数ˆy,再求ˆy 与实际等候人数y 的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.(1)从这6组数据中随机选取4组数据后,求剩下的2组数据的间隔时间不相邻的概率; (2)若选取的是后面4组数据,求y 关于x 的线性回归方程ˆˆˆybx a =+,并判断此方程是否是“恰当回归方程”;(3)为了使等候的乘客不超过35人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?附:对于一组数据1(x ,1)y ,2(x ,2)y ,⋯⋯,(n x ,)n y ,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为:1122211()()ˆ()nni iii i i nniii i x ynxyxx y y bxnx xx ====---==--∑∑∑∑,ˆˆay bx =-,411546i ii x y==∑.20.(12分)已知点2),2(3)-都在椭圆2222:1(0)y x C a b a b+=>>上.(1)求椭圆C 的方程;(2)过点(0,1)M 的直线l 与椭圆C 交于不同两点P ,Q (异于顶点),记椭圆与y 轴的两个交点分别为1A ,2A ,若直线1A P 与2A Q 交于点S ,证明:点S 恒在直线4y =上.21.(12分)已知函数()2()x f x e ax a R =-∈(1)若曲线()y f x =在0x =处的切线与直线220x y +-=垂直,求该切线方程; (2)当0a >时,证明2()44f x a a -+…(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩,(θ为参数)已知点(4,0)Q ,点P 是曲线l C 上任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求点M 的轨迹2C 的极坐标方程;(2)已知直线:l y kx =与曲线2C 交于A ,B 两点,若3OA AB =u u u r u u u r,求k 的值.[选修4-5:不等式选讲]23.已知函数()||2|1|(0)f x x a x a =++->. (1)求()f x 的最小值;(2)若不等式()50f x -<的解集为(,)m n ,且43n m -=,求a 的值.2019年广东省高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|12}A x x =-<,{|1216}x B x =<<,则(A B =I ) A .(,8)-∞B .(,3)-∞C .(0,8)D .(0,3)【解答】解:Q 集合{|12}(,3)A x x =-<=-∞,{|1216}(0,4)x B x =<<= (0,3)A B ∴=I .故选:D .2.(5分)复数5(1i z i i=-为虚数单位)的虚部为( )A .12-B .12C .12i -D .12i【解答】解:541(1)11111(1)(1)22i i i i i z i i i i i i ++=====-+----+Q ,51i z i ∴=-的虚部为12. 故选:B .3.(5分)双曲线229161x y -=的焦点坐标为( ) A .5(12±,0) B .5(0,)12±C .(5,0)±D .(0,5)±【解答】解:双曲线229161x y -=的标准方程为:22111916x y -=, 可得13a =,14b =,512c =,所以双曲线的焦点坐标为5(0,)12±.故选:B . 4.(5分)若3sin()2πα+=,则cos2(α= ) A .12-B .13-C .13D .12【解答】解:3sin()cos 2παα+=-,则21cos22cos 13αα=-=-, 故选:B .5.(5分)已知函数()f x 在(,)-∞+∞上单调递减,且当[2x ∈-,1]时,2()24f x x x =--,则关于x 的不等式()1f x <-的解集为( ) A .(,1)-∞-B .(,3)-∞C .(1,3)-D .(1,)-+∞【解答】解:[2x ∈-Q ,1]时,2()24f x x x =--; (1)1f ∴-=-;()f x Q 在(,)-∞+∞上单调递减;∴由()1f x <-得,()(1)f x f <-;1x ∴>-;∴不等式()1f x <-的解集为(1,)-+∞.故选:D .6.(5分)某几何体的三视图如图所示,则该几何体的体积为( )A .3πB .4πC .6πD .8π【解答】解:由三视图知,几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,∴组合体的体积是:231232ππ⨯⨯⨯=,故选:A .7.(5分)执行如图的程序框图,依次输入117x =,219x =,320x =,421x =,523x =,则输出的S 值及其统计意义分别是( )A .4S =,即5个数据的方差为4B .4S =,即5个数据的标准差为4C .20S =,即5个数据的方差为20D .20S =,即5个数据的标准差为20【解答】解:根据程序框图,输出的S 是117x =,219x =,320x =,421x =,523x =这5个数据的方差,Q 1(1719202123)205x =++++=,∴由方差的公式222221[(1720)(1920)(2020)(2120)(2320)]45S =-+-+-+-+-=.故选:A .8.(5分)ABC ∆的内角A ,B ,C 所对的边分别是a ,b ,c ,已知cos cos 1b bC A c a+=,则cos B 的取值范围为( )A .1(,)2+∞B .1[,)2+∞C .1(2,1)D .1[2,1)【解答】解:Qcos cos 1b bC A c a+=, ∴由余弦定理可得:222222122b a b c b b c a c ab a bc+-+-+=g g ,化简可得:2b ac =,由余弦定理可得;2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--===…,∴1cos 12B <„,即:1cos [2B ∈,1). 故选:D .9.(5分)已知A ,B ,C 三点不共线,且点O 满足161230OA OB OC --=u u u r u u u r u u u r r ,则( ) A .123OA AB AC =+u u u r u u u r u u u r B .123OA AB AC =-u u u r u u u r u u u r C .123OA AB AC=-+u u u r u u u r u u u rD .123OA AB AC =--u u u r u u u r u u u r【解答】解:由题意,可知:对于:12312()3()12315A OA AB AC OB OA OC OA OB OC OA =+=-+-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,整理上式,可得: 161230OA OB OC --=u u u r u u u r u u u r r ,这与题干中条件相符合, 故选:A .10.(5分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足510.618AC BC AB AC -==≈.后人把这个数称为黄金分割数,把点C 称为线段AB 的黄金分割点在ABC ∆中,若点P ,Q 为线段BC 的两个黄金分割点,在ABC ∆内任取一点M ,则点M 落在APQ ∆内的概率为( )A 51-B 52 C 51-D 52-【解答】解:设BC a =,由点P,Q为线段BC的两个黄金分割点,所以51 BQ a-=,51CP a-=,所以(52)PQ BQ CP BC a=+-=-,::(52):52APQ ABCS S PQ BC a a∆∆==-=-,由几何概型中的面积型可得:在ABC∆内任取一点M,则点M落在APQ∆内的概率为52APQABCSS∆∆=-,故选:B.11.(5分)已知F为抛物线2:4C x y=的焦点,直线112y x=+与曲线C相交于A,B两点,O为坐标原点,则(OABS∆=)A25B45C5D.25【解答】解:抛物线2:4C x y=的焦点(0,1),设1(A x,1)y,2(B x,2)y,F∴且倾斜角为60︒的直线112y x=+,∴21124y xx y⎧=+⎪⎨⎪=⎩,整理得:2240x x--=,由韦达定理可知:122x x+=,123y y+=由抛物线的性质可知:12||235AB p y y=++=+=,点O到直线112y x=+的距离d,5d.∴则OAB∆的面积S,1||52S AB d=g g故选:C.12.(5分)函数()(2)f x kx lnx=-,()2g x lnx x=-,若()()f xg x<在(1,)+∞上的解集中恰有两个整数,则k的取值范围为()A .1[122ln -,41)33ln - B .1(122ln -,41]33ln - C .41[33ln -,12)22ln -D .41(33ln -,12]22ln -【解答】解:当1x >时,0lnx >, 由()()f x g x <得(2)2kx lnx lnx x -<-, 即22x kx lnx -<-,即4xkx lnx<-, 设()4x h x lnx=-, 则2211()()()lnx x lnx x h x lnx lnx --'=-=-g, 由()0h x '>得(1)0lnx -->得1lnx <,得1x e <<,此时()h x 为增函数, 由()0h x '<得(1)0lnx --<得1lnx >,得x e >,此时()h x 为减函数, 即当x e =时,()h x 取得极大值h (e )44ee lne=-=-, 作出函数()h x 的图象,如图, 当1x →时,()h x →-∞, h (3)343ln =-,h (4)424442ln ln =-=-,即3(3,4)3A ln -,2(4,4)2B ln -, 当直线y kx =过A ,B 点时对应的斜率34413333A ln k ln -==-,24121422Bln k ln -==-,要使()()f x g x <在(1,)+∞上的解集中恰有两个整数, 则对应的整数为2x =,和3x =, 即直线y kx =的斜率k 满足B B k k k <„, 即14112233k ln ln -<-„, 即实数k 的取值范围是1(122ln -,41]33ln -, 故选:B .二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)已知函数,1(),1x lnx x f x e x >⎧=⎨⎩„,则(f f (2))= 2 .【解答】解:f (2)2ln =,(f f ∴(2)2)(2)2ln f ln e ===. 故答案为:2.14.(5分)设x ,y 满足约束条件321102101x y x y x +-⎧⎪--⎨⎪⎩„„…,则2z x y =+的最大值为 7 .【解答】解:画出x ,y 满足约束条件321102101x y x y x +-⎧⎪--⎨⎪⎩„„…表示的平面区域,如图所示,由32110210x y x y +-=⎧⎨--=⎩,解得点(3,1)A ,结合图形知,直线20x y z +-=过点A 时, 2z x y =+取得最大值为2317⨯+=.故答案为:7.15.(5分)在三棱锥P ABC -中,AP ,AB ,AC 两两垂直,且3AP AB AC ===,则三棱锥P ABC -的内切球的表面积为 (423)π- . 【解答】解:如图,由AP ,AB ,AC 两两垂直,且3AP AB AC ==6PB PC BC ===∴1323362PBC S ∆==, 设三棱锥P ABC -的内切球的半径为r ,利用等体积可得:111133333(3333232r ⨯=⨯⨯,解得31r -=∴三棱锥P ABC -的内切球的表面积为2314()(423)S ππ-=⨯=-. 故答案为:(43)π-.16.(5分)已知函数1()sin()(0)62f x x πωω=++>,点P ,Q ,R 是直线(0)y m m =>与函数()f x 的图象自左至右的某三个相邻交点,且32||||2PQ QR π==,则m ω+= 179. 【解答】解:函数1()sin()(0)62f x x πωω=++>,由32||||2PQ QR π==,解得3||4PQ π=,9||||4T PQ QR π∴=+=,228994T ππωπ∴===, 设0(P x ,)m ,则0(2TQ x -,)m ,0(R T x +,)m ,0||22T PQ x ∴=-,0||22TQR x =+, 002(2)222T Tx x ∴-=+,解得031216T x π==, 83111sin()1916222m π∴=⨯+=+=,817199m ω∴+=+=. 故答案为:179. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)设数列{}n a 的前n 项和为n S ,1(*)n n S a n N =-∈. (1)求数列{}n a 的通项公式; (2)设2log n n b a =,求数列11{}n n b b +的前n 项和n T . 【解答】解:(1)数列{}n a 的前n 项和为n S ,1(*)n n S a n N =-∈①. 当1n =时, 解得:112a =, 当2n …时,111n n S a --=-.② ①-②得:12n n a a -=, 所以:112n n a a -=(常数), 故:数列{}n a 是以12为首项,12为公比的等比数列. 则:1111()()222n nn a -==g (首项符合通项),所以:1()2n n a =.(2)由于:1()2n n a =,则:2log n n b a n ==-. 所以:1(1)n b n +=-+, 则:11111(1)1n n b b n n n n +==-++, 故:11111122311n nT n n n =-+-+⋯+-=++. 18.(12分)在五面体ABCDEF 中,四边形CDEF 为矩形,2224CD DE AD AB ====,25AC =,30EAD ∠=︒.(1)证明:AB ⊥平面ADE ; (2)求该五面体的体积.【解答】解:(1)证明:因为2AD =,4DC =,25AC = 所以222AD DC AC +=, 所以AD CD ⊥, 又四边形CDEF 为矩形, 所以CD DE ⊥, 所以CD ⊥面ADE , 所以EF ⊥面ADE ,由线面平行的性质定理得://AB EF , 所以AB ⊥面ADE(2)几何体补形为三棱柱,2DE =,2AD =,2AB =,30EAD ∠=︒.可得E 到底面ABCD 的距离为:2sin 603︒=,该五面体的体积为棱柱的体积减去三棱锥F BCH -的体积, 可得1112310322sin120422343232⨯⨯⨯︒⨯+⨯⨯⨯⨯=-=.19.(12分)某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x 与乘客等候人数y 之间的关系,经过调查得到如下数据: 间隔时间x (分钟) 10 11 12 13 14 15等候人数y (人)23 25 26 29 28 31调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数ˆy,再求ˆy 与实际等候人数y 的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.(1)从这6组数据中随机选取4组数据后,求剩下的2组数据的间隔时间不相邻的概率; (2)若选取的是后面4组数据,求y 关于x 的线性回归方程ˆˆˆybx a =+,并判断此方程是否是“恰当回归方程”;(3)为了使等候的乘客不超过35人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?附:对于一组数据1(x ,1)y ,2(x ,2)y ,⋯⋯,(n x ,)n y ,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为:1122211()()ˆ()nni iii i i nniii i x ynxyxx y y bxnx xx ====---==--∑∑∑∑,ˆˆay bx =-,411546i ii x y==∑.【解答】解:(1)设“从这6组数据中随机选取4组数据后,剩下的2组数据不相邻”为事件A ,记这六组数据分别为1,2,3,4,5,6,剩下的两组数据的基本事件有12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15种,其中相邻的有12,23,34,45,56,共5种, 所以52()1153P A =-=. (2)后面4组数据是:因为121314152629283113.5,28.544x y ++++++====,442111546,734i ii i i x yx ====∑∑,所以1222127571546422ˆ 1.42773442ni ii nii x ynxybxnx==--⨯⨯===--⨯∑∑,ˆˆ28.5 1.413.59.6a y bx =-=-⨯=, 所以ˆ 1.49.6yx =+. 当10x =时,ˆ 1.4109.623.6,23.6230.61y=⨯+=-=<, 当11x =时,ˆ 1.4119.625,252501y=⨯+=-=<, 所以求出的线性回归方程是“恰当回归方程”. (3)由1.49.635x +„,得1187x „,故间隔时间最多可设置为18分钟.20.(12分)已知点,都在椭圆2222:1(0)y x C a b a b+=>>上.(1)求椭圆C 的方程;(2)过点(0,1)M 的直线l 与椭圆C 交于不同两点P ,Q (异于顶点),记椭圆与y 轴的两个交点分别为1A ,2A ,若直线1A P 与2A Q 交于点S ,证明:点S 恒在直线4y =上.【解答】解:(1)由题意可得22222113112a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得24a =,22b =,故椭圆C 的方程为22142y x +=.证明:(2)易知直线l 的斜率存在且不为0,设过点(0,1)M 的直线l 方程为1y kx =+,(0)k ≠,1(P x ,1)y ,2(Q x ,2)y ,由221142y kx y x =+⎧⎪⎨+=⎪⎩,消y 可得22(2)230k x kx ++-=,12222k x x k ∴+=-+,12232x x k =-+, 1(0,2)A Q ,2(0,2)A -,∴直线1A P 的方程为11111212122()2y kx y x x k x x x x -+-=+=+=-+g , 则直线2A Q 的方程为222232()2y y x k x x +=-=+-, 由121()23()2y k x x y k x x ⎧=-+⎪⎪⎨⎪=+-⎪⎩,消x 可得121232k x y y k x --=++, 整理可得221212121212121212121212324646246()4(3)46()224443333kk kx x x x kx x x x x x kx x x x k k y x x x x x x x x -+⨯+--+++-+++===+=+=++++g ,直线1A P 与2A Q 交于点S ,则点S 恒在直线4y =上21.(12分)已知函数()2()x f x e ax a R =-∈(1)若曲线()y f x =在0x =处的切线与直线220x y +-=垂直,求该切线方程; (2)当0a >时,证明2()44f x a a -+… 【解答】(1)解:()2x f x e a '=-, (0)122f a '=-=,解得:12a =-,()x f x e x ∴=+,则(0)1f =.∴切线方程为112y x =-+;(2)证明:()2x f x e a '=-,由()20x f x e a '=-=,解得2x ln a =.∴当(,2)x ln a ∈-∞时,()0f x '<,当(2,)x ln a ∈+∞时,()0f x '>.()f x ∴在(,2)ln a -∞上单调递减,在(2,)ln a +∞上单调递增.2()(2)22222ln a min f x f ln a e aln a a aln a ∴==-=-.令g (a )22222442222(0)a aln a a a a a aln a a =-+-=-->.要证g (a )0…,即证120a ln a --…, 令h (a )12a ln a =--,则h '(a )111a a a-=-=, 当(0,1)a ∈时,h '(a )0<,当(1,)a ∈+∞时,h '(a )0>,h ∴(a )h …(1)0=,即120a ln a --…. 2()44f x a a ∴-+….(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩,(θ为参数)已知点(4,0)Q ,点P 是曲线l C 上任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求点M 的轨迹2C 的极坐标方程;(2)已知直线:l y kx =与曲线2C 交于A ,B 两点,若3OA AB =u u u r u u u r,求k 的值.【解答】解:(1)消去θ得曲线1C 的普通方程为:224x y +=,设(,)M x y 则(24,2)P x y -在曲线1C 上,所以22(24)(2)4x y -+=,即22(2)1x y -+=,即22430x y x +-+=,2C 轨迹的极坐标方程为:24cos 30ρρθ-+=.(2)如图:取AB 的中点M ,连CM ,CA ,在直角三角形CMA 中,222211()124CM CA AB AB =-=-,①在直角三角形CMO 中,222227494()424CM OC OM AB AB =-=-=-,②由①②得12AB =,74OM ∴=,15CM =,1515474CM k OM ===.2019年广东省高考文科数学一模试卷 第 21 页 共 21 页 [选修4-5:不等式选讲]23.已知函数()||2|1|(0)f x x a x a =++->.(1)求()f x 的最小值;(2)若不等式()50f x -<的解集为(,)m n ,且43n m -=,求a 的值. 【解答】解:(1)32,()2,132,1x a x a f x x a a x x a x --+-⎧⎪=-++-<<⎨⎪+-⎩„…,1x ∴=时,()f x 的最小值为1a +. (2)如图所示:当1522a a +<<+即342a <<时,()50f x -<的解集为(3,1)3a a --,44134333a a a ∴--+=-=,2a ∴=符合, 当225a +„即302a <„时,()f x 的解集 为(13a --,1)3a -,4112333a a ∴-++=≠. 综上可得2a =.。