2017年湖南省衡阳市常宁市高考数学压轴试卷(理科)(1)
湖南省衡阳市2016_2017学年高一数学下学期结业期末试题理科实验班2017071802133

2017年上期衡阳理科实验班高一年级结业考试数学(试题卷)注意事项:1.本次考试为衡阳八中理科实验班高一年级结业考试试卷,本卷共22题,满分为150分,考试时间为120分钟。
2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即通报老师。
考生考试时请遵守考场纪律,开考后分钟,考生禁止进入考室。
3.本卷中的选择题部分请同学们采用2B铅笔在答题卡上填涂,非选择题请用黑色0.5mm中性笔书写。
★预祝考生考试顺利★第I卷选择题(共60分)一.选择题(从每题后面的四个选项中选出正确的一项,每题5分,共60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},则(∁U A)∩B=()A.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅2.设向量=(2,3),=(﹣1,2),若m+与﹣2平行,则实数m等于()A.﹣2 B.2 C. D.﹣3.已知,则sinα+cosα的值是()A. B. C. D.4.已知a=log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是()A.a<b<c B.c<a<b C.a<c<b D.b<c<a5.数列{a n}是以a为首项,q为公比的等比数列,数列{b n}满足b n=1+a1+a2+…+a n(n=1,2,…),数列{c n}满足c n=2+b1+b2+…+b n(n=1,2,…).若{c n}为等比数列,则a+q=()A. B.3 C. D.66.将函数y=sinx图象上所有的点向左平移个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为()A.B.C.D.7.若x,y满足约束条件,则z=2x+y的最大值与最小值和等于()A.﹣4 B.﹣2 C.2 D.68.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为()A.(x﹣1)2+(y﹣1)2=1 B.(x﹣)2+(y﹣)2=2C.(x+1)2+(y+1)2=1 D.(x+)2+(y+)2=29.某三棱锥的三视图如图所示,则该三棱锥的表面积为()A.B.C.D.10.已知数列{a n}中,a1=1,a n=3a n﹣1+4(n∈N*且n≥2),,则数列{a n}通项公式a n为( ) A.3n﹣1 B.3n+1﹣8 C.3n﹣2 D.3n11.给出定义:若x∈(m﹣,m+](其中m为整数),则m叫做实数x的“亲密的整数”,记作{x}=m,在此基础上给出下列关于函数f(x)=|x﹣{x}|的四个命题:①函数y=f(x)在x∈(0,1)上是增函数;②函数y=f(x)的图象关于直线x=(k∈z)对称;③函数y=f(x)是周期函数,最小正周期为1;④当x∈(0,2]时,函数g(x)=f(x)﹣lnx有两个零点.其中正确命题的序号是()A.②③④B.②③ C.①② D.②④12.已知函数关于x的方程2[f(x)]2+(1﹣2m)f(x)﹣m=0,有5不同的实数解,则m的取值范围是()A .B .(0,+∞)C .D .第II 卷 非选择题(共90分)二.填空题(每题5分,共20分)13.已知△ABC 的三边分别是a 、b 、c ,且面积S=,则角C= .14.若直线2ax ﹣by+2=0(a >0,b >0)经过圆x 2+y 2+2x ﹣4y+1=0的圆心,则+的最小值是 .15.设m l ,是不重合的两直线,βα,是不重合的两平面,其中正确命题的序号是 . ①若l //βαα⊥,,则β⊥l ; ②若βα⊥⊥⊥m l m l ,,,则βα⊥; ③若ββαα⊂⊥⊥m l ,,,则l //m ; ④若βαβ⊥⊥,l ,则l //α或α⊂l 16.下列说法中,所有正确说法的序号是 .①终边落在y 轴上的角的集合是{α|α=,k ∈Z};②函数y=2cos (x ﹣)图象的一个对称中心是(,0);③函数y=tanx 在第一象限是增函数;④已知,,f (x )的值域为,则a=b=1.三.解答题(请写出解答步骤,公式定理和文字说明,共6题,共70分)17.(本题满分10分)设函数f(x)=x+1(ω>0)直线y=2与函数f(x)图象相邻两交点的距离为π.(1)求f(x)的解析式;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若点是函数y=f(x)图象的一个对称中心,且b=2,a+c=6,求△ABC面积.18.(本题满分12分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F 是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.19.(本题满分12分)数列{a n}的前n项和记为S n,a1=1,a n+1=2S n+1(n≥1).(1)求{a n}的通项公式;(2)等差数列{b n}的各项为正,其前n项和为T n,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求T n.20.(本题满分12分)已知函数f(x)=Asin(ωx+φ)+h(A>0,ω>0,|φ|<π).在一个周期内,当x=时,y取得最大值6,当x=时,y取得最小值0.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间与对称中心坐标;(3)当x∈[﹣,]时,函数y=mf(x)﹣1的图象与x轴有交点,求实数m的取值范围.21.(本题满分12分)各项均为正数的数列{a n}的前n项和为S n,已知点(a n,a n+1)(n∈N*)在函数的图象上,且.(1)求数列{a n}的通项公式及前n项和S n;(2)已知数列{b n}满足b n=4﹣n,设其前n项和为T n,若存在正整数k,使不等式T n>k有解,且(n∈N*)恒成立,求k的值.22.(本题满分12分)定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),都有f(kx)=kf(x)(k≥2,k∈N*)成立,则称f(x)为k阶伸缩函数.(Ⅰ)若函数f(x)为二阶伸缩函数,且当x∈(1,2]时,,求的值;(Ⅱ)若函数f(x)为三阶伸缩函数,且当x∈(1,3]时,,求证:函数在(1,+∞)上无零点;(Ⅲ)若函数f(x)为k阶伸缩函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,k n+1](n∈N*)上的取值范围.2017年上期衡阳高一年级理科实验班结业考试答案数学一.选择题二.非选择题13.45°14.15.②④16.②④17.(1)f(x)=sinωx﹣2cos2+1=sinωx﹣(1+cosωx)+1=sinωx﹣cosωx=2sin(ωx﹣),∵直线y=2与函数f(x)的图象相邻两交点的距离为π,∴周期T=π=,解得ω=2,(3分)∴f(x)=2sin(2x﹣),(5分)(2)∵点是函数y=f(x)图象的一个对称中心,∴2×﹣=kπ(k∈Z),则B=2kπ+,(k∈Z),由0<B<π,得B=,(7分)∵b=2,a+c=6,∴由余弦定理可得:12=a2+c2﹣ac=(a+c)2﹣3ac=36﹣3ac,解得:ac=8,(8分)∴S△ABC=acsinB==2.(10分)18.(1)取AC的中点P,连接DP,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB 的平分线,所以∠A=30°,△ADC是等腰三角形,所以DP⊥AC,DP=,∠DCP=30°,∠PDC=60°,又点E在线段AC上,CE=4.所以AE=2,EP=1,所以∠EDP=30°,∴∠EDC=90°,∴ED⊥DC;∵将△BCD沿CD折起,使得平面BCD⊥平面ACD,平面BDC∩平面EDC=DC∴DE⊥平面BCD;(6分)(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,G为EC的中点,此时AE=EG=GC=2,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以BD=,DC=,所以B到DC的距离h===,(9分)因为平面BCD⊥平面ACD,平面BDC∩平面EDC=DC,所以B到DC的距离h就是三棱锥B﹣DEG的高.三棱锥B﹣DEG的体积:V====.(12分)19.(1)因为a n+1=2S n+1,…①所以a n=2S n﹣1+1(n≥2),…②所以①②两式相减得a n+1﹣a n=2a n,即a n+1=3a n(n≥2)又因为a2=2S1+1=3,所以a2=3a1,(3分)故{a n}是首项为1,公比为3的等比数列∴a n=3n﹣1.(6分)(2)设{b n}的公差为d,由T3=15得,可得b1+b2+b3=15,可得b2=5,故可设b1=5﹣d,b3=5+d,又因为a1=1,a2=3,a3=9,并且a1+b1,a2+b2,a3+b3成等比数列,所以可得(5﹣d+1)(5+d+9)=(5+3)2,解得d1=2,d2=﹣10(9分)∵等差数列{b n}的各项为正,∴d>0,∴d=2,∴(12分)20.(1)∵在一个周期内,当x=时,y取得最大值6,当x=时,y取得最小值0,A>0,故A==3,B==3,=﹣=,故T=π,(2分)又∵ω>0∴ω=2,将x=,y=6,代入得+φ=+2kπ,k∈Z,∴φ=+2kπ,k∈Z,又∵|φ|<π,∴φ=,∴;(4分)(2)由2x+∈[﹣+2kπ, +2kπ],k∈Z得:x∈,∴函数f(x)递增区间;由2x+=kπ+π,k∈Z得:x=,∴函数f(x)对称中心;(8分)(3)当x∈[﹣,]时,2x+∈[,],∈[,3],,若y=mf(x)﹣1,则,∴.(12分)21.(1)由题意,,得数列{a n}为等比数列,得,解得a1=1.∴..(5分)(2)(n∈N*)恒成立等价于(n∈N*)恒成立,当n为奇数时,上述不等式左边恒为负数,右边恒为正数,所以对任意正整数k,不等式恒成立;(7分)当n为偶数时,上述不等式等价于恒成立,令,有,则①等价于2kt2+t﹣3<0在时恒成立,因为k为正整数,二次函数y=2kt2+t﹣3的对称轴显然在y轴左侧,所以当时,二次函数为增函数,故只须,解得0<k<12,k∈N*.{b n}是首项为b1=3,公差为d=﹣1的等差数列,所以前n项和=.当n=3或4时,T n取最大值为6.T n>k有解⇔(T n)max>k⇔k<6.又0<k<12,k∈N*,得0<k<6,k∈N*,所以k的取值为1,2,3,4,5.(12分)22.(Ⅰ)由题设,当x∈(1,2]时,,∴.∵函数f(x)为二阶伸缩函数,∴对任意x∈(0,+∞),都有f(2x)=2f(x).∴.(3分)(Ⅱ)当x∈(3m,3m+1](m∈N*)时,.由f(x)为三阶伸缩函数,有f(3x)=3f(x)∵x∈(1,3]时,.∴.令,解得x=0或x=3m,它们均不在(3m,3m+1]内.∴函数在(1,+∞)上无零点.(7分)(Ⅲ)由题设,若函数f(x)为k阶伸缩函数,有f(kx)=kf(x),且当x∈(1,k]时,f(x)的取值范围是[0,1).∴当x∈(k n,k n+1]时,.∵,所以.∴当x∈(k n,k n+1]时,f(x)∈[0,k n).当x∈(0,1]时,即0<x≤1,则∃k(k≥2,k∈N*)使,∴1<kx≤k,即kx∈(1,k],∴f(kx)∈[0,1).又,∴,即.∵k≥2,∴f(x)在(0,k n+1](n∈N*)上的取值范围是[0,k n).(12分)。
湖南省衡阳市2017届高三数学第二次模拟试题实验班理201707270321

2017届高三年级第二次高考模拟试卷理数(试题卷)注意事项:1.本卷为衡阳八中高三年级实验班第二次高考模拟试卷,分两卷。
其中共22题,满分150分,考试时间为120分钟。
2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。
开考15分钟后,考生禁止入场,监考老师处理余卷。
3.请考生将答案填写在答题卡上,选择题部分请用2B铅笔填涂,非选择题部分请用黑色0.5mm 签字笔书写。
考试结束后,试题卷与答题卡一并交回。
★预祝考生考试顺利★第I卷选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。
1.已知集合A={x|x2﹣2x﹣3<0},集合B={x|2x+1>1},则∁B A=()A.[3,+∞) B.(3,+∞)C.(﹣∞,﹣1]∪[3,+∞)D.(﹣∞,﹣1)∪(3,+∞)2.已知i是虚数单位,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了()A.60里 B.48里 C.36里D.24里4.设实数x,y满足约束条件,则当z=ax+by(a>0,b>0)取得最小值2时,则的最小值是()A.B.C.D.25.已知非零常数α是函数y=x+tanx的一个零点,则(α2+1)(1+cos2α)的值为()A.2 B.C.D.6.己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f()的实数x为()A. B.C. D.7.已知A、B、C是圆O上的三个点,CO的延长线与线段BA的延长线交于圆外一点.若,其中m,n∈R.则m+n的取值范围是()A.(0,1)B.(﹣1,0)C.(1,+∞)D.(﹣∞,﹣1)8.已知函数f(x)=,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则x1x2x3x4取值范围是()A.(60,96)B.(45,72)C.(30,48) D.(15,24)9.利用如图算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为()A.2 B.3 C.4 D.510.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h2)11.已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是()A.0<a≤5 B.a<5 C.0<a<5 D.a≥512.已知F1、F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是()A.(1,)B.(,+∞)C.(,2)D.(2,+∞)第II卷非选择题(共90分)二.填空题(每题5分,共20分)13.已知数列{a n}是无穷等比数列,它的前n项的和为S n,该数列的首项是二项式展开式中的x的系数,公比是复数的模,其中i是虚数单位,则= .14.已知三棱锥A﹣BCD中,AB⊥面BCD,△BCD为边长为2的正三角形,AB=2,则三棱锥的外接球体积为.15.△ABC的三个内角A,B,C的对边分别是a,b,c,则:①若cosBcosC>sinBsinC,则△ABC一定是钝角三角形;②若acosA=bcosB,则△ABC为等腰三角形;③,,若,则△ABC为锐角三角形;④若O为△ABC的外心,;⑤若sin2A+sin2B=sin2C,,以上叙述正确的序号是.16.我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系xOy平面内,若函数()[)1,0cos,0,2xf xx xπ∈-=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩的图象与x轴围成一个封闭的区域A,将区域A沿z轴的正方向平移4个单位,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域A的面积相等,则此圆柱的体积为.三.解答题(共8题,共70分)17.(本题满分12分)已知数列{a n}满足a1=1,S n=2a n+1,其中S n为{a n}的前n项和(n∈N*).(Ⅰ)求S1,S2及数列{S n}的通项公式;(Ⅱ)若数列{b n}满足,且{b n}的前n项和为T n,求证:当n≥2时,.18.(本题满分12分)根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求频率分布直方图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区P M2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列.19.(本题满分12分)如图,四棱锥S﹣ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别与BC,AD交于点P,Q,若=t.(1)当t=时,求证:平面SAE⊥平面MNPQ;(2)是否存在实数t,使得二面角M﹣PQ﹣A的平面角的余弦值为?若存在,求出实数t 的值;若不存在,说明理由.20.(本题满分12分)已知A,B分别为椭圆C: +=1(a>b>0)在x轴正半轴,y轴正半轴上的顶点,原点O到直线AB的距离为,且|AB|=.(1)求椭圆C的离心率;(2)直线l:y=kx+m(﹣1≤k≤2)与圆x2+y2=2相切,并与椭圆C交于M,N两点,求|MN|的取值范围.21.(本题满分12分)已知函数f(x)=lnx,g(x)=﹣(x为实常数).(1)当a=1时,求函数φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;(2)若方程e2f(x)=g(x)(其中e=2.71828…)在区间[]上有解,求实数a的取值范围.选做题(本题满分10分)22.[选修4-4坐标系与参数方程]以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.23.[选修4-5不等式选讲]设函数f(x)=|x-a|+3x,其中a>0.(Ⅰ)当a=2时,求不等式f(x)≥3x+2的解集;(Ⅱ)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.衡阳八中2017届高三年级第二次高考模拟参考答案理科数学13.7014.π15.①③④⑤16.π+417.(Ⅰ)数列{an}满足Sn=2an+1,则Sn=2an+1=2(Sn+1﹣Sn),即3Sn=2Sn+1,∴,即数列{Sn}为以1为首项,以为公比的等比数列,∴(n∈N*).∴S1=,S2=;(Ⅱ)在数列{bn}中,,Tn为{bn}的前n项和,则|Tn|=|=.而当n≥2时,,即.18.(1)①由第四组的频率为1﹣(0.006+0.024+0.006)×25=0.1,得25a=0.1,解得a=0.004;②去年该居民区PM2.5年平均浓度为:12.5×0.15+37.5×0.6+62.5×0.15+87.5×0.1=42.5(微克/立方米);因为42.5>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进;(2)由题意可得:PM2.5的24小时平均浓度符合环境空气质量标准的概率为0.9,X的可能取值为0,1,2,3;P(X=k)=•(1﹣0.9)3﹣k•0.9k,可得P(X=0)=0.001,P(X=1)=0.027,P(X=2)=0.243,P(X=3)=0.729;X的分布列为:(1)E为CD中点,∴四边形ABCE为矩形,∴AE⊥CD,当t=时,Q为AD中点,PQ∥CD,所以PQ⊥AE,∵平面SCD⊥平面ABCD,SE⊥CD,∴SE⊥面ABCD,∵PQ⊂面ABCD,∴PQ⊥SE,∴PQ⊥面SAE,所以面MNPQ⊥面SAE.(2)如图,以E为原点,ED,EA,ES直线分别为x轴,y轴,z轴建立如图所示坐标系;设ED=a,则M((1﹣t)a,(﹣)a, a),E(0,0,0),A(0,,0),Q((1﹣t)a,,0),=(0,,),面ABCD一个方向向量为=(1,0,0),设平面MPQ的法向量=(x,y,z),则,取z=2,得=(0,,2),平面ABCD的法向量为=(0,0,1)∵二面角M﹣PQ﹣A的平面角的余弦值为,∴由题意:cosθ===,解得t=或t=,由图形知,当t=时,二面角M﹣PQ﹣A为钝二面角,不合题意,舍去综上:t=.20.(1)由丨AB丨==, =,解得:a=2,b=,c=1则椭圆离心率e==;(2)由(1)可知:椭圆的标准方程:,设A(x1,y1),B(x2,y2),则,整理得:(3k2+4)x2+6kmx+3m2﹣12=0,x1+x2=﹣,x1x2=,由直线l与圆x2+y2=2相切,则=,则m2=2(k2+1),则丨MN丨=•=,=,令3k2+4=t,t∈[4,16],则丨MN丨=•=•,由≤≤,∴f()=,在[,]单调递增,则≤丨MN丨≤,∴|MN|的取值范围[,].21.(1)当a=1时,函数φ(x)=f(x)﹣g(x)=lnx﹣+,∴φ′(x)==;x∈[4,+∞),∴φ′(x)>0∴函数φ(x)=f(x)﹣g(x)在x∈[4,+∞)上单调递增∴x=4时,φ(x)min=2ln2﹣;(2)方程e2f(x)=g(x)可化为x2=﹣,∴a=﹣x3,设y=﹣x3,则y′=﹣3x2,∵x∈[]∴函数在[]上单调递增,在[,1]上单调递减∵x=时,y=;x=时,y=;x=1时,y=,∴y∈[]∴a∈[]22.(1)由ρsin2θ﹣2cosθ=0,得ρ2sin2θ=2ρcosθ.∴曲线C的直角坐标方程为y2=2x;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0.设A,B两点对应的参数分别为t1,t2,则,,==.当时,|AB|的最小值为2.23.(Ⅰ)当a=2时,f(x)≥3x+2可化为|x-2|≥2,由此可得x≥4或x≤0.(Ⅱ)由f(x)≤0得|x-a|+3x≤0,。
高考数学高三模拟试卷试题压轴押题全国高中数学联赛模拟试题一

高考数学高三模拟试卷试题压轴押题全国高中数学联赛模拟试题(一)第一试一、 选择题:(每小题6分,共36分)1、方程6×(5a2+b2)=5c2满足c≤20的正整数解(a,b,c)的个数是(A )1(B )3(C )4(D )52、函数12-=x x y (x ∈R ,x≠1)的递增区间是(A )x≥2 (B )x≤0或x≥2 (C )x≤0(D )x≤21-或x≥23、过定点P(2,1)作直线l 分别交x 轴正向和y 轴正向于A 、B ,使△AOB (O 为原点)的面积最小,则l 的方程为 (A )x +y -3=0 (B )x +3y -5=0 (C )2x +y -5=0 (D )x +2y -4=04、若方程cos2x +3sin2x =a +1在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的实数解x ,则参数a 的取值范围是(A )0≤a <1 (B )-3≤a <1 (C )a <1 (D )0<a <1 5、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A )42 (B )45 (C )48 (D )516、在1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足条件a1<a2,a2>a3,a3<a4,a4>a5的排列的个数是 (A )8 (B )10 (C )14 (D )16二、 填空题:(每小题9分,共54分)1、[x]表示不大于x 的最大整数,则方程21×[x2+x]=19x +99的实数解x 是. 2、设a1=1,an+1=2an +n2,则通项公式an =. 3、数799被2550除所得的余数是.4、在△ABC 中,∠A =3π,sinB =135,则cosC =.5、设k 、是实数,使得关于x 的方程x2-(2k +1)x +k2-1=0的两个根为sin 和cos ,则的取值范围是. 6、数()n2245+(n ∈N )的个位数字是.三、 (20分)已知x 、y 、z 都是非负实数,且x +y +z =1.求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥0,并确定等号成立的条件.四、 (20分)(1) 求出所有的实数a ,使得关于x 的方程x2+(a +)x +a =0的两根皆为整数. (2) 试求出所有的实数a ,使得关于x 的方程x3+(-a2+2a +2)x -2a2-2a =0有三个整数根.五、 (20分)试求正数r 的最大值,使得点集T ={(x,y)|x 、y ∈R ,且x2+(y -7)2≤r2}一定被包含于另一个点集S ={(x,y)|x 、y ∈R ,且对任何∈R ,都有cos2+xcos +y≥0}之中.第二试一、(50分) 设a 、b 、c ∈R ,b≠ac ,a≠-c ,z 是复数,且z2-(a -c)z -b =0.求证:()12=-+-+bac zc a b a 的充分必要条件是(a -c)2+4b≤0.二、(50分)如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证: (1) AK ⊥BC ;(2) BCS AQ AP AK ABC△2<=<,其中ABC S △表示△ABC 的面积.三、(50分)给定一个正整数n ,设n 个实数a1,a2,…,an 满足下列n 个方程:∑==+=+ni i n j j j i a 1),,3,2,1(124. 确定和式∑=+=ni ii a S 112的值(写成关于n 的最简式子). 参考答案第一试题号 1 2 3 4 5 6 答案 CCDABD二、填空题: ACBD QK PA BCDMNA 1D 1B 1C 1图11、38181-或381587;2、7×2n1-n2-2n -3;3、343;4、261235-;5、{|=2n +或2n -2π,n ∈Z} ;6、1(n 为偶数);7(n 为奇数). 三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a的可能取值有-3,11,-1,9. 五、rmax =24.第二试一、证略(提示:直接解出()2i42⋅---±-=b c a c a z ,通过变形即得充分性成立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC 边上的高AR ,利用塞瓦定理证明AR 、BQ 、CP 三线共点,从而AK ⊥BC ;记AR 与PQ 交于点T ,则BCS ABC△2=AR >AT >AQ =AP ,对于AK <AP ,可证∠APK <∠AKP ). 三、()11212++-=n S .全国高中数学联赛模拟试题(二)(命题人:江厚利 审题人:李潜)第一试一、选择题(每小题6分,共36分)1、已知集合()⎭⎬⎫⎩⎨⎧+=--=123,a x y y x A ,()()(){}1511,2=-+-=y a x a y x B .若∅=B A ,则a 的所有取值是(A )-1,1 (B )-1,21(C )±1,2(D )±1,-4,25 2、如图1,已知正方体ABCD -A1B1C1D1,点M 、N 分别在AB1、BC1上,且AM =BN .那么, ①AA1⊥MN ;②A1C1∥MN ;③MN ∥平面A1B1C1D1; ④MN 与A1C1异面.以上4个结论中,不正确的结论的个数为 (A )1 (B )2 (C )3(D )43、用Sn 与an 分别表示区间[)1,0内不含数字9的n 位小数的和与个数.则nnn S a ∞→lim的值为 (A )43(B )45 (C )47(D )49 4、首位数字是1,且恰有两个数字相同的四位数共有(A )216个(B )252个(C )324个(D )432个5、对一切实数x ,所有的二次函数()c bx ax x f ++=2(a <b )的值均为非负实数.则c b a ab ++-的最大值是(A )31 (B )21(C )3(D )26、双曲线12222=-by a x 的一个焦点为F1,顶点为A1、A2,P 是双曲线上任意一点.则分别以线段PF1、A1A2为直径的两圆一定(A )相交(B )相切(C )相离(D )以上情况均有可能二、填空题(每小题9分,共54分)1、已知复数i 21+=z ,()1121i 2i2z z z -++=.若△ABC 的3个内角∠A 、∠B 、∠C依次成等差数列,且2icos2cos 2CA u +=,则2z u +的取值范围是. 2、点P(a,b)在第一象限内,过点P 作一直线l ,分别交x 、y 轴的正半轴于A 、B 两点.那么,PA2+PB2取最小值时,直线l 的斜率为.3、若△ABC 是钝角三角形,则arccos(sinA)+arccos(sinB)+arccos(sinC)的取值范围是.4、在正四面体ABCD 中,点M 、P 分别是AD 、CD 的中点,点N 、Q 分别是△BCD 、△ABC 的中心.则直线MN 于PQ 的夹角的余弦值为.5、在()122++n x 的展开式中,x 的幂指数是整数的各项系数之和是.6、集合A 、B 、C (不必两两相异)的并集A ∪B ∪C ={1,2,3,…,n}.则满足条件的三OBCAD N M 图2元有序集合组(A,B,C)的个数是.三、(20分)设p >0,当p 变化时,Cp :y2=2px 为一族抛物线,直线l 过原点且交Cp 于原点和点Ap .又M 为x 轴上异于原点的任意点,直线MAp 交Cp 于点Ap 和Bp .求证:所有的点Bp 在同一条直线上. 四、(20分)对于公差为d(d≠0)的等差数列{an},求证:数列中不同两项之和仍是这一数列中的一项的充要条件是存在整数m≥-1,使a1=md . 五、(20分)求最大的正数,使得对任意实数a 、b ,均有()222b a b a +λ≤()322b ab a ++.第二试一、(50分)如图2,⊙O 切△ABC 的边AB 于点D ,切边AC 于点C ,M 是边BC 上一点,AM 交CD 于点N .求证:M 是BC 中点的充要条件是ON ⊥BC .二、(50分)求出能表示为()abcc b a n 2++=(a 、b 、c ∈Z+)的所有正整数n .三、(50分)在一个()()1212-⨯-nn(n≥2)的方格表的每个方格内填入1或-1,如果任意一格内的数都等于与它有公共边的那些方格内所填数的乘积,则称这种填法是“成功”的.求“成功”填法的总数.参考答案 第一试题号 1 2 3 4 5 6 答案 DBDDAB二、填空题:1、⎪⎪⎭⎫⎢⎣⎡25,22;2、aab -;3、⎪⎭⎫⎝⎛23,2ππ;4、181;5、21312++n ;6、7n .三、证略. 四、证略.五、427max =λ. 第二试一、证略;二、1,2,3,4,5,6,8,9. 三、1种(每空填1).全国高中数学联赛模拟试题(三)(命题人:吴伟朝)第一试一、选择题:(每小题6分,共36分)1、若集合S ={n|n 是整数,且22n +2整除n +},则S 为(A )空集∅ (B )单元集 (C )二元集 (D )无穷集2、若多项式x2-x +1能除尽另一个多项式x3+x2+ax +b (a 、b 皆为常数).则a+b 等于 (A )0 (B )-1 (C )1 (D )23、设a 是整数,关于x 的方程x2+(a -3)x +a2=0的两个实根为x1、x2,且tan(arctan x1+arctan x2)也是整数.则这样的a 的个数是 (A )0 (B )1 (C )2 (D )44、设一个四面体的体积为V1,且它的各条棱的中点构成一个凸多面体,其体积为V2.则12V V 为 (A )21(B )32 (C )常数,但不等于21和32 (D )不确定,其值与四面体的具体形状有关5、在十进制中,若一个至少有两位数字的正整数除了最左边的数字外,其余各个数字都小于其左边的数字时,则称它为递降正整数.所有这样的递降正整数的个数为(A )1001 (B )1010 (C )1011 (D )1013 6、在正方体的8个顶点中,能构成一个直角三角形的3个顶点的直角三点组的个数是(A )36 (B )37 (C )48 (D )49二、填空题:(每小题9分,共54分)1、若直线xcos +ysin =cos2-sin2(0<<)与圆x2+y2=41有公共点,则的取值范围是.2、在平面直角坐标系xOy 中,一个圆经过(0,2)、(3,1),且与x 轴相切.则此圆的半径等于.3、若常数a 使得关于x 的方程lg(x2+20x)-lg(8x -6a -3)=0有惟一解.则a 的取值范围是.4、f(x)=82x +xcosx +cos(2x)(x ∈R)的最小值是.5、若k 是一个正整数,且2k 整除则k 的最大值为.6、设ABCD 为凸四边形,AB =7,BC =4,CD =5,DA =6,其面积S 的取值范围是(a,b] .则a +b =.三、(20分)设椭圆的左右焦点分别为F1、F2,左准线为l ,点P 在椭圆上.作PQ ⊥l ,Q 为垂足.试问:对于什么样的椭圆,才存在这样的点P ,使得PQF1F2为平行四边形?说明理由(答案用关于离心率e 的等式或不等式来表示). 四、(20分)设a0=1,a1=2,an+1=2an1+n ,n =1,2,3,….试求出an 的表达式(答案用有限个关于n 的式子相加的形式表示,且项数与n 无关). 五、(20分)试求出所有的有序整数对(a,b),使得关于x 的方程x4+(2b -a2)x2-2ax +b2-1=0的各个根均是整数.第二试一、(50分)点P 在△ABC 内,且∠BAP =∠CAP ,连结BP 并延长交AC 于点Q .设∠BAC=60°,且PQPC BP 111=+. 求证:P 是△ABC 的内心.二、(50分)设正数a 、b 满足2b a >且使得关于x 的不等式1-x ≥b x a -+1总有实数解.试求f(a,b)=a2-3ab +b2的取值范围. 三、(50分)试求出正整数k 的最小可能值,使得下述命题成立:对于任意的k 个整数a1,a2,…,ak (允许相等),必定存在相应的k 的整数x1,x2,…,xk (也允许相等),且|xi|≤2(i =1,2,…,k),|x1|+|x2|+…+|xk|≠0,使得整除x1a1+x2a2+…+xkak .参考答案 第一试二、填空题:11、⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡65,323,6ππππ ;2、5615±;3、⎪⎭⎫⎝⎛--21,6163;4、-1;5、;6、2102.三、⎪⎭⎫ ⎝⎛∈1,21e .四、a2n =2n+2-2n -3;a2n+1=3×2n+1-2n -4.五、(a,b)=(2l―1,l2―l―1)(∀l ∈Z)第二试 一、证略(提示:将条件变形为PQPCPB PA PA PC =+⋅1,然后应用正弦定理,进行三角变换,得∠BPC =120°,利用同一法即证);二、(-∞,-1). 三、kmin =7.全国高中数学联赛模拟试题(四)(命题人:刘康宁)第一试一、 选择题(每小题6分,共36分):1、函数()aa x x a x f -+-=22是奇函数的充要条件是(A )-1≤a <0或0<a≤1 (B )a≤-1或a≥1 (C )a >0 (D )a <02、已知三点A(-2,1)、B(-3,-2)、C(-1,-3)和动直线l :y =kx .当点A 、B 、C 到直线l 的距离的平方和最小时,下列结论中,正确的是 (A )点A 在直线l 上 (B )点B 在直线l 上 (C )点C 在直线l 上 (C )点A 、B 、C 均不在直线l 上 3、如图,已知正方体ABCDA1B1C1D1,过顶点A1在空间作直线l ,使l 与直线AC 和BC1所成的角都等于60°.这样的直线l 可以做(A )4条 (B )3条(C )2条 (D )1条4、整数的100200C=n 两位质因数的最大值是(A )61(B )67(C )83(D )975、若正整数a 使得函数()ax x x f y 213-+==的最大值也是整数,则这个最大值等于 (A )3 (B )4 (C )7 (D )86、在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第个数是 (A )3844 (B )3943 (C )3945 (D )4006二、 填空题(每小题9分,共54分):1、在复平面上,Rt △ABC 的顶点A 、B 、C 分别对应于复数z +1、2z +1、(z +1)2,A 为直角顶点,且|z|=2.设集合M ={m|zm ∈R ,m ∈N+},P ={x|x =m 21,m ∈M}.则集合P 所有元素之和等于.2、函数f(x)=|sinx|+sin42x +|cosx|的最大值与最小值之差等于.3、关于x 的不等式的解集是一些区间的并集,且这些区间的长度的和小于4,则实数a 的取值范围是.4、银行计划将某项资金的40%给项目M 投资一年,其余的60%给项目N .预计项目M 有可能获得19%到24%的年利润,N 有可能获得29%到34%的年利润.年终银行必须回笼资金,同时按一定的回扣率支付给储户.为使银行的年利润不少于给M 、N 总投资的10%而不大于总投资的15%,则给储户的回扣率的最小值是.5、已知点(a,b)在曲线arcsinx =arccosy 上运动,且椭圆ax2+by2=1在圆x2+y2=32的外部(包括二者相切的情形).那么,arcsinb 的取值范围是.6、同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为、,则tan(+)的值是.三、 (20分)△ABC 的三边长a 、b 、c (a≤b≤c )同时满足下列三个条件 (i )a 、b 、c 均为整数;(ii )a 、b 、c 依次成等比数列; (iii )a 与c 中至少有一个等于100.求出(a,b,c)的所有可能的解.四、 (20分)在三棱锥DABC 中,AD =a ,BD =b ,AB =CD =c ,且∠DAB +∠BAC +∠DAC =180°,∠DBA +∠ABC +∠DBC =180°.求异面直线AD 与BC 所成的角.五、 (20分)设正系数一元二次方程ax2+bx +c =0有实根.证明:(1) max{a,b,c}≥94(a +b +c);(2) min{a,b,c}≤41(a +b +c).第二试一、(50分)已知△ABC 的外角∠EAC 平分线与△ABC 的外接圆交于D ,以CD 为直径的圆分别交BC 、CA 于点P 、Q .求证:线段PQ 平分△ABC 的周长.二、(50分)已知x0=1,x1=3,xn+1=6xn -xn1(n ∈N+). 求证:数列{xn}中无完全平方数.三、(50分)有名运动员,号码依次为1,2,3,…,.从中选出若干名运动员参加仪仗队,但要使剩下的运动员中没有一个人的号码数等于另外两人的号码数的乘积.那么被选为仪仗队的运动员至少能有多少人?给出你的选取方案,并简述理由.参考答案 第一试二、填空题: 1、71;2、2;3、[1,3];4、10%;5、⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡3,44,6ππππ ;6、aR334-. 三、可能解为(100,100,100),(100,110,121),(100,120,144),(100,130,169),(100,140,196),(100,150,225),(100,160,256),(49,70,100),(64,80,100),(81,90,100),(100,100,100). 四、222arccosac b -.五(1)证略(提示:令a +b +c =t ,分b≥t 94和b <t 94讨论); (2)证略(提示:分a≤t 41和a >t 41讨论); 第二试一、证略;二、证略(提示:易由特征根法得xn =()()⎥⎦⎤⎢⎣⎡-++nn22322321,设yn =()()⎥⎦⎤⎢⎣⎡--+nn223223221,于是1222=-n n y x,原结论等价于方程x4-2y2=1无整数解,由数论只是可证).三、43.全国高中数学联赛模拟试题(五)(命题人:罗增儒)第一试一、 选择题:(每小题6分,共36分)1、空间中n (n≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论(1) 没有任何两个平面互相平行;(2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;(4) 平面间的每一条交线均与n2个平面相交. 其中,正确的个数为(A )1 (B )2 (C )3 (D )42、若函数y=f(x)在[a,b]上的一段图像可以近似地看作直线段,则当c ∈(a,b)时,f(c)的近似值可表示为(A )()()2b f a f +(B )⎪⎭⎫⎝⎛+2b a f (C )()()()()()a b b f a c a f c b --+-(D )()()()[]a f b f ab ac a f ----3、设a >b >c ,a+b+c=1,且a2+b2+c2=1,则(A )a+b >1 (B )a+b=1 (C )a+b <1 (D )不能确定,与a 、b 的具体取值有关4、设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫⎝⎛23,0P 到椭圆上的点的最远距离是47,则短半轴之长b= (A )161 (B )81(C )41(D )21 5、S={1,2,…,},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是(A )32003C(B )2100221001C C + (C )2100221001A A +(D )32003A6、长方体ABCDA1B1C1D1,AC1为体对角线.现以A 为球心,AB 、AD 、AA1、AC1为半径作四个同心球,其体积依次为V1、V2、V3、V4,则有(A )V4<V1+V2+V3 (B )V4=V1+V2+V3(C )V4>V1+V2+V3 (D )不能确定,与长方体的棱长有关二、 填空题:(每小题9分,共54分)1、已知k ==βαβαcos cos sin sin 33,则k 的取值范围为. 2、等差数列{an}的首项a1=8,且存在惟一的k 使得点(k,ak)在圆x2+y2=102上,则这样的等差数列共有个.3、在四面体PABC 中,PA=PB=a ,PC=AB=BC=CA=b ,且a <b ,则ba的取值范围为.4、动点A 对应的复数为z=4(cos +isin ),定点B 对应的复数为2,点C 为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为.5、∑=200313k k被8所除得的余数为.6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为.三、 (20分)已知抛物线y2=2px(p >0)的一条长为l 的弦AB .求AB 中点M 到y 轴的最短距离,并求出此时点M 的坐标.四、 (20分)单位正方体ABCDA1B1C1D1中,正方形ABCD 的中心为点M ,正方形A1B1C1D1的中心为点N ,连AN 、B1M . (1)求证:AN 、B1M 为异面直线; (2)求出AN 与B1M 的夹角.五、 (20分)对正实数a 、b 、c .求证:cabc b ac b a bc a 888222+++++≥9. 第二试一、 (50分)设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△PAB 的内切圆与边AB 的切点.乘积PA·PB 的值随着长方形ABCD 及点P 的变化而变化,当PA·PB 取最小值时, (1)证明:AB≥2BC ; (2)求AQ·BQ 的值.二、 (50分)给定由正整数组成的数列⎩⎨⎧+===++nn n a a a a a 12212,1(n≥1). (1)求证:数列相邻项组成的无穷个整点(a1,a2),(a3,a4),…,(a2k1,a2k),…均在曲线x2+xyy2+1=0上.(2)若设f(x)=xn+xn1anxan1,g(x)=x2x1,证明:g(x)整除f(x).三、 (50分)我们称A1,A2,…,An 为集合A 的一个n 分划,如果 (1)A A A A n = 21; (2)∅≠j i A A ,1≤i <j≤n .求最小正整数m ,使得对A ={1,2,…,m}的任意一个13分划A1,A2,…,A13,一定存在某个集合Ai(1≤i≤13),在Ai 中有两个元素a 、b 满足b <a≤89b . 参考答案 第一试二、填空题:1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,2121,1;2、17;3、⎪⎭⎫ ⎝⎛-1,32;4、()134122=+-y x ;5、4;6、117600.三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫⎝⎛<<2222,2,2,20,8,20,8p pl p l M p l p l p l M p l pl .四、(1)证略;(2)32arccos .五、证略.第二试一、(1)证略(提示:用面积法,得PA·PB 最小值为2,此时∠APB =90°);(2)AQ·BQ=1.二、证略(提示:用数学归纳法).三、m=117.全国高中数学联赛模拟试题(六) (命题人:秦永 苟春鹏)第一试一、 选择题:(每小题6分,共36分)1、在复平面上,非零复数z1、z2在以i 对应的点为圆心,1为半径的圆上,21z z ⋅的实部为零,argz1=6π,则z2= (A )i 2323+-(B )i 2323- (C )i 2323+-(D )i 2323- 2、已知函数()⎪⎭⎫ ⎝⎛+-=21log 2x ax x f a 在[1,2]上恒正,则实数a 的取值范围是(A )⎪⎭⎫⎝⎛85,21(B )⎪⎭⎫⎝⎛+∞,23 (C )⎪⎭⎫ ⎝⎛+∞⎪⎭⎫⎝⎛,2385,21(D )⎪⎭⎫⎝⎛+∞,21 3、已知双曲线过点M(2,4),N(4,4),它的一个焦点为F1(1,0),则另一个焦点F2的轨迹方程是(A )()()116425122=-+-y x (y≠0)或x=1(y≠0)(B )()()125416122=-+-y x (x≠0)或x=1(y≠0)(C )()()116125422=-+-y x (y≠0)或y=1(x≠0)(D )()()125116422=-+-y x (x≠0)或y=1(x≠0)4、已知正实数a 、b 满足a+b=1,则b a M 2112+++=的整数部分是(A )1 (B )2 (C )3 (D )45、一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一角度,人行道的宽度是15米,长度是50米,则人行道间的距离是 (A )9米 (B )10米 (C )12米 (D )15米 6、一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15二、 填空题:(每小题6分,共36分)1、长方形ABCD 的长AB 是宽BC 的32倍,把它折成无底的正三棱柱,使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ,则折后截面AMN 与底面AFH 所成的角是.2、在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,且满足a2+b2=2c2,则角C 的最大值是.3、从盛满a 升(a >1)纯酒精的容器里倒出1升,然后填满水,再倒出1升混合溶液后又用水填满,如此继续下去.则第n 次操作后溶液的浓度是.4、已知函数f(x)与g(x)的定义域均为非负实数集,对任意x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3x ,g(x)=52+x ,则f(x)*g(x)的最大值为.5、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有不同的取法.6、若实数a >0,则满足a5a3+a=2的a 值属于区间:①()63,0;②()663,2;③()+∞,36;④()32,0.其中正确的是.三、 (20分)求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面的面积四、 (20分)直线Ax+Bx+C=0(A·B·C≠0)与椭圆b2x2+a2y2=a2b2相交于P 、Q 两点,O为坐标原点,且OP ⊥OQ .求证:2222222BA b a C b a ++=. 五、 (20分)某新建商场建有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c (万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?表1 各部每1万元营业额所需人数表部门 人数 百货部 5 服装部 4家电部2部门 利润 百货部 0.3万元 服装部 0.5万元 家电部0.2万元第二试一、 (50分)矩形ABCD 的边AD=·AB ,以AB 为直径在矩形之外作半圆,在半圆上任取不同于A 、B 的一点P ,连PC 、PD 交AB 于E 、F ,若AE2+BF2=AB2,试求正实数的值.二、 (50分)若ai ∈R+(i=1,2,…,n ),∑==ni iaS 1,且2≤n ∈N .求证:∑=-nk kk a S a 13≥∑=-n k k a n 1211. 三、 (50分)无穷数列{cn}可由如下法则定义:cn+1=|1|12cn||,而0≤c1≤1.(1)证明:仅当c1是有理数时,数列自某一项开始成为周期数列.(2)存在多少个不同的c1值,使得数列自某项之后以T 为周期(对于每个T=2,3,…)?参考答案 第一试题号 1 2 3 4 5 6 答案 ACABCC二、填空题:1、6π; 2、3π;3、na ⎪⎭⎫ ⎝⎛-11;4、132-;5、2500;6、③④. 三、证略. 四、证略.五、8,23,29或10,20,30(万元),对应40,92,58或50,80,60(人).第二试一、22=λ; 二、证略.三、 (1)证略. (2)无穷个.全国高中数学联赛模拟试题(七)(选题人:李潜)第一试一、选择题:(每小题6分,共36分)7、 a 、b 是异面直线,直线c 与a 所成的角等于c 与b 所成的角,则这样的直线c 有(A )1条 (B )2条 (C )3条 (D )无数条8、 已知f(x)是R 上的奇函数,g(x)是R 上的偶函数,若f(x)g(x)=x2+2x+3,则f(x)+g(x)=(A )x2+2x3 (B )x2+2x3 (C )x22x+3 (D )x22x+39、已知△ABC ,O 为△ABC 内一点,∠AOB=∠BOC=∠COA=32π,则使AB+BC+CA≥m(AO+BO+CO)成立的m 的最大值是 (A )2(B )35(C )3(D )23 10、 设x=0.820.5,y=sin1,z=log37则x 、y 、z 的大小关系是(A )x <y <z (B )y <z <x (C )z <x <y (D )z <y <x11、整数⎥⎦⎤⎢⎣⎡+31010951995的末尾两位数字是(A )10 (B )01 (C )00 (D )20 12、 设(a,b)表示两自然数a 、b 的最大公约数.设(a,b)=1,则(a2+b2,a3+b3)为(A )1 (B )2 (C )1或2 (D )可能大于2二、填空题:(每小题9分,共54分)1、若f(x)=x10+2x92x82x7+x6+3x2+6x+1,则f(21)=.2、设F1、F2是双曲线x2y2=4的两个焦点,P 是双曲线上任意一点,从F1引∠F1PF2平分线的垂线,垂足为M ,则点M 的轨迹方程是. 3、给定数列{xn},x1=1,且nn n x x x -+=+3131,则x1999x601=.4、正方体ABCDA1B1C1D1的棱长为1,E 是CD 中点,F 是BB1中点,则四面体AD1EF 的体积是.5、在坐标平面上,由条件⎪⎩⎪⎨⎧+-≤--≥321x y x y 所限定的平面区域的面积是.6、12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要周.三、(20分)已知椭圆12222=+by a x 过定点A(1,0),且焦点在x 轴上,椭圆与曲线|y|=x 的交点为B 、C .现有以A 为焦点,过B 、C 且开口向左的抛物线,抛物线的顶点坐标M(m,0).当椭圆的离心率e 满足1322<<e ,求实数m 的取值范围. 四、(20分)a 、b 、c 均为实数,a≠b ,b≠c ,c≠a .证明:23≤ac c b b a b a c a c b c b a -+-+--++-++-+222<2. 五、(20分) 已知f(x)=ax4+bx3+cx2+dx ,满足 (i )a 、b 、c 、d 均大于0;(ii )对于任一个x ∈{2,1,0,1,2},f(x)为整数; (iii )f(1)=1,f(5)=70.试说明,对于每个整数x ,f(x)是否为整数.第二试一、(50分)设K 为△ABC 的内心,点C1、B1分别为边AB 、AC 的中点,直线AC 与C1K 交于点B2,直线AB 于B1K 交于点C2.若△AB2C2于△ABC 的面积相等,试求∠CAB .二、(50分)设5sini 5cosππ+=w ,f(x)=(xw)(xw3)(xw7)(xw9).求证:f(x)为一整系数多项式,且f(x)不能分解为两个至少为一次的整系数多项式之积.三、(50分)在圆上有21个点.求在以这些点为端点组成的所有的弧中,不超过120°的弧的条数的最小值.参考答案 第一试二、填空题:1、4;2、x2+y2=4;3、0;4、245;5、16;6、5.三、⎪⎪⎭⎫⎝⎛+423,1. 四、证略.五、是.第二试一、60°; 二、证略. 三、100.全国高中数学联赛模拟试题(八)(选题人:李潜)第一试一、选择题:(每小题6分,共36分)1、设logab 是一个整数,且2log log 1log a b bb a a>>,给出下列四个结论 ①21a b b>>;②logab+logba=0; ③0<a <b <1;④ab1=0. 其中正确结论的个数是 (A )1 (B )2(C )3(D )42、若△ABC 的三边长a 、b 、c 满足⎩⎨⎧=+-+=---03220222c b a c b a a ,则它的最大内角度数是(A )150°(B )120°(C )90°(D )60°3、定长为l (a b l 22>)的线段AB 的两端点都在双曲线12222=-by a x (a >0,b >0),则AB 中点M 的横坐标的最小值为 (A )222ba al + (B )222ba l a ++(C )()2222ba a l a +- (D )()2222ba a l a ++4、在复平面上,曲线z4+z=1与圆|z|=1的交点个数为(A )0 (B )1 (C )2(D )35、设E={(x,y)|0≤x≤2,0≤y≤2}、F={(x,y)|x≤10,y≥2,y≤x4}是直角坐标平面上的两个点集,则集合G=()()⎭⎬⎫⎩⎨⎧∈∈⎪⎭⎫⎝⎛++F y x E y x y y x x 22112121,,,2,2所组成的图形面积是(A )6 (B )2 (C )6.5 (D )76、正方形纸片ABCD ,沿对角线AC 对折,使D 在面ABC 外,这时DB 与面ABC所成的角一定不等于 (A )30° (B )45° (C )60° (D )90°二、填空题:(每小题9分,共54分)1、已知24πα=,则αααααααααααcos sin cos 2cos sin 2cos 3cos sin 3cos 4cos sin +++的值等于.2、2004321132112111+++++++++++=. 3、在Rt △ABC 中,AB =AC ,以C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB 内,且椭圆过A 、B 点,则这个椭圆的离心率等于.4、从{1,2,3,…,20}中选出三个数,使得没有两个数相邻,有种不同的选法.5、设a 、b 均为正数,且存在复数z 满足⎪⎩⎪⎨⎧≤+=⋅+1iz b a z z z ,则ab 的最大值等于.6、使不等式137158<+<k n n 对惟一的一个整数k 成立的最大正整数n 为.三、(20分)已知实数x 、y 满足x2+y2≤5.求f(x,y)=3|x+y|+|4y+9|+|7y3x18|的最大值与最小值.四、(20分)经过点M(2,1)作抛物线y2=x 的四条弦PiQi(i=1,2,3,4),且P1、P2、P3、P4四点的纵坐标依次成等差数列.求证:44332211MQ M P MQ M P MQ MP MQ M P ->-. 五、(20分)n 为正整数,r >0为实数.证明:方程xn+1+rxnrn+1=0没有模为r 的复数根.第二试一、(50分)设C(I)是以△ABC 的内心I 为圆心的一个圆,点D 、E 、F 分别是从I 出发垂直于边BC 、CA 和AB 的直线C(I)的交点.求证:AD 、BE 和CF 三线共点.二、(50分) 非负实数x 、y 、z 满足x2+y2+z2=1.求证:1≤xyzzx y yz x +++++111≤2.三、(50分)对由n 个A ,n 个B 和n 个C 排成的行,在其下面重新定义一行(比上面一行少一个字母),若其头上的两个字母不同,则在该位置写上第三个字母;若相同,则写上该字母.对新得到的行重复上面的操作,直到变为一个字母为止.下面给出了n=2的一个例子. A C B C B A B A A A C C A A B B A C C B A求所有的正整数n ,使得对任意的初始排列,经上述操作后,所得的大三角形的三个顶点上的字母要么全相同,要么两两不同.参考答案 第一试二、填空题:1、33; 2、20054008; 3、36-; 4、816;5、81;6、112.三、最大值5627+,最小值10327-. 四、证略. 五、证略.第二试一、证略; 二、证略. 三、 n=1.全国高中数学联赛模拟试题(九)(命题人:葛军)第一试一、选择题:(每小题6分,共36分)1、已知n 、s 是整数.若不论n 是什么整数,方程x28nx+7s=0没有整数解,则所有这样的数s 的集合是 (A )奇数集 (B )所有形如6k+1的数集 (C )偶数集 (D )所有形如4k+3的数集2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是(A )16966 (B )16975 (C )16984(D )170093、非常数数列{ai}满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i=0,1,2,…,n .对于给定的自然数n ,a1=an+1=1,则∑-=1n i ia等于(A )2(B )1(C )1(D )04、已知、是方程ax2+bx+c=0(a 、b 、c 为实数)的两根,且是虚数,βα2是实数,则∑=⎪⎪⎭⎫⎝⎛59851k kβα的值是(A )1 (B )2 (C )0(D )3i5、已知a+b+c=abc ,()()()()()()abb a ac c a bc c b A 222222111111--+--+--=,则A的值是 (A )3(B )3(C )4(D )46、对xi ∈{1,2,…,n},i=1,2,…,n ,有()211+=∑=n n x ni i ,x1x2…xn=n !,使x1,x2,…,xn ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4 (B )6 (C )8 (D )9二、填空题:(每小题9分,共54分)1、设点P 是凸多边形A1A2…An 内一点,点P 到直线A1A2的距离为h1,到直线A2A3的距离为h2,…,到直线An1An 的距离为hn1,到直线AnA1的距离为hn .若存在点P 使nn h a h a h a +++ 2211(ai=AiAi+1,i=1,2,…,n1,an=AnA1)取得最小值,则此凸多边形一定符合条件.2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是.3、已知()2cos 22sin 2,22++++=θθθa a a a a F ,a 、∈R ,a≠0.那么,对于任意的a 、,F(a,)的最大值和最小值分别是.4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是.5、已知集合{1,2,3,…,3n1,3n},可以分为n 个互不相交的三元组{x,y,z},其中x+y=3z ,则满足上述要求的两个最小的正整数n 是.6、任给一个自然数k ,一定存在整数n ,使得xn+x+1被xk+x+1整除,则这样的有序实数对(n,k)是(对于给定的k ).三、(20分)过正方体的某条对角线的截面面积为S ,试求最小最大S S 之值.四、(20分)数列{an}定义如下:a1=3,an=13-n a (n≥2).试求an (n≥2)的末位数.五、(20分) 已知a 、b 、c ∈R+,且a+b+c=1.证明:2713≤a2+b2+c2+4abc <1. 第二试一、(50分)已知△ABC 中,内心为I ,外接圆为⊙O ,点B 关于⊙O 的对径点为K ,在AB 的延长线上取点N ,CB 的延长线上取M ,使得MC=NA=s ,s 为△ABC 的半周长.证明:IK ⊥MN .二、(50分)M 是平面上所有点(x,y)的集合,其中x 、y 均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M 的每一个子集,必包含一个矩形的4个顶点,且此矩形的边平行于坐标轴.三、(50分)实系数多项式f(x)=x3+ax2+bx+c 满足b <0,ab=9c .试判别此多项式是否有三个不同的实根,说明理由.参考答案 第一试二、填空题: 1、该凸多边形存在内切圆; 2、5;3、32+,32-;4、9;5、5,8;6、(k,k)或(3m+2,2)(m ∈N+). 三、332. 四、7. 五、证略.第二试一、证略;二、证略. 三、 有.全国高中数学联赛模拟试题(十)(命题人:杨建忠 审题人:李潜)第一试一、选择题:(每小题6分,共36分)1、设集合M={2,0,1},N={1,2,3,4,5},映射f :M→N 使对任意的x ∈M ,都有x+f(x)+xf(x)是奇数,则这样的映射f 的个数是 (A )45 (B )27 (C )15 (D )112、已知sin2=a ,cos2=b ,0<<4π,给出⎪⎭⎫ ⎝⎛+4tan πθ值的五个答案:①a b-1; ②b a-1;③ab+1; ④ba+1; ⑤11-++-b a b a . 其中正确的是:(A )①②⑤ (B )②③④ (C )①④⑤ (D )③④⑤3、若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是 (A )64 (B )66 (C )68 (D )704、递增数列1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个3的幂之和,则此数列的第100项为 (A )729 (B )972 (C )243 (D )9815、14951C C C C +++++m n n n n (其中⎥⎦⎤⎢⎣⎡-=41n m ,[x]表示不超过x 的最大整数)的值为 (A )4cos2πn n(B )4sin2πn n(C )⎪⎭⎫ ⎝⎛+-4cos 22211πn nn (D )⎪⎭⎫ ⎝⎛+-4sin 22211πn nn 6、一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的个数是(A )8568 (B )2142 (C )2139(D )1134二、填空题:(每小题9分,共54分)1、过椭圆12322=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ=PH (≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是.2、已知异面直线a 、b 所成的角为60°,过空间一点P 作与a 、b 都成角(0<<90°)的直线l ,则这样的直线l 的条数是f()=.3、不等式()92211422+<+-x xx 的解集为.4、设复数z 满足条件|zi|=1,且z≠0,z≠2i ,又复数使得i2i 2-⋅-z zωω为实数,则复数2的辐角主值的取值范围是.5、设a1,a2,…,a 均为正实数,且21212121200221=++++++a a a ,则a1a2…a 的最小值是.6、在一个由十进制数字组成的数码中,如果它含有偶数个数字8,则称它为“优选”数码(如12883,787480889等),否则称它为“非优选”数码(如2348756,958288等),则长度不超过n (n 为自然数)的所有“优选”数码的个数之和为.三、(20分)已知数列{an}是首项为2,公比为21的等比数列,且前n 项和为Sn .(1) 用Sn 表示Sn+1; (2) 是否存在自然数c 和k ,使得cS cS k k --+1>2成立. 四、(20分)设异面直线a 、b 成60°角,它们的公垂线段为EF ,且|EF|=2,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.五、(20分)已知定义在R+上的函数f(x)满足(i )对于任意a 、b ∈R+,有f(ab)=f(a)+f(b); (ii )当x >1时,f(x)<0; (iii )f(3)=1.现有两个集合A 、B ,其中集合A={(p,q)|f(p2+1)f(5q)2>0,p 、q ∈R+},集合B={(p,q)|f(q p )+21=0,p 、q ∈R+}.试问是否存在p 、q ,使∅≠B A ,说明理由.第二试一、(50分)如图,AM 、AN 是⊙O 的切线,M 、N 是切点,L 是劣弧MN 上异于M 、N 的点,过点A 平行于MN 的直线分别交ML 、NL 于点Q 、P .若POQ O S S △⊙32π=,求证:∠POQ=60°.二、(50分)已知数列a1=20,a2=30,an+2=3an+1an (n≥1).求所有的正整数n ,使得1+5anan+1是完全平方数.三、(50分)设M 为坐标平面上坐标为(p·,7p·)的点,其中p 为素数.求满足下列条件的直角三角形的个数:(1) 三角形的三个顶点都是整点,而且M 是直角顶点; (2) 三角形的内心是坐标原点.参考答案 第一试二、填空题:1、⎪⎪⎭⎫⎢⎣⎡1,33; 2、()⎪⎪⎪⎩⎪⎪⎪⎨⎧︒<<︒︒=︒<<︒︒=︒<<︒=900,460,36030,230,1300,0ααααααf ;3、⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡-845,00,21 ;4、⎪⎭⎫⎢⎣⎡-ππ,34arctan;5、4002;6、⎪⎪⎭⎫⎝⎛-+++63142789102111n n . 三、(1)2211+=+n n S S ;(2)不存在.四、1922=+y x . 五、不存在.第二试PQ。
高考数学复习必备 精品推荐 -衡水中学2017届高三高考押题理数试题(原卷版)

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅰ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.2. 已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.3. 下列函数中,既是偶函数,又在内单调递增的为()A. B. C. D.4. 已知双曲线:与双曲线:,给出下列说法,其中错误的是()A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等5. 在等比数列中,“,是方程的两根”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 执行如图的程序框图,则输出的值为()A. 1009B. -1009C. -1007D. 10087. 已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D.9. 《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D. 学。
科。
网...10. 为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()A. 720B. 768C. 810D. 81611. 焦点为的抛物线:的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A. 或B.C. 或D.12. 定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为()A. B.C. D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13. 已知,,若向量与共线,则在方向上的投影为_________.14. 已知实数,满足不等式组且的最大值为,则=__________.15. 在中,角,,的对边分别为,,,,且,的面积为,则的值为__________.16. 已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 已知的展开式中的系数恰好是数列的前项和.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.18. 如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面;(2)若,求二面角的余弦值.19. 2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?20. 已知椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.(1)求椭圆的方程.学。
衡阳市2017届高三数学三模试卷(理科) 含解析

2017年湖南省衡阳市高考数学三模试卷(理科)一、选择题:本大题共12小题.每小题5分,在每小题给出的四个选项中.只有一项是符合题目要求的.1.i是虚数单位,复数,则a+b=()A.0 B.2 C.1 D.﹣22.设集合,B={(x,y)|y=3x},则A∩B的子集的个数是( )A.4 B.3 C.2 D.13.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C. D.4.为防止部分学生考试时用搜题软件作弊,命题组指派5名教师对数学卷的选择题、填空题和解答题这3种题型进行改编,则每种题型至少指派一名教师的不同分派方法种数为()A.150 B.180 C.200 D.2805.执行如图所示的程序框图,若输出的S值为﹣4,则条件框内应填写( )A.i>3? B.i<5? C.i>4? D.i<4?6.直三棱柱ABC﹣A1B1C1中,底面是正三角形,三棱柱的高为,若P是△A1B1C1中心,且三棱柱的体积为,则PA与平面ABC所成的角大小是()A.B.C.D.7.函数f(x)=2sin(πx)﹣,x∈的所有零点之和为() A.2 B.4 C.6 D.88.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为()A.B.C.6 D.9.已知对任意平面向量=(x,y),把绕其起点沿逆时针旋转θ角得到向量=(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转角θ得到点P,设平面内曲线C上的每一点绕原点逆时针方向旋转后得到点的轨迹是曲线x2﹣y2=2,则原来曲线C的方程是()A.xy=﹣1 B.xy=1 C.y2﹣x2=2 D.y2﹣x2=110.已知F1、F2分别为双曲线C:=1的左、右焦点,P为双曲线C右支上一点,且|PF1|=2|PF2|,则△PF1F2外接圆的面积为( )A.B. C. D.11.如图.在△ABC中,D是BC的中点,E、F是AD上的两个三等分点,•=4,•=﹣1,则•的值是( )A.4 B.8 C. D.12.《数学统综》有如下记载:“有凹线,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和大于最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数f(x)=x2﹣2x+2,在上任取三个不同的点(a,f(a)),(b,f(b)),(c,f(c)),均存在以f(a),f(b),f(c)为三边长的三角形,则实数m的取值范围为()A.B. C. D.二、填空题:本大题共4小题.每小题5分.13.展开式中第三项为.14.设函数f(x)=,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x2+y2+2x+2y在D上的最小值为.15.已知,数列的前n项和为S n,数列{b n}的通项公式为b n=n﹣8,则b n S n的最小值为.16.已知函数f(x)=log(x2+)﹣||,则使得f(x+1)<f(2x ﹣1)成立x的范围是.三、解答题(本大题含6个小题.共70分.解答应写出文字说明或演算步骤)17.已知数列{a n}的首项a1=4,当n≥2时,a n﹣1a n﹣4a n﹣1+4=0,数列{b n}满足b n=(1)求证:数列{b n}是等差数列,并求{b n}的通项公式;(2)若c n=4bn•(na n﹣6),如果对任意n∈N*,都有c n+t≤2t2,求实数t的取值范围.18.据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.参考数据:=25,=5.36,=0。
湖南省2017年普通高等学校对口招生考试数学试卷

湖南省2017年普通高等学校对口招生考试数学试题(附答案)本试题卷包括选择题、填空题和解答题三部分.时量120分钟.满分120分一、选择题(每小题4分,共40分.每小题只有一项是符合题目要求的)1.已知集合{},2,1=A ,{}4,32,=B ,则B A 等于 【答案】DA. {}2B. {}4,32,C. {}4,3,1D. {}4,3,2,1 2.已知32-=a,212=b ,2)21(=c ,则c b a ,,的大小关系为 【答案】BA .c b a <<B . b c a <<C .c a b <<D . a b c <<3.已知()παα,0,21cos ∈= ,则=αsin 【答案】A A .23B . 23-C .21D .21-4.已知两条直线1)2(2++=-=x a y ax y和互相垂直,则=a 【答案】DA .2B . 1C .0D .1-5.下列函数中,在区间()+∞,0上单调递增的是 【答案】C A.x ysin = B. x y 1=C. 2x y = D. x y 31log = 6.已知函数)(x f 的定义域为R ,则“)(x f 为偶函数” 是“)1()1(f f =-”的【答案】CA . 充分必要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分也不必要条件 7.不等式0652<+-x x 的解集是 【答案】DA .{}2<x x B .{}3>x x C .{}32><x x x 或 D .{}32<<x x8.设m l 、 是两条不同的直线,α是平面,则下列命题正确的是 【答案】B A .若α⊂⊥m m l,,则α⊥l B .若l m l //,α⊥,则α⊥mC .若αα⊂m l ,//,则l m //D .若αα//,//m l ,则l m //9. 从1,2,3,4,5,6,7,8,9这9个数中取2个不同的数,使其和为偶数,则不同的取法共有A. 72种B. 36种C. 32种D. 16种 【答案】D10.在三棱锥ABC P - 中,PA ,PB ,PC 两两互相垂直,且PA=PB=PC=1 ,则该三棱锥的体积为【答案】A A .61 B .31 C .21D .1二、填空题(本大题共5小题,每小题4分,共20分)11、在一次中学生田径运动会上,参加男子跳高的10名运动员的成绩如下表所示:则这些运动员成绩的平均数是__________(m ). 【答案】1.62 12.若直线06=+-y kx 经过圆4)2()122=-+-y x (的圆心,则=k ______. 【答案】4-13.函数()x x f cos 21-=的最小值为 . 【答案】1-14.若关于x 的不等式32<+b x 的解集为{}03<<-x x ,则=b .【答案】3 15.若双曲线)0,0(12222>>=-b a by a x 上存在四点A ,B ,C ,D ,使四边形ABCD 为正方形,则此双曲线的离心率的取值范围为 .【答案】()∞+,2三、解答题(本大题共7小题,其中第21,22题为选做题.满分60分.解答题应写出文字说明、证明过程或演算步骤)16. (本小题满分10分) 已知函数()1)1(),1,0(1)5(log 2=-≠>-+=f a a x x f a 且.(I )求a 的值,并写出()x f 的定义域;(II )当[]11,4-∈x 时,求()x f 的取值范围.解:(I )依题意,有:()11)51(log 21=-+-=-a f ,解得:4=a ,由505->>+x x 得∴4=a ,()x f 的定义域为),(∞+-5 (II )由(1)得:()1)5(l o g 24-+=x x f ∵4>1,∴()1)5(log 24-+=x x f 为增函数,而314116log 2)11(,111log 2)4(44=-=-=-=-=-f f∴当[]11,4-∈x 时,()x f 的取值范围为[]3,1-.17. (本小题满分10分)某射击运动员射击3次,每次射击击中目标的概率为32,求: (I )3次射击都击中目标的概率; (II )击中次数ξ的分布列.解:(I )278323)3(==)(P(II )随机变量ξ的分布列为:18. (本小题满分10分)已知数列{}n a 为等差数列,若1231,1a a a a +==,求: (I )求数列{}n a 的通项公式;(II )设na n n ab )21(+=,求数列{}n b 的前n 项和n S .解:(I )设数列{}n a 的首项为1a ,公差为d ,依题意,有:⎩⎨⎧==⇒⎩⎨⎧++=+=,1,12111111d a a d a d a a ∴n d n a a n =-+=)1(1∴数列{}n a 的通项公式为n a n =;(II )n an n a b )21(+==nn )(21+∴n nn n n n n ⎪⎭⎫ ⎝⎛-++=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++=21221211211212)1(S 2)(19. (本小题满分10分)已知向量),1(m a =,向量)3,2(=b(I )若b a //,求m 的值; (II )若b a ⊥,求)3()3a b a-⋅(的值.解:(1)由b a //得:32=m ,23=∴m(2)由b a⊥得023=+m 32-=∴m∴ ),((3213)3-=a =),(23- )(),()(5,1233,2)3(-=--=-a b 20. (本小题满分10分)已知抛物线px y C 2:2=的焦点为().0,2F(I )求抛物线C 的方程;(II )过点M (1,2)的直线l 与C 相交于B A ,两点,且M 为AB 的中点,求直线l 的方程. 解:(I )∵抛物线px y C 2:2=的焦点为()0,2F ,∴22=p,解得4=p , 故抛物线C 的方程为:x y82=;(2)设)A 11y x ,(、)B 22y x ,( ,则依题意有422121=+=+y y x x ,易知若直线l 的斜率不存在,则直线方程为1=x ,此时4021≠=+y y ,不合题意,由⎪⎩⎪⎨⎧==22212188x y x y 得:)(8212221x x y y -=- 即2121218y y x x y y +=-- ∴2488212121==+=--==y y x x y y k k AB l∴ 直线l 的方程为02=-y x注意:第21题,22题为选做题,请考生选择其中一题作答. 21.(本小题满分10分) 已知c b a ,,,分别为△ABC 内角A ,B ,C 的对边,已知ab c22=,(I )若 90=C ,且1=a ,求ABC ∆的面积; (II )若C A sin sin =,求C cos 的值解:(I )由 90=C,且1=a ,则222c b a =+,又ab c 22=∴0122=+-b b ,解得1=b (II )由正弦定理caC A C c A a =⇒=sin sin sin sin , 又C A sin sin =, ∴c a =,又ab c22= ∴b c a 2==22.某公司有40万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对乙项目投资的31倍,且对每个项目的投资都不能低于5万元。
课改版全国各地优秀高考模拟试卷集锦(079)——湖南省衡阳市2017届高三数学第六次月考试题理实验班
课改版全国各地优秀高考模拟试卷集锦(079) 湖南省衡阳市2017届高三数学第六次月考试题 理(实验班) 注意事项: 1.本卷为衡阳八中高三年级实验班第六次月考试卷,分两卷。其中共22题,满分150分,考试时间为120分钟。 2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。开考15分钟后,考生禁止入场,监考老师处理余卷。 3.请考生将答案填写在答题卡上,选择题部分请用2B铅笔填涂,非选择题部分请用黑色0.5mm签字笔书写。考试结束后,试题卷与答题卡一并交回。 ★预祝考生考试顺利★ 第I卷 选择题(每题5分,共60分) 本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。 1.已知全集U={1,2,3,4,5},A∩∁UB={1,2},∁U(A∪B)={4},则集合B为( ) A.{3} B.{3,5} C.{2,3,5} D.{1,2,3,5} 2.在复平面上,复数对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.已知数列{}na是等差数列,若91130aa,10110aa,且数列{}na的前n项和nS有最大值,那么nS取得最小正值时n等于( ) A.20 B.17 C.19 D.21
4.设x、y满足约束条件,则z=2x﹣3y的最小值是( ) A.﹣7 B.﹣6 C.﹣5 D.﹣3 5.若不等式3x2﹣logax<0对任意恒成立,则实数a的取值范围为( ) A. B. C. D. 6.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两
一 全面整体系统精准 高考数学课改版模拟 名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A.36种 B.38种 C.108种 D.114种 7.已知△ABC中,a,b,c分别是角A,B,C所对的边,且a=2,b=,则角A=( ) A. B. C. D.或 8.如图为某几何体的三视图,则该几何体的外接球的表面积为( )
数学---湖南省衡阳市2017届高三(上)期末试卷(文)(解析版)
湖南省衡阳市2017届高三(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x|x+2>0},B={x|x2+2x﹣3≤0},则A∩B=()A.[﹣3,﹣2)B.[﹣3,﹣1] C.(﹣2,1] D.[﹣2,1] 2.(5分)已知z=+2(i为虚数单位),则z在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知p:幂函数y=(m2﹣m﹣1)x m在(0,+∞)上单调递增;q:|m﹣2|<1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不要条件4.(5分)一个四面体的三视图如图所示,则该四面体的外接球的表面积为()A.B.4πC.D.2π5.(5分)已知函数f(x)=,若f[f()]=3,则b=()A.﹣1 B.0 C.2 D.36.(5分)已知实数x,y满足,若z=2x﹣2y﹣1,则z的取值范围为()A.(﹣,5)B.(﹣,0)C.[0,5] D.[﹣,5]7.(5分)已知正四面体A﹣BCD的棱长为1,且=2,=2,则•=()A.B.C.﹣D.﹣8.(5分)《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织()尺布.A.B.C.D.9.(5分)在△ABC中,三个内角A、B、C成等差数列,且cos A=,则sin C=()A.B.C.D.10.(5分)在区间[﹣3,3]中随机取一个实数k,则事件“直线y=kx与圆(x﹣2)2+y2=1相交”发生的概率为()A.B.C.D.11.(5分)在△ABC中,角A、B、C的对边分别为a,b,c,且b(2sin B+sin A)+(2a+ b)sin A=2c sin C,则C=()A.B.C.D.12.(5分)函数f(x)在定义域(0,+∞)内恒满足:①f(x)>0;②2f(x)<xf′(x)<3f(x),其中f′(x)为f(x)的导函数,则()A.<<B.<<C.<<D.<<二、填空题(共4小题,每小题5分,满分20分)13.(5分)直线l过点A(1,1),且l在y轴上的截距的取值范围为(0,2),则直线l的斜率的取值范围为.14.(5分)如图所示的程序框图中,输出的S的值为.15.(5分)将函数f(x)=sin x+cos x的图象向右平移φ(φ>0)个单位,所得图象关于原点对称,则φ的最小值为.16.(5分)已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|P A|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为.三、解答题(共5小题,满分60分)17.(12分)数列{a n}的前n项和S n满足:S n=n2,数列{b n}满足:①b3=,②b n>0,③b n+12+b n+1b n ﹣b n2=0.(1)求数列{a n}与{b n}的通项公式;(2)设c n=a n b n,求数列{c n}的前n项和T n.18.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率.(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;假设由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?附:参考公式:b=,.19.(12分)如图所示,在直三棱柱ABC﹣A1B1C1中,底面ABC是等腰直角三角形,且斜边AB=2,侧棱AA1=4,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ∈R).(1)求证:不论λ取何值时,恒有CD⊥B1E;(2)当λ为何值时,B1E⊥面CDE.20.(12分)如图所示,抛物线C:x2=2py(p>0),其焦点为F,C上的一点M(4,m)满足|MF|=4.(1)求抛物线C的标准方程;(2)过点E(﹣1,0)作不经过原点的两条直线EA,EB分别与抛物线C和圆F:x2+(y ﹣2)2=4相切于点A,B,试判断直线AB是否经过焦点F.21.(12分)已知函数f(x)=﹣2x ln x+x2﹣2ax+a2.记g(x)为f(x)的导函数.(1)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+y+3=0,求a的值;(2)讨论g(x)=0的解的个数;(3)证明:对任意的0<s<t<2,恒有<1.四、选考题:(请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分.)[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为,圆C的极坐标方程为ρ=4sin(θ+).(1)求直线l的普通方程与圆C的直角坐标系;(2)设曲线C与直线l交于A、B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x﹣2|,记f(x)的最小值为k.(1)解不等式:f(x)≤x+1;(2)是否存在正数a、b,同时满足:2a+b=k,+=4?若存在,求出a、b的值,若不存在,请说明理由.参考答案一、选择题1.C【解析】集合A={x|x+2>0}={x|x>﹣2},B={x|x2+2x﹣3≤0}={x|﹣3≤x≤1},则A∩B={x|﹣2<x≤1}=(﹣2,1].故选:C.2.D【解析】∵z=+2=,∴z在复平面内所对应的点的坐标为(2,﹣1),位于第四象限.故选:D.3.A【解析】p:幂函数y=(m2﹣m﹣1)x m在(0,+∞)上单调递增;∴m2﹣m﹣1=1,m>0,解得m=2.q:|m﹣2|<1,解得1<m<3.则p是q的充分不必要条件.故选:A.4.B【解析】由题意可知,几何体是三棱锥,底面等腰直角三角形的底边长为2,底面三角形的高为:1,棱锥的一条侧棱垂直底面的三角形的一个顶点,棱锥的高为:1.其外接球的球心是底面斜边的中点,故外接球的半径R=1,∴外接球的表面积S=4πR2=4π,故选:B.5.C【解析】函数f(x)=,f()=log2=﹣1,f[f()]=3,可得f(﹣1)=1+b=3,可得b=2.故选:C.6.A【解析】不等式对应的平面区域如图:(阴影部分).由z=2x﹣2y﹣1得y=x﹣,平移直线y=x﹣,由平移可知当直线y=x﹣,经过点A(2,﹣1)时,直线y=x﹣的截距最小,此时z取得最大值,此时z=2x﹣2y﹣1=4+2﹣1=5,可知当直线y=x﹣,经过点C时,直线y=x﹣的截距最大,此时z取得最小值,由,得,即A(,)代入z=2x﹣2y﹣1得z=2×﹣2×﹣1=﹣,故z∈(﹣,5).故选:A.7.D【解析】正四面体A﹣BCD的棱长为1,且=2,=2,∴=,则•=••=•1•1•cos120°=﹣,故选:D.8.D【解析】设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.故选:D.9.B【解析】∵∠A、∠B、∠C成等差数列,∴∠A+∠C=2∠B,又∠A+∠B+∠C=π,∴3∠B=π,则∠B=.∵cos A=,可得:sin A==,∴sin C=sin(A+B)=sin A cos B+cos A sin B=×+×=.故选:B.10.A【解析】圆(x﹣2)2+y2=1的圆心为(2,0),半径为1.要使直线y=kx与圆(x﹣2)2+y2=1相交,则圆心到直线y=kx的距离<1,解得﹣<k<.在区间[﹣3,3]中随机取一个实数k,则事件“直线y=kx与圆(x﹣2)2+y2=1相交”发生的概率为=.故选A.11.C【解析】∵b(2sin B+sin A)+(2a+b)sin A=2c sin C,∴由正弦定理可得:b(2b+a)+(2a+b)a=2c2,整理可得:b2+a2﹣c2=﹣ab,∴由余弦定理可得:cos C===﹣,∵C∈(0,π),∴C=.故选:C.12.D【解析】令g(x)=,x∈(0,+∞),g′(x)=,∵∀x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,∴f(x)>0,0<,∴g′(x)>0,∴函数g(x)在x∈(0,+∞)上单调递增,∴g(1)<g(2),即4f(1)<f(2),<;令h(x)=,x∈(0,+∞),h′(x)=,∵∀x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,∴h′(x)=<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴h(1)>h(2),即f(1)>,>,故选:D.二、填空题13.(﹣1,1)【解析】设直线l的方程为:y﹣1=k(x﹣1),化为:y=kx+1﹣k,由题意可得:0<1﹣k<2,解得﹣1<k<1.∴直线l的斜率的取值范围为(﹣1,1).故答案为:(﹣1,1).14.【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=+的值,由于+=.故答案为:.15.【解析】y=sin x+cos x=2(sin x cos+cos x sin)=2sin(x+).将函数的图象向右平移φ(φ>0)个单位长度后,得到y=2sin[(x﹣φ)+]=2sin(x+﹣φ)的图象.∵平移后得到的图象关于坐标原点对称,∴﹣φ=kπ(k∈Z),可得φ=﹣kπ(k∈Z),取k=0,得到φ的最小正值为.故答案为:.16.【解析】过P作准线的垂线,垂足为N,则由抛物线的定义可得|PN|=|PB|,∵|P A|=m|PB|,∴|P A|=m|PN|,则,设P A的倾斜角为α,则sinα=,当m取得最大值时,sinα最小,此时直线P A与抛物线相切,设直线P A的方程为y=kx﹣1,代入x2=4y,可得x2=4(kx﹣1),即x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴P(2,1),∴双曲线的实轴长为P A﹣PB=2(﹣1),∴双曲线的离心率为.故答案为:.三、解答题17.解:(1)∵数列{a n}的前n项和S n满足:S n=n2,∴n=1时,a1=S1=1;n≥2时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1.n=1时也成立,∴a n=2n﹣1.∵数列{b n}满足:①b3=,②b n>0,③b n+12+b n+1b n﹣b n2=0.∴+﹣1=0,解得=.∴数列{b n}是等比数列,b n=.(2)c n=a n b n=(2n﹣1)×,令q=.c n=.数列{c n}的前n项和T n=[q﹣2+3•q﹣1+5+…+(2n﹣1)•q n﹣3].qT n=[q﹣1+3+5q+…+(2n﹣3)•q n﹣3+(2n﹣1)q n﹣2],∴(1﹣q)T n=[q﹣2+2(q﹣1+1+q+…+q n﹣3)﹣(2n﹣1)q n﹣2]=,∴T n=+﹣.其中q=.18.解:(1)设抽到不相邻两组数据为事件A,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以;(2)由数据,求得=×(10+11+13+12+8)=10.8,=×(23+25+30+26+16)=24;由公式,求得(x i y i)=10×23+11×25+13×30+12×26+8×16=1335,=102+112+132+122+82=598;所以==,=﹣3;所以y关于x的线性回归方程是;当x=10时,,|22﹣23|<2;同样,当x=8时,,|17﹣16|<2;所以,该研究所得到的线性回归方程是可靠的.19.证明:(1)∵AC=BC,点D为AC的中点,∴CD⊥AB,∵AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,又AA1⊂平面ABB1A1,AB⊂平面ABB1A1,AA1∩AB=A,∴CD⊥平面ABB1A1,又B1E⊂平面ABB1A1,∴CD⊥B1E.(2)由题意,CD⊥平面A1B,B1E⊂平面A1B,∴B1E⊥CD,B1E⊥ED时,B1E⊥面CDE,此时,△AED∽△A1B1E,∴,∴A1E•AE=8,∴4λ•(8﹣4λ)=8,∴λ=1﹣.20.解:(1)抛物线C的准线方程为,∴|MF|=m+=4,由M(4,m)在椭圆上,∴16=2pm,∴p2﹣8p+16=0,解得p=4,∴抛物线C的标准方程为x2=8y(2)设EA:x=ky﹣1,联立,消去x得:k2y2﹣(2k+8)y+1=0,∵EA与C相切,∴△=(2k+8)2﹣4k2=0,解得k=﹣2,∴,求得,设EB:x=ty﹣1,联立,消去x得:(t2+1)y2﹣(2t+4)y+1=0,∵EB与圆F相切,∴△=(2t+4)2﹣4(t2+1)=0,即,∴,求得,∴直线AB的斜率,可得直线AB的方程为,经过焦点F(0,2)21.解:(1)函数f(x)=﹣2x ln x+x2﹣2ax+a2的导数为f′(x)=﹣2(1+ln x)+2x﹣2a,可得曲线y=f(x)在点(1,f(1))处的切线斜率为﹣2+2﹣2a=﹣2a,切线垂直于直线x+y+3=0,可得﹣2a=1,解得a=﹣;(2)g(x)=f′(x)=﹣2(1+ln x)+2x﹣2a=0,即为a=x﹣1﹣ln x,x>0,设h(x)=x﹣1﹣ln x,h′(x)=1﹣=,当x>1时,h′(x)>0,h(x)递增;当0<x<1时,h′(x)<0,h(x)递减.可得h(x)在x=1处取得极小值,也为最小值0,则当a=0时,g(x)=0有一解;当a<0时,g(x)=0无解;当a>0时,g(x)=0有两解;(3)证明:对任意的0<s<t<2,恒有<1,即有<0,即证g(x)﹣x在(0,2)为减函数.可令k(x)=g(x)﹣x=﹣2(1+ln x)+x﹣2a,0<x<2,k′(x)=﹣2•+1=,由0<x<2可得k′(x)<0,可得k(x)=g(x)﹣x在(0,2)递减,故对任意的0<s<t<2,恒有<1.四、选考题22.解:(1)直线l的参数方程为,消去t,求得普通方程:y=x﹣1,直线l的普通方程为:y=x﹣1,ρ=4sin(θ+)=4sinθ+4cosθ,∴ρ2=4ρsinθ+4ρcosθ,.所以曲线C的直角坐标方程为x2+y2﹣4x﹣4y=0.(2)点P(2,1)在直线l上,且在圆C内,把,代入x2+y2﹣4x﹣4y=0,得:t2﹣t﹣7=0,设两个实根为t1,t2,则t1+t2=,t1•t2=﹣7<0,即t1•t2异号.∴||P A|﹣|PB||=||t1|﹣|t2||=|t1+t2|=.23.解:(1)∵函数f(x)=|x﹣1|+|x﹣2|,不等式f(x)≤x+1,即|x﹣1|+|x﹣2|≤x+1,∴①,或②,或③.解①求得≤x<1,解②求得1≤x≤2,解③求得2<x≤4,综上可得不等式的解集为{x|≤x≤4}.(2)∵f(x)=|x﹣1|+|x﹣2|≥|(x﹣1)﹣(x﹣2)|=1,当且仅当1≤x≤2时,取等号,故f(x)的最小值为k=1.若2a+b=k=1,+=4,则==4,即ab=a(1﹣2a)=a﹣2a2=4,化简可得,2a2﹣a+4=0,由于△=﹣31<0,故此方程无解,故不存在正数a、b,同时满足:2a+b=k,+=4.。
湖南省衡阳市2017届高三数学第三次质检试题(实验班)理
湖南省衡阳市 2017 届高三数学第三次质检试题(实验班)理注意事项:1. 本卷为衡阳八中高三年级实验班第三次质检试卷,分两卷。
此中共23 题,满分 150 分,考试时间为 120 分钟。
2.考生领取到试卷后,应检查试卷能否出缺页漏页,重影模糊等阻碍答题现象,若有请立刻向监考老师通告。
开考 15 分钟后,考生严禁入场,监考老师办理余卷。
3. 请考生将答案填写在答题卡上,选择题部分请用2B 铅笔填涂,非选择题部分请用黑色0.5mm署名笔书写。
考试结束后,试题卷与答题卡一并交回。
★预祝考生考试顺利★第 I 卷选择题(每题 5 分,共 60 分)本卷共 12 题,每题 5 分,共 60 分,在每题后边所给的四个选项中,只有一个是正确的。
1. 已知会合M={x|log 3x≤1} , N={x|x 2+x﹣ 2≤0} ,则 M∩ N 等于()A.{x| ﹣ 2≤x≤ 1} B . {x|1 ≤ x≤ 3}C. {x|0 < x≤ 1} D . {x|0 < x≤ 3}2. 已知复数的实部为﹣1,则复数z﹣b 在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3. 已知等比数列 {a n} 的前 n 项和 S n,且 a1+a3=,a2+a4=,则=()A.4n﹣1B. 4n﹣ 1C.2n﹣ 1D. 2n﹣ 14. 已知 a=log 23+log 2, b=, c=log 32则 a, b, c 的大小关系是 ( )A.a=b< c B. a=b> c C. a< b< c D. a> b> c5. 已知函数 f ( x)=sin (ωx+φ)(ω> 0,| φ | <)的最小正周期是π,若其图象向右平移个单位后获得的函数为奇函数,则函数y=f ( x)的图象()A.对于点(,0)对称B.对于直线 x=对称C.对于点(,0)对称D.对于直线 x=对称6. 已知函数,若函数g( x)=f ( x)﹣ m有三个不一样的零点,则实数m的取值范围为()A.B.C.D.7. 某几何体是组合体,其三视图如下图,则该几何体的体积为()A.168B.328C.168D.1616 3338. 已知数列 {a n} 知足 a n+a n﹣1=(﹣ 1)n, S n是其前 n 项和,若S 2017=﹣ 1007﹣b,且 a1b>0,则+的最小值为()A.3﹣ 2B.3C.2D.3+29.公元 263 年左右,我国数学家刘徽发现当圆内接正多边形的边数无穷增添时,多边形面积可无穷迫近于圆的面积,并创办了“割圆术”,利用“割圆术”刘徽获得了圆周率精准到小数点后两位的近似值 3.14 ,这就是有名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精准到小数点后两位)的值为()(参照数据:sin15°=0.2588,sin75°=0.1305)A.3.10B.3.11C.3.12D.3.1310. 已知函数 f M( x)的定义域为实数集R,知足(M是R的非空真子集),在R 上有两个非空真子集A, B,且 A∩ B=?,则的值域为()A.B.{1}C.D.11. 设F1, F2分别是双曲线 C :x2y20, b0) 的左、右焦点,P 是 C 的右支上的点,射线a2b2 1(aPT 均分F1 PF2,过原点O作PT的平行线交 PF1于点 M ,若|MP|1| F1F2 |,则 C 的离心率为3()A.3B. 3C.2D.3 212. 设函数y f ''x 是 y f ' x 的导数.某同学经过研究发现,随意一个三次函数f x ax 32cx d a0都有对称中心 x0 , f x0,此中 x0知足 f '' x00 .已知函数bxf x 1 x3 1 x23x5,则 f 12f32016f2017... f()3212201720172017 A.2013B. 2014C. 2015D. 2016第 II 卷非选择题(共 90 分)二. 填空题(每题 5 分,共 20 分)13.( x﹣)4( x﹣2)的睁开式中, x2的系数为.14.已知三棱锥 S ABC 的极点都在球O 的球面上,ABC 是边长为 2 的正三角形,SC为球 O 的直径,且 SC 4,则此三棱锥的体积为________.15. 已知会合表示的平面地区为Ω,若在地区Ω内任取一点P(x, y),则点 P 的坐标知足不等式x2+y2≤ 2 的概率为.16. 已知双曲线﹣=1( a> 0, b> 0), F1(﹣ c, 0)是左焦点,圆x2+y2 =c2与双曲线左支的一个交点是P,若直线PF1与双曲线右支有交点,则双曲线的离心率的取值范围是.三 . 解答题(共8 题,共 70 分)17.(此题满分 12 分)已知数列 {a n} 、{b n} 知足: a1=,a n+b n=1,b n+1=.(Ⅰ)求b1, b2, b3, b4;(Ⅱ)设c n=,求数列{c n}的通项公式;(Ⅲ)设S n=a1a2+a2 a3+a3a4+ +a n a n+1,不等式 4aS n< b n恒成即刻,务实数 a 的取值范围.18.(此题满分 12 分)如图,在四棱锥P﹣ ABCD中,PC⊥底面 ABCD,底面 ABCD是直角梯形, AB⊥ AD,AB∥ CD,AB=2AD=2CD=2,PE=2BE.( I )求证:平面EAC⊥平面 PBC;(Ⅱ)若二面角P﹣ AC﹣ E 的余弦值为,求直线PA与平面 EAC所成角的正弦值.19. (此题满分12 分)某企业计划购置 2 台机器,该种机器使用三年后即被裁减.机器有一易损部件,在购进机器时,可以额外购置这类部件作为备件,每个200 元 .在机器使用时期,假如备件不足再购置,则每个500元 .现需决议在购置机器时应同时购置几个易损部件,为此收集并整理了100 台这类机器在三年使用期内改换的易损部件数,得下边柱状图:以这100 台机器改换的易损部件数的频次取代 1 台机器改换的易损部件数发生的概率,记X 表示2台机器三年内共需改换的易损部件数,n 表示购置 2 台机器的同时购置的易损部件数.(I )求X的散布列;(II )若要求P( X≤n) ≥0.5 ,确立n的最小值;( III)以购置易损部件所需花费的希望值为决议依照,在n=19与 n=20之中选其一,应采用哪个?20.(此题满分 12 分)如图,已知椭圆的离心率为,其左、右极点分别为A1(﹣ 2,0), A2(2, 0).过点 D( 1,0)的直线 l 与该椭圆订交于 M、 N 两点.(Ⅰ)求椭圆 C的方程;(Ⅱ)设直线A1M与 NA2的斜率分别为k1, k2,试问:能否存在实数λ,使得k2=λk1?若存在,求出λ 的值;若不存在,请说明原因.21.(此题满分 12 分)已知函数 f ( x)a(x 1)2ln x, a R .( 1)当a 1时,求函数y f ( x) 的单一区间;4( 2)当a 1f (x)3ln x x11,e 的最大值和最小值;时,令 h( x),求 h( x) 在22( 3)当x1,时,函数 y f ( x) 图像上的点都在不等式组x1,y 所表示的地区内,务实数x 1 a 的取值范围 .选做题:考生从22、 23 题中任选一题作答,共10 分。
2017年度湖南地区衡阳八中高等考试数学适应性试卷(理科)(5月份)
~
2019年湖南单招理科数学模拟试题(二)【含答案】
一、选择题:
1.已知i为虚数单位,复数z满足z•i=﹣1,则z2017=( )
A.1 B.﹣1 C.i D.﹣i
2.已知集合A={x|x2+2x﹣8≥0},B={x|1<x<5},U=R,则CU(A∪B)( )
A.(﹣4,1] B.[﹣4,1) C.(﹣2,1] D.[﹣2,1)
~
~
二.填空题
~
三.解答题
~
~
选修4-4:坐标系与参数方程
选修4-5:不等式选讲
~
~
2019年湖南单招理科数学模拟试题(二)参考答案
一、选择题:
~
~
~
~
~
~
~
~
二.填空题
~
~
~
三.解答题
~
~
~
~
~
~
~
选修4-4:坐标系与参数方程
~
~
选修4-5:不等式选讲
~
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年湖南省衡阳市常宁市高考数学压轴试卷(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.(5分)设复数z满足=1﹣i,则复数z在复平面内的对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.(5分)已知集合A={y|y=2cos2x﹣1},B={x|y=},则A∪B=( ) A.{x|﹣1≤x≤0} B.{x|0≤x<1} C.{x|﹣1<x<2} D.{x|﹣1≤x≤2} 3.(5分)我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在其所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一例,则输出的S的值为( )
A.4 B.﹣5 C.14 D.﹣23 4.(5分)下列选项中,错误的是( ) A.若p为真,则¬(¬p)也为真 B.若“p∧q为真”,则“p∨q为真”为真命题 C.∃x∈R,使得tanx=2017 D.“2x>”是“logx<0”的充分不必要条件 5.(5分)在如图所示的矩形中随机投掷30000个点,则落在曲线C下方(曲线C为正态分布N(1,1)的正态曲线)的点的个数的估计值为( )
A.4985 B.8185 C.9970 D.24555 6.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是( )
A. B. C. D. 7.(5分)设x0是方程()x=的解,则x0所在的范围是( ) A.(0,) B.(,) C.(,) D.(,1) 8.(5分)函数f(x)=|x|﹣(a∈R)的图象不可能是( )
A. B. C. D. 9.(5分)已知奇函数y=f(x),x∈R,a=[f(x)+x2]dx,则二项式(﹣)9的展开式的常数项为( ) A.﹣ B.﹣ C.﹣1 D.﹣ 10.(5分)如图,圆锥的高PO=,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则点B到平面PAC的距离( )
A. B. C. D.1 11.(5分)已知A是双曲线﹣=1(a>0,b>0)的左顶点,F1,F2分别为左、右焦点,P为双曲线上一点,G是△F1PF2的重心,若=λ,||=,||+||=8,则双曲线的标准方程为( )
A.x2﹣=1 B.﹣y2=1 C.=1 D.x2﹣=1 12.(5分)已知函数f(x)=的图象上有且仅有四个不同的点关于直线y=﹣1的对称点在y=kx﹣1的图象上,则实数k的取值范围是( ) A. B. C. D.
二、填空题:本大题共4小题,每小题5分,共20分. 13.(5分)已知向量=(1,2),=(x,﹣1),若∥(),则,的夹角为 .
14.(5分)若实数x,y满足约束条件,若a<恒成立,则a的取值范围为 . 15.(5分)已知抛物线y2=4x的焦点F,过焦点的直线与抛物线交于A,B两点,则4|FA|+|FB|的最小值为 . 16.(5分)已知锐角△ABC的外接圆O的半径为1,∠B=,则的取值范围为 .
三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(12分)设数列{an}是公差大于0的等差数列,Sn为数列{an}的前n项和,已知S3=9,且2a1,a3﹣1,a4+1构成等比数列. (1)求数列{an}的通项公式;
(2)若数列{bn}满足=2n﹣1(n∈N*),设Tn是数列{bn}的前n项和,证明:Tn
<6. 18.(12分)某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图: (1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值; (2)若购进这批小龙虾100千克,试估计这批小龙虾的数量; (3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表: 等级 一等品 二等品 三等品 重量(g) [5,25) [25,45) [45,55] 按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望. 19.(12分)如图,AB=BE=BC=2AD=2,且AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD, (Ⅰ)求证:面ADE⊥面 BDE; (Ⅱ)求直线AD与平面DCE所成角的正弦值..
20.(12分)已知椭圆E:+=1(a>b>0)上点P,其左、右焦点分别为F1,F2,△PF1F2的面积的最大值为,且满足=3 (1)求椭圆E的方程; (2)若A,B,C,D是椭圆上互不重合的四个点,AC与BD相交于F1,且•=0,求的取值范围. 21.(12分)设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)﹣g(x). (1)若x=0是F(x)的极值点,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离; (2)若x≥0时,函数y=F(x)的图象恒在y=F(﹣x)的图象上方,求实数a的取值范围.
[选修4-4:参数方程与极坐标系] 22.(10分)已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2﹣4ρsinθ+2=0. (Ⅰ)把圆C的极坐标方程化为直角坐标方程; (Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h. [选修4-5:不等式选讲] 23.已知函数f(x)=|x+a|+|x+|(a>0) (1)当a=2时,求不等式f(x)>3的解集; (2)证明:f(m)+f(﹣)≥4. 2017年湖南省衡阳市常宁市高考数学压轴试卷(理科) 参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.(5分)(2017•常宁市模拟)设复数z满足=1﹣i,则复数z在复平面内的对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解答】解:复数z满足=1﹣i,∴z===﹣+i,
则复数z在复平面内的对应的点在第二象限. 故选:B.
2.(5分)(2017•常宁市模拟)已知集合A={y|y=2cos2x﹣1},B={x|y=},则A∪B=( ) A.{x|﹣1≤x≤0} B.{x|0≤x<1} C.{x|﹣1<x<2} D.{x|﹣1≤x≤2} 【解答】解:集合A={y|y=2cos2x﹣1}={y|y=cos2x}={y|﹣1≤y≤1}, B={x|y=}={x|2x﹣x2≥0}={x|0≤x≤2}, 则A∪B={x|﹣1≤x≤2}. 故选:D.
3.(5分)(2017•常宁市模拟)我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在其所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一例,则输出的S的值为( ) A.4 B.﹣5 C.14 D.﹣23 【解答】解:模拟程序的运行,可得 S=1,i=1 满足条件i≤4,执行循环体,S=﹣1,i=2 满足条件i≤4,执行循环体,S=4,i=3 满足条件i≤4,执行循环体,S=﹣5,i=4 满足条件i≤4,执行循环体,S=14,i=5 不满足条件i≤4,退出循环,输出S的值为14. 故选:C.
4.(5分)(2017•常宁市模拟)下列选项中,错误的是( ) A.若p为真,则¬(¬p)也为真 B.若“p∧q为真”,则“p∨q为真”为真命题 C.∃x∈R,使得tanx=2017
D.“2x>”是“logx<0”的充分不必要条件
【解答】解:对于A,若p为真,则¬(¬p)也为真,正确; 对于B,若“p∧q为真”,可得p、q都为真命题,则“p∨q为真”为真命题,故正确; 对于C,由函数y=tanx的值域为R,可判定∃x∈R,使得tanx=2017,故正确; 对于D,由“2x>”得x>﹣1,“logx“可能没意义,故错
故选:D 5.(5分)(2017•常宁市模拟)在如图所示的矩形中随机投掷30000个点,则落在曲线C下方(曲线C为正态分布N(1,1)的正态曲线)的点的个数的估计值为( )
A.4985 B.8185 C.9970 D.24555 【解答】解:∵设随机变量为X,则X~N(1,1), ∴P(0<X<2)=0.6826, P(2<X<3)=(0.9544﹣0.6826)=0.1359, ∴曲线C下方的概率为P(0<X<3)=0.6826+0.1359=0.8185, ∴落在曲线C下方的点的个数的估计值为=8185. 故选B.
6.(5分)(2017•常宁市模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是( )
A. B. C. D.