2019-2020年中考三年模拟立体全新精品模拟试题一

合集下载

江西省上饶市2019-2020学年第三次中考模拟考试数学试卷含解析

江西省上饶市2019-2020学年第三次中考模拟考试数学试卷含解析

江西省上饶市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°2.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.243.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的1 5D.据此估计全校1000名八年级同学,选择科目B的有140人4.下列代数运算正确的是()A.(x+1)2=x2+1 B.(x3)2=x5C.(2x)2=2x2D.x3•x2=x55.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,A.赚了10元B.赔了10元C.赚了50元D.不赔不赚6.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC 的周长为()A.16 B.14 C.12 D.108.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A.3 B.3.5 C.4 D.59.如图所示的几何体的俯视图是()A.B.C.D.10.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC 的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=2511P2m 1m mA.B.C.D.12.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于________.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.15.如图,已知AB∥CD,若14ABCD,则OAOC=_____.16.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.17.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O 的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.18.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:(1)该班学生选择观点的人数最多,共有人,在扇形统计图中,该观点所在扇形区域的圆心角是度.(2)利用样本估计该校初三学生选择“中技”观点的人数.(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).20.(6分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.22.(8分)观察下列算式:① 1 × 3 - 22 =" 3" - 4 = -1② 2 × 4 - 32 =" 8" - 9 = -1③3 × 5 - 42 =" 15" - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.23.(8分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.24.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.25.(10分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.26.(12分)从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)27.(12分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI ),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1. (1)请你完成如下的统计表; AQI0~50 51~100 101~150 151~200 201~250 300以上 质量等级A (优)B (良)C (轻度污染)D (中度污染)E (重度污染)F (严重污染) 天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键2.B【解析】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.【详解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴1 169xx=+,解得:x=2,∴S△ABC=18,故选B.的关键.3.B【解析】【分析】A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用A科目人数总人数×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是1650×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的15,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×75=140人,故D选项正确;故选B.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.4.D【解析】【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3•x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键. 5.A试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用6.B【解析】【分析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.7.B【解析】【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.8.A【解析】【分析】根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.【详解】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥3.5,故选:A.【点睛】本题考查垂线段最短的性质,解题关键是利用垂线段的性质.9.B【解析】【分析】根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线10.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.11.B【解析】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征12.D【解析】分析:根据图示,可得:c<b<0<a,c a b>>,据此逐项判定即可.详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.详解:∵平均数为6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差为:()()()()()2222213646668696 5.25⎡⎤-+-+-+-+-=⎣⎦. 点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.14.1.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO 、OM 、AM 即可解决问题.【详解】解:∵四边形ABCD 是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC =+=,∵AO=OC ,∴152BO AC ==, ∵AO=OC ,AM=MD=4, ∴132OM CD ==, ∴四边形ABOM 的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.15.14【解析】【分析】利用相似三角形的性质即可解决问题;【详解】∵AB ∥CD ,∴△AOB ∽△COD ,∴14OA AB OC CD ==, 故答案为14. 【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.16.y=160﹣80x(0≤x≤2)【解析】【分析】根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.【详解】解:∵汽车的速度是平均每小时80千米,∴它行驶x小时走过的路程是80x,∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).【点睛】本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.17.2 233π-【解析】试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=23,∴阴影部分的面积是S△OCD﹣S扇形COB=12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.18.40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(4)A高中观点.4.446;(4)456人;(4).【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;(4)∵800×44%=456(人),∴估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种.所以恰好选到4位女同学的概率=.考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.20.(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(52,74).【解析】【分析】(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.【详解】解:(1)当x=0时,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)∴30 9330 a ba b-+=⎧⎨++=⎩,解得:12ab=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1,延长PE交x轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得:430k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=52,∴P(52,74).【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点. 21.(1)15人;(2)补图见解析.(3).【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.22.⑴;⑵答案不唯一.如;⑶.【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.23.(1)详见解析;(2)3.【解析】【分析】(1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD =60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB=x,则ED=2x,根据勾股定理列方程求解即可.【详解】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等边三角形;(2)连接OB、OD,作OH⊥BD于H,则DH=12BD=32,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD=sin DHDOH=3,∴⊙O的半径为3.【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.24.(1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.【解析】【分析】(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.【详解】解:(1)△APD≌△CPD.理由:∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(两组角相等则两三角形相似).(3)猜想:PC2=PE•PF.理由:∵△APE∽△FPA,∴AP PEFP PA=即PA2=PE•PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE•PF.【点睛】本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.25.AED ACB∠=∠.【解析】【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.+26.(5005003)【解析】【详解】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解. 试题解析:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=5003+在Rt△ADC中,AD=500,CD=500,则BC=5003+米.答:观察点B到花坛C的距离为(5005003)考点:解直角三角形27.(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.【解析】【分析】(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.【详解】(1)补全统计表如下:AQI 0~50 51~100 101~150 151~200 201~250 300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数16 20 7 3 3 1(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×3150≈29天.【点睛】本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.。

河南省新乡市2019-2020学年第三次中考模拟考试数学试卷含解析

河南省新乡市2019-2020学年第三次中考模拟考试数学试卷含解析

河南省新乡市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y =ax 2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c <1;②a ﹣b+c <1;③b+2a <1;④abc >1.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③2.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒3.若kb <0,则一次函数y kx b =+的图象一定经过( )A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )A .B .C .D .5.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是( )A .B .C .D .6.如图是二次函数y =ax 2+bx +c 的图象,其对称轴为x =1,下列结论:①abc >0;②2a +b =0;③4a +2b +c <0;④若(-,y 1),(,y 2)是抛物线上两点,则y 1<y 2,其中结论正确的是( )A.①②B.②③C.②④D.①③④7.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为()A.10°B.15°C.20°D.25°8.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.99.13-的相反数是()A.13B.13-C.3 D.-310.下列图形中为正方体的平面展开图的是()A.B.C.D.11.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°12.下列运算不正确的是A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S 阴影=_____.14.抛物线y=x2﹣2x+3的对称轴是直线_____.15.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.16.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数kyx=(x<0)的图象上,则k= .17.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是________.18.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B 在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.20.(6分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数2(0) y xx=<的图象于B点,交函数6(0)y xx=>的图象于C,过C作y轴和平行线交BO的延长线于D.(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?21.(6分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?22.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.23.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.(10分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.(1)求x的取值范围;(2)若∠CPN=60°,求x的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).25.(10分)如图,抛物线y=﹣12x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.26.(12分)已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD ,BC =CD .求证:AC =ED .27.(12分)已知函数1y x =的图象与函数()0y kx k =≠的图象交于点()P m n ,. (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x 轴交点负半轴明显大于﹣1,∴y=a ﹣b+c <1,故本选项正确;③由抛物线的开口向下知a <1,∵对称轴为1>x=﹣>1,∴2a+b <1,故本选项正确;④对称轴为x=﹣>1, ∴a 、b 异号,即b >1,∴abc <1,故本选项错误;∴正确结论的序号为②③.故选B .点评:二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >1;否则a <1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.2.A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.3.D【解析】【分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【详解】∵kb<0,∴k、b异号。

2019-2020年中考模拟(3)数学试题(解析版)

2019-2020年中考模拟(3)数学试题(解析版)

2019-2020年中考模拟(3)数学试题(解析版)一、仔细选一选(本题有10小题,每题4分,共40分)1.下列各数中,倒数是﹣3的数是()A. 3 B.﹣3 C. D.﹣考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:倒数是﹣3的数是﹣,故选:D.点评:本题考查了了倒数,分子分母交换位置是求一个数的倒数的关键.2.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3) B.(1,﹣3)C.(﹣1,﹣3) D.(﹣2,0)【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.【解答】解:抛物线y=﹣(x+2)2﹣3的顶点坐标是(﹣2,﹣3),向右平移3个单位后,所得抛物线的顶点坐标是(﹣2+3,﹣3),即(1,﹣3).故选:B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.3.下列命题中,真命题是()A.菱形的对角线互相平分且相等B.矩形的对角线互相垂直平分C.对角线相等且垂直的四边形是正方形D.对角线互相平分的四边形是平行四边形【考点】命题与定理.【分析】根据菱形的性质对A进行判断;根据矩形的性质对B进行判断;根据正方形的判定方法对C进行判断;根据平行四边形的判定方法对D进行判断.【解答】解:A、菱形的对角线互相平分且垂直,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、对角线互相平分的四边形为平行四边形,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.下列运算正确的是()A. a•a2=a2 B.(ab)2=ab2 C.(a2)3=a5 D. a6÷a2=a4考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:常规题型.分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法.解答:解:A、a•a2=a1+2=a3,故本选项错误;B、(ab)2=a2b2,故本选项错误;C、(a2)3=a6,故本选项错误;D、a6÷a2=a4,故本选项正确.故选D.点评:本题考查了同底数幂的乘法,积的乘方的性质,幂的乘方的性质,同底数幂的除法的性质,熟记各运算性质是解题的关键.5.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=35°,则∠CAD的度数是()A. 35° B. 45° C. 55° D.65°考点:圆周角定理.分析:根据圆周角定理,得∠ADC=∠ABC=35°,再根据AD是⊙O的直径,则∠ACD=90°,由三角形的内角和定理即可求得∠CAD的度数.解答:解:∵∠ABC=35°,∴∠ADC=35°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°﹣35°=55°.故选C.点评:本题考查了圆周角定理,直径所对的圆周角等于90°,以及三角形的内角和定理.解题的关键是:根据圆周角定理,求得∠ADC=∠ABC=35°.6.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲乙 B.甲丙 C.乙丙 D.乙考点:全等三角形的判定.分析:甲不符合三角形全等的判断方法,乙可运用SAS判定全等,丙可运用AAS证明两个三角形全等.解答:解:由图形可知,甲有一边一角,不能判断两三角形全等,乙有两边及其夹角,能判断两三角形全等,丙得出两角及其一角对边,能判断两三角形全等,根据全等三角形的判定得,乙丙正确.故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()A. 8.6分钟 B. 9分钟 C. 12分钟 D. 16分钟考点:函数的图象.专题:压轴题.分析:根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.解答:解:他从学校回到家需要的时间是=12分钟.故选C.点评:读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.抛物线y=x2﹣2x与坐标轴的交点个数为()A. 0个 B. 1个 C. 2个 D. 3个考点:二次函数图象上点的坐标特征.分析:找出a,b,c的值,计算出根的判别式的值即可做出判断.解答:解:二次函数y=x2﹣2x,∵△=4﹣0=4>0,∴二次函数与x轴交点个数为2.故选:C.点评:此题考查了二次函数图象上点的坐标特征,抛物线与x轴的交点,根的判别式大于0,抛物线与x有两个交点;根的判别式等于0,抛物线与x轴只有一个交点;根的判别式小于0,抛物线与x轴没有交点.9.已知p、q为方程的两根,则代数式的值为()A. 16 B.±4 C. 4 D. 5考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到p+q=2,pq=﹣2,再利用完全平方根是变形得到=,然后利用整体代入的方法计算即可.解答:解:根据题意得p+q=2,pq=﹣2,所以===4.故选C.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.10.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A. 22 B. 24 C. 10 D. 12考点:圆的综合题.分析:易知直线y=kx﹣3k+4过定点D(3,4),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.解答:解:对于直线y=kx﹣3k+4,当x=3时,y=4,故直线y=kx﹣3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD==5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=2×12=24.故选:B.点评:本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.二、认真填一填(本题有6个小题,每小题5分,共30分)11.分解因式:a2b﹣16b= b(a+4)(a﹣4).考点:提公因式法与公式法的综合运用.分析:首先提取公因式b,进而利用平方差公式进行分解即可.解答:解:a2b﹣16b=b(a2﹣16)=b(a+4)(a﹣4).故答案为:b(a+4)(a﹣4).点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.12.点(﹣3,2)在一个反比例函数的图象上,则这个反比例函数的解析式是 y=﹣.考点:待定系数法求反比例函数解析式.专题:计算题.分析:设反比例函数解析式y=,然后把(﹣3,2)代入计算出k的值即可.解答:解:设反比例函数解析式y=,把(﹣3,2)代入得k=﹣3×2=﹣6,所以反比例函数解析式为y=﹣.故答案为y=﹣.点评:本题考查了待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是 6 .考点:频数与频率.分析:首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.解答:解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为:6.点评:本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总数,各小组频率之和等于1.频率、频数的关系:频率=频数÷数据总数.14.一个材质均匀的正方体的每个面上标有数字1,2,3中的其中一个,其展开图如图所示,随机抛掷此正方体一次,则朝上与朝下的两面上数字相同的概率是.考点:列表法与树状图法;专题:正方体相对两个面上的文字.分析:根据随机事件概率大小的求法,找准两点:①朝上一面所标数字恰好等于朝下一面所标数字的情况数目;②所有标法的总数.二者的比值就是其发生的概率的大小.解答:解:根据展开图可以得出:故1、1相对,2、3相对,1、3相对,那么两个1朝上时,朝上一面所标数字恰好等于朝下一面所标数字,共有6种情况,则朝上一面所标数字恰好等于朝下一面所标数字的概率是.故答案为:.点评:此题主要考查了列举法求概率,正确列举出所有结果是解题关键,用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是π.考点:弧长的计算;旋转的性质.分析:仔细观察顶点O经过的路线可得,顶点O到O′所经过的路线可以分为三段,分别求出三段的长,再求出其和即可.解答:解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l 的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA′=AB的弧长;第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°.所以,O点经过的路线总长S=π+π+π=π.故答案是:.点评:本题考查了旋转的性质,弧长的计算,根据题意,准确分析得到三段的运动过程是解题的关键.16.如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC、BD交于点P,且AB=BD,AP=4PC=4,则cos∠ACB的值是.考点:直角三角形的性质;等腰三角形的性质;锐角三角函数的定义.专题:压轴题.分析:作BE⊥AD于E,交AC于O,则BE∥CD.可证明A、B、C、D四点共圆,根据相交弦定理得出PD,则计算出AB,由勾股定理得出BC,从而得出答案.解答:解:作BE⊥AD于E,交A C于O,则BE∥CD,由AB=BD得E是AD的中点,因此OE是△ACD的一条中位线,从而O是AC的中点,以O为圆心,OA为半径作圆,则由∠ABC=∠ADC=90°可知该圆经过A、B、C、D四点,易知 AP=4,PC=1,AC=AP+PC=5,因此,OA=OC=2.5.OP=OC﹣PC=1.5,由BE∥CD得,BP:PD=OP:PC=1.5,因此BP=1.5PD,从而 AB=BD=BP+PD=2.5PD,由相交弦定理得 BP•PD=AP•PC=4,即 1.5PD2=4,因此 PD2=,从而 AB2=(2.5PD)2=6.25PD2=,由勾股定理得 BC2=AC2﹣AB2=52﹣=,因此 BC=,∴cos∠ACB=BC:AC=.点评:本题考查了直角三角形的性质、等腰三角形的性质以及四点共圆等知识点,综合性较强.三、全面答一答(本大题有8小题,共80分)17.(1)计算:(2)先化简,再求代数式的值:,其中a=(﹣1)2014+tan60°.考点:分式的化简求值;负整数指数幂;二次根式的混合运算;特殊角的三角函数值.分析:(1)分别根据负整数指数幂的计算法则、特殊角的三角函数值及绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据实数混合运算的法则把原式进行化简,再求出a的值代入进行计算即可.解答:(1)解:原式=﹣+|1﹣|•(2+2)=﹣+|1﹣|×2(1+)=﹣+2(﹣1)(+1)=﹣+2=;(2)原式=•=,∵a=1+,∴原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:(1)图中△APD与哪个三角形全等?并说明理由;(2)求证:△APE∽△FPA;(3)猜想:线段PC,PE,PF之间存在什么关系?并说明理由.考点:相似三角形的判定与性质;全等三角形的判定;菱形的性质.专题:证明题;探究型.分析:(1)根据已知利用SAS来判定两三角形全等.(2)根据每一问的结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.解答:解:(1)△APD≌△CPD.理由:∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD.证明:(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA.猜想:(3)PC2=PE•PF.理由:∵△APE∽△FPA,∴.∴PA2=PE•PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE•PF.点评:本题考查了相似三角形的判定,全等三角形的判定,菱形的性质等知识点,本题中依据三角形的全等或相似得出线段的相等或比例关系是解题的关键.19.如图所示,在8×8的网格中,我们把△ABC在图1中作轴对称变换,在图2中作旋转变换,已知网格中的线段ED、线段MN分别是边AB经两种不同变换后所得的像,请在两图中分别画出△ABC经各自变换后的像,并标出对称轴和旋转中心(要求:不写作法,作图工具不限,但要保留作图痕迹).考点:作图-轴对称变换;作图-旋转变换.专题:作图题.分析:(1)连接BD和AE,后连接GH,则GH即为轴对称变换的对称轴,作点C关于GH 的对称点,然后顺次连接各点即可;(2)先根据线段AB经旋转变换后得到MN,找出旋转中心和旋转方向,然后根据旋转规律找出旋转后的各点,顺次连接各点即可.解答:解:所画图形如下所示:其中GH为轴对称变换的对称轴,△DEF与△BAC关于直线GH对称;点O为旋转变换的旋转中心,△MNP由△ABC以点O为旋转中心,顺时针旋转90°得到.点评:本题考查轴对称变换和旋转变换的知识,难度适中,解题关键是对这两种变换的熟练掌握以便灵活运用.20.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽查调查,并将调查结果绘制成如下两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽查的学生数是 500 ,并补全图中的频数分布直方图;(2)扇形统计图中,户外活动时间为2小时部分对应的圆心角的度数为 57.6°.(3)户外活动时间的中位数是 1小时.考点:扇形统计图;条形统计图.专题:数形结合.分析:(1)由总数=某组频数÷频率计算即可解答;(2)根据扇形圆心角的度数=360×比例即可解答;(3)根据中位数的定义,找出第250与第251名的数据即可解答.解答:解:(1)调查人数=100÷20%=500(人);补全频数分布直方图如下:;(2)表示户外活动时间2小时的扇形圆心角的度数=×360°=57.6°;(3)户外活动时间的中位数为(1+1)÷2=1小时.故答案为:500,57.6,1.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.如图1所示,已知温沪动车铁路上有A、B、C三站,B、C两地相距280千米,甲、乙两列动车分别从B、C两地同时沿铁路匀速相向出发向终点C、B站而行,甲、乙两动车离A 地的距离y(千米)与行驶时间表x(时)的关系如图2所示,根据图象,解答以下问题:(1)填空:路程a= 100 ,路程b= 180 .点M的坐标为(,0).(2)求动车甲离A地的距离y甲与行驶时间x之间的函数关系式.(3)补全动车乙的大致的函数图象.(直接画出图象)考点:待定系数法求一次函数解析式;函数的图象;一次函数的图象.分析:(1)根据函数图象即可得出,a,b的值,再利用甲的速度求出时间即可;(2)根据y甲=k1x+b1,把(,0)与(0,100)代入,以及把(,0)与(1,180)代入,分别求出函数解析式即可;(3)根据已知得出动车乙从A站到B站的函数图象经过(1.4,100),进而画出图象即可.解答:解:(1)根据图象可知:a=100km,b=180km,V甲==280×=160km/h,=小时,∴点M的坐标为:(,0);(2)当0≤x≤时,设y甲=k1x+b1,把(,0)与(0,100)代入,,解得:,∴y甲=﹣160x+100;当<x≤1时,y甲=k2x+b2,把(,0)与(1,180)代入,,解得:,∴y甲=160x﹣100;(3)QV乙==200,∴动车乙从A站B站的时间为:100÷200=0.5(小时),∴动车乙从A站到B站的函数图象经过(1.4,100),函数图象如图所示.点评:此题主要考查了待定系数法求一次函数解析式,根据已知得出图象上点的坐标进而求出解析式是解题关键.22.如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,,求AD的长.考点:切线的判定;解直角三角形.专题:探究型.分析:(1)由于OC⊥A D,那么∠O AD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC 是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.解答:解:(1)AC与⊙O相切.证明:∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)解:连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.点评:本题利用了同圆中同弧所对的圆周角相等、等量代换、切线的判定、直径所对的圆周角等于90°、三角函数值.23.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B两种型号,体积一共是20m,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?考点:二元一次方程组的应用.专题:阅读型.分析:(1)等量关系式为:0.8×A型商品件数+2×B型商品件数=20,0.5×A型商品件数+1×B型商品件数=10.5.(2)①付费=车辆总数×600;②付费=10.5×200;③按车付费之所以收费高,是因为一辆车不满.∴由于3辆车是满的,可按车付费,剩下的可按吨付费,三种方案进行比较.解答:解:(1)设A型商品x件,B型商品y件.由题意可得.解之得.答:A型商品5件,B型商品8件.(2)①若按车收费:10.5÷3.5=3(辆),但车辆的容积6×3=18<20,所以3辆汽车不够,需要4辆车.4×600=2400(元).②若按吨收费:200×10.5=2100(元).③先用3辆车运送18m3,剩余1件B型产品,付费3×600=1800(元).再运送1件B型产品,付费200×1=200(元).共需付1800+200=2000(元).∵2400>2100>200∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.24.如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=﹣x+b与y轴交于点P,与边OA交于点D,与边BC交于点E.(1)若直线y=﹣x+b平分矩形OABC的面积,求b的值;(2)在(1)的条件下,当直线y=﹣x+b绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在ON平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;(3)在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上.考点:一次函数综合题.专题:综合题;压轴题.分析:(1)根据直线y=﹣x+b平分矩形OABC的面积,知道其必过矩形的中心,然后求得矩形的中心坐标为(6,3),代入解析式即可求得b值;(2)假设存在O N平分∠CN M的情况,分当直线PM与边BC和边OA相交和当直线PM与直线BC和x轴相交这两种情况求得DM的值就存在,否则就不存在;(3)假设沿DE将矩形OABC折叠,点O落在边BC上O′处,连接PO′、OO′,得到△OPO′为等边三角形,从而得到∠OPD=30°,然后根据(2)知∠OPD>30°,得到沿DE将矩形OABC折叠,点O不可能落在边BC上;若设沿直线y=﹣x+a将矩形OABC折叠,点O恰好落在边BC上O′处,连接P′O′、OO′,则有P′O′=OP′=a,在Rt△OPD和Rt△OAO′中,利用正切的定义求得a值即可得到将矩形OABC沿直线折叠,点O恰好落在边BC上;解答:解:(1)∵直线y=﹣x+b平分矩形OABC的面积,∴其必过矩形的中心由题意得矩形的中心坐标为(6,3),∴3=﹣×6+b解得b=12;(2)如图1假设存在ON平分∠CNM的情况①当直线PM与边BC和边OA相交时,过O作OH⊥PM于H∵ON平分∠CNM,OC⊥BC,∴OH=OC=6由(1)知OP=12,∴∠OPM=30°∴OM=OP•tan30°=当y=0时,由﹣x+12=0解得x=8,∴OD=8∴DM=8﹣;②当直线PM与直线BC和x轴相交时同上可得DM=8+(或由OM=MN解得);(3)如图2假设沿DE将矩形OABC折叠,点O落在边BC上O′处连接PO′、OO′,则有PO′=OP由(1)得BC垂直平分OP,∴PO′=OO′∴△OPO′为等边三角形,∴∠OPD=30°而由(2)知∠OPD>30°所以沿DE将矩形OABC折叠,点O不可能落在边BC上;如图3设沿直线y=﹣x+a将矩形OABC折叠,点O恰好落在边BC上O′处连接P′O′、OO′,则有P′O′=OP′=a由题意得:CP′=a﹣6,∠OPD=∠CO′O在Rt△OPD中,tan∠OPD=在Rt△OAO′中,tan∠AO′O=∴=,即=,AO′=9在Rt△AP′O′中,由勾股定理得:(a﹣6)2+92=a2解得a=,12﹣=所以将直线y=﹣x+12沿y轴向下平移个单位得直线y=﹣x+,将矩形OABC沿直线y=﹣x+折叠,点O恰好落在边BC上.点评:本题考查了一次函数的综合运用,特别是在(2)(3)小题中对可能出现的各种情况都进行了分类讨论,题目综合性强,难度较大.。

【附5套中考模拟试卷】浙江省衢州市2019-2020学年中考第三次模拟数学试题含解析

【附5套中考模拟试卷】浙江省衢州市2019-2020学年中考第三次模拟数学试题含解析

浙江省衢州市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )A.2 B.3 C.4 D.52.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°3.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×10114.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°5.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4abA .B .C .D .7.若一个正多边形的每个内角为150°,则这个正多边形的边数是( ) A .12B .11C .10D .98.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE9.在平面直角坐标系中,点(,)P m n 是线段AB 上一点,以原点O 为位似中心把AOB ∆放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2,2)m n B .(2,2)m n 或(2,2)m n -- C .11(,)22m nD .11(,)22m n 或11(,)22m n --10.下列命题中错误的有( )个 (1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形 (3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径 (5)平分弦的直径垂直于弦 A .1 B .2 C .3 D .4 11.若2a 2a 30--=,代数式a 2a 23-⨯的值是( ) A .0B .2a 3-C .2D .12-12.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A 15B .14C 15D 417度.14.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.15.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.16.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.17.要使式子2x有意义,则x的取值范围是__________.18.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)【发现证明】如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,试判断BE ,EF ,FD 之间的数量关系.小聪把△ABE 绕点A 逆时针旋转90°至△ADG ,通过证明△AEF ≌△AGF ;从而发现并证明了EF=BE+FD . 【类比引申】(1)如图2,点E 、F 分别在正方形ABCD 的边CB 、CD 的延长线上,∠EAF=45°,连接EF ,请根据小聪的发现给你的启示写出EF 、BE 、DF 之间的数量关系,并证明; 【联想拓展】(2)如图3,如图,∠BAC=90°,AB=AC ,点E 、F 在边BC 上,且∠EAF=45°,若BE=3,EF=5,求CF 的长.20.(6分)如图,⊙O 是Rt △ABC 的外接圆,∠C=90°,tanB=12,过点B 的直线l 是⊙O 的切线,点D 是直线l 上一点,过点D 作DE ⊥CB 交CB 延长线于点E ,连接AD ,交⊙O 于点F ,连接BF 、CD 交于点G .(1)求证:△ACB ∽△BED ; (2)当AD ⊥AC 时,求DGCG的值; (3)若CD 平分∠ACB ,AC=2,连接CF ,求线段CF 的长.21.(6分)如图,AC 是O e 的直径,点B 是O e 内一点,且BA BC =,连结BO 并延长线交O e 于点D ,过点C 作O e 的切线CE ,且BC 平分DBE ∠.()1求证:BE CE =;()2若O e 的直径长8,4sin BCE 5∠=,求BE 的长.22.(8分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).23.(8分)如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.24.(10分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.25.(10分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB 交CD于E.(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=12∠F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=25,求⊙O的直径AB.26.(12分)已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =40°. (1)如图1,若D 为弧AB 的中点,求∠ABC 和∠ABD 的度数;(2)如图2,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OCD 的度数.27.(12分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDEAEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CEBD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CEBD ∴= 同理可得:ABE CDE ∆~∆AB AE CD CE ∴=,即8AB CD CE= AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB ACACB ADB ABC ADC BD CD ∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅=故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键. 2.C【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.3.B【解析】【分析】科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.【详解】解:929亿=92900000000=9.29×11.故选B.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.6.D【解析】【分析】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】∵从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,∴D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.7.A【解析】【分析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.【详解】∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数=36030︒︒=1.故选:A.【点睛】8.A【解析】【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.10.D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D .点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.D【解析】【分析】由2a 2a 30--=可得2a 2a 3-=,整体代入到原式()2a 2a 6--=即可得出答案.【详解】解:2a 2a 30--=Q , 2a 2a 3∴-=,则原式()2a 2a31662---===-.故选:D .【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键. 12.A【解析】∵在Rt △ABC 中,∠C=90°,AB=4,AC=1,∴,则cosB=BC AB , 故选A二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1︒【解析】解:根据翻折的性质可知,∠ABE=∠A′BE ,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE ,∠DBC=∠DBC′是解题的关键.14.1【解析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据“SAS”可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=12OC=14AB=1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.15.(6,4)或(﹣4,﹣6)【解析】【分析】设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.【详解】解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,当点P在第一象限时,x+x-2=10,解得x=6,∴x-2=4,∴P(6,4);当点P在第三象限时,-x-x+2=10,解得x=-4,∴x-2=-6,∴P(-4,-6).故答案为:(6,4)或(-4,-6).本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.16.(﹣2016+1)【解析】【分析】据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【详解】解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×,2横坐标为2,∴C(2+1),第2018次变换后的三角形在x轴上方,点C,横坐标为2﹣2018×1=﹣2016,所以,点C的对应点C′的坐标是(﹣2016+1)故答案为:(﹣2016+1)【点睛】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.17.x2【解析】【分析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.18.60°【解析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)DF=EF+BE.理由见解析;(2)CF=1.【解析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AEF≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如图1所示,∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.20.(1)详见解析;(2)14;(3)855.【解析】【分析】(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得DGCG=14;(3)想办法证明AB垂直平分CF即可解决问题.【详解】(1)证明:如图1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切线,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如图2中,∵△ACB∽△BED;四边形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴DGCG=14;(3)解:如图3中,∵tan∠ABC=ACBC=12,AC=2,∴BC=4,BE=4,DE=8,55易证△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,设CF交AB于H,则CF=2CH=2×85 AC BCAB⨯=.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.21.(1)证明见解析;(2)25 BE6=.【解析】【分析】()1先利用等腰三角形的性质得到BD AC⊥,利用切线的性质得CE AC⊥,则CE∥BD,然后证明13∠=∠得到BE=CE ;()2作EF BC ⊥于F ,如图,在Rt △OBC 中利用正弦定义得到BC=5,所以1522BF BC ==,然后在Rt △BEF 中通过解直角三角形可求出BE 的长.【详解】()1证明:BA BC =Q ,AO CO =,BD AC ∴⊥,CE Q 是O e 的切线,CE AC ∴⊥,CE //BD ∴,12∠∠∴=. BC Q 平分DBE ∠,23∠∠∴=,13∠∠∴=,BE CE ∴=;()2解:作EF BC ⊥于F ,如图,O Q e 的直径长8,CO 4∴=.4OC sin 3sin 25BC∠∠∴===, BC 5∴=,BE CE Q =,15BF BC 22∴==, 在Rt BEF V 中,EF 4sin 3sin 1BE 5∠∠=== 设EF 4x =,则BE 5x =,BF 3x ∴=,即53x 2=,解得5x 6=, 25BE 5x 6∴==. 故答案为(1)证明见解析;(2)256BE =. 【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了解直角三角形.22.5 作线段AB 关于AC 的对称线段AB′,作BQ′⊥AB′于Q′交AC 于P ,作PQ ⊥AB 于Q ,此时PQ+QB 的值最小【解析】【分析】(1)利用勾股定理计算即可;(2)作线段AB 关于AC 的对称线段AB′,作BQ′⊥AB′于Q′交AC 于P ,作PQ ⊥AB 于Q ,此时PQ+QB 的值最小.【详解】解:(1)AC=221+2=5.故答案为5.(2)作线段AB 关于AC 的对称线段AB′,作BQ′⊥AB′于Q′交AC 于P ,作PQ ⊥AB 于Q ,此时PQ+QB 的值最小.故答案为作线段AB 关于AC 的对称线段AB′,作BQ′⊥AB′于Q′交AC 于P ,作PQ ⊥AB 于Q ,此时PQ+QB 的值最小.【点睛】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.23.(1)y=﹣x+1;(2)﹣1<x <2;(3)3;【解析】【分析】(1)根据待定系数法求一次函数和二次函数的解析式即可.(2)根据图象以及点A,B 两点的坐标即可求出使二次函数的值大于一次函数的值的x 的取值范围; (3)连接AC 、BC ,设直线AB 交y 轴于点D ,根据ABC ACD BCD S S S =+△△△即可求出△ABC 的面积.【详解】(1)把A (﹣1,2)代入y=﹣x 2+c 得:﹣1+c=2,解得:c=3,∴y=﹣x 2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分别代入y=kx+b得2 2 1.k bk b-+=⎧⎨+=-⎩解得:11, kb=-⎧⎨=⎩∴y=﹣x+1;(2)根据图象得:使二次函数的值大于一次函数的值的x的取值范围是﹣1<x<2;(3)连接AC、BC,设直线AB交y轴于点D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,则11212212322ABC ACD BCDS S S=+=⨯⨯+⨯⨯=+=V V V.【点睛】考查待定系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键. 24.1【解析】解:取时,原式.25.(1)见解析;(2)见解析;(3)AB=1【解析】【分析】(1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;(2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得PE EMAP MF=,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得GP EMAP PE=,从而得出MF GPAP AP=,即MF=GP,由3PF=5PG即35PGPF=,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=25k、AP=35PEtan PAE=∠k,证∠PEM=∠ABP得BP=35k,继而可得BE=5k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.【详解】证明:(1)∵AB是⊙O的直径且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)连接OP,则OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切线,∴OP⊥PF,则∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直径,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=12∠F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四点共圆,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴PE EM AP MF=,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,则GP EM AP PE=,∴MF GP AP AP=,∴MF=GP,∵3PF=5PG,∴35 PGPF=,设PG=3k,则PF=5k,MF=PG=3k,PM=2k 由(2)知∠FPE=∠PEF,∴PF=EF=5k,则EM=4k,∴tan∠PEM=2142kk=,tan∠F=4433kk=,∴tan∠PAE=43 PEAP=,∵=,∴AP=PEtan PAE=∠,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,则tan∠ABP=tan∠PEM,即AP PM BP EM=,∴224kBP k=,则,∴则k=2,∴根据勾股定理得,AB=1.【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.26.(1)45°;(2)26°.【解析】【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD ,∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP=90°,∵DP ∥AC ,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD 是△ODP 的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA ,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD ﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.27.(1)2142y x x =-++;(2)P (1,72); (3)3或5. 【解析】【分析】(1)将点A 、B 代入抛物线212y x bx c =-++,用待定系数法求出解析式. (2)对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , 由∠PBO=∠BAO ,得tan ∠PBO=tan ∠BAO ,即PG BO BG AO=,可求出P 的坐标. (3)新抛物线的表达式为2142y x x m =-++-,由题意可得DE=2,过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF ,∴2=1DE EO DO FH OF OH ==,∴FH=1.然后分情况讨论点D 在y 轴的正半轴上和在y 轴的负半轴上,可求得m 的值为3或5.【详解】解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴2204b c c --+=⎧⎨=⎩,解得14b c =⎧⎨=⎩, ∴抛物线解析式为2142y x x =-++,(2)()2211941222y x x x =-++=--+, ∴对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , ∵∠PBO=∠BAO ,∴tan ∠PBO=tan ∠BAO ,∴PG BO BG AO=, ∴121BG =, ∴12BG =, 72OG =, ∴P (1,72), (3)设新抛物线的表达式为2142y x x m =-++- 则()0,4D m -,()2,4E m -,DE=2过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF∴2=1DE EO DO FH OF OH ==, ∴FH=1.点D 在y 轴的正半轴上,则51,2F m ⎛⎫-- ⎪⎝⎭, ∴52OH m =-, ∴42512DO m OH m -==-, ∴m=3,点D 在y 轴的负半轴上,则91,2F m ⎛⎫- ⎪⎝⎭,∴92 OH m=-,∴42912DO mOH m-==-,∴m=5,∴综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组302xx+>⎧⎨-≥-⎩的整数解有()A.0个B.5个C.6个D.无数个2.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AE DB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=3.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-14.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=5.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18B.16C.14D.126.方程(2)0x x+=的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=27.二次函数2y x=的对称轴是()A.直线y1=B.直线x1=C.y轴D.x轴8.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.69.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.310.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.12011.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°12.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤3a b2 .你认为其中正确信息的个数有A.2个B.3个C.4个D.5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC 于点E,则∠DAE=______.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.15.如图,正方形ABCD的边长为422+,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.16.如图,在平面直角坐标系中有一正方形AOBC,反比例函数kyx=经过正方形AOBC对角线的交点,半径为(422-)的圆内切于△ABC,则k的值为________.17.如图,点A在双曲线kyx上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.18.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C 处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP 与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.20.(6分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。

2019-2020年中考数学模拟测试试题(三视图)

2019-2020年中考数学模拟测试试题(三视图)

2019-2020年中考数学模拟测试试题(三视图)一、选择题1.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱 B.圆锥 C.圆台 D.长方体2.一个几何体的三视图如图所示,则这个几何体是()A.B. C.D.3.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π4.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.75.长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.52 B.32 C.24 D.96.如图是某几何体的三视图,则该几何体的侧面展开图是()A. B.C.D.7.如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A.3个B.4个C.5个D.6个8.某几何体的三视图如图所示,则组成该几何体共用了()小方块.A.12块B.9块C.7块D.6块9.已知一个正棱柱的俯视图和左视图如图,则其主视图为()A.B.C.D.10.一个几何体的三视图如图所示,则这个几何体摆放的位置是()A.B.C.D.11.如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.12.如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π13.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8 B.9 C.10 D.11二、填空题14.如图是某个几何体的三视图,该几何体是.15.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图.则这个几何体可能是由个正方体搭成的.16.一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是.17.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.19.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.参考答案一、选择题1.B;2.D;3.D;4.C;5.C;6.A;7.B;8.C;9.D;10.A;11.B;12.C;13.B;二、填空题14.圆锥;15.6或7或8;16.球体;17.5;18.6;19.72;。

2019-2020中考数学模拟试卷含答案

2019-2020中考数学模拟试卷含答案

2019-2020 中考数学模拟试卷含答案一、选择题1.如图 A, B, C 是上的三个点,若,则等于()A.50°B. 80°C. 100 °D. 130 °2.如图是由 5 个同样大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.3.在下边的四个几何体中,左视图与主视图不同样的几何体是()A.B.C.D.4.以下命题正确的选项是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形5.如图,在菱形ABCD 中, E 是 AC 的中点, EF∥ CB ,交 AB 于点 F,假如 EF=3 ,那么菱形 ABCD 的周长为()A.24B.18C.12D.96.如图 ,菱形 ABCD 的两条对角线订交于O,若 AC=6,BD=4, 则菱形 ABCD 的周长是 ()A. 24B. 16C.4 13D.2 37.如图,由 5 个完好同样的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.将两个大小完好同样的杯子(如图甲)叠放在一同(如图乙),则图乙中实物的俯视图是().A.B.C.D.9.如图, AB ∥ CD , AE 均分∠ CAB 交 CD 于点 E,若∠ C=70°,则∠ AED 度数为 ( )A. 110°B. 125°C. 135°D. 140°10.以下各式化简后的结果为 32的是()A.6B.12C.18D.3611.察看以下图形中点的个数,若按其规律再画下去,能够获取第9 个图形中全部点的个数为()A. 61B. 72C. 73D. 8612.某商品的标价为200 元, 8 折销售仍赚40 元,则商品进价为()元.A.140B. 120C.160D.100二、填空题13.当直线y22k x k3经过第二、三、四象限时,则k 的取值范围是_____.14.如图:在△ABC 中, AB=13 , BC=12 ,点 D, E 分别是 AB , BC 的中点,连结DE,CD,假如DE=2.5ACD的周长是 _____.,那么△15.对于 x 的一元二次方程(a+ 1)x 2- 2x+3= 0 有实数根,则整数 a 的最大值是 _____.16.已知一组数据6x,33 5 1的众数是3和5,则这组数据的中位数是 _____.,,,,17.当m____________ 时,解分式方程x5mx 会出现增根.x3318.对于有理数 a、 b,定义一种新运算,规定a☆ b= a2﹣ |b|,则 2☆(﹣ 3)= _____.19.已知 a b b 10 ,则 a 1 __.20.计算:x2x1(11) =________.2x x1三、解答题21.现代互联网技术的宽泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物件,经认识有甲、乙两家快递企业比较适合.甲企业表示:快递物件不超出 1 千克的,按每千克22 元收费;超出 1 千克,超出的部分按每千克15 元收费.乙企业表示:按每千克16 元收费,另加包装费 3 元.设小明快递物件x 千克.(1) 请分别写出甲、乙两家快递企业快递该物件的花费y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递企业更省钱?22.今年 5 月份,我市某中学睁开争做“五好小公民”征文竞赛活动,赛后随机抽取了部分参赛学生的成绩,按得分区分为A, B, C, D 四个等级,并绘制了以下不完好的频数散布表和扇形统计图:等级成绩( s)频数(人数)A90< s≤1004B80< s≤90xC70< s≤8016D s≤706依据以上信息,解答以下问题:(1)表中的x=;(2)扇形统计图中 m=, n=, C 等级对应的扇形的圆心角为度;(3)该校准备从上述获取 A 等级的四名学生中选用两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1, a2表示)和两名女生(用b1, b2表示),请用列表或画树状图的方法求恰巧选用的是a1和 b1的概率.23.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ ABC 三个极点都在格点上,请解答以下问题:(1)写出 A , C 两点的坐标;(2)画出△ ABC 对于原点 O 的中心对称图形△ A 1B 1C1;C 旋转至C2经(3) 画出△ ABC 绕原点 O 顺时针旋转90°后获取的△ A 2B2C2,并直接写出点过的路径长.24.计算:1 a b a 2b(2a b)2; 2 11m 24m 4.m 1m2m25.甲、乙两家绿化保养企业各自推出了校园绿化保养服务的收费方案.y(元)与绿化面积x(平方米)是一次函数关系,如图所甲企业方案:每个月的保养花费示.5500元;绿化面积超出1000乙企业方案:绿化面积不超出1000 平方米时,每个月收取花费5500 元的基础上,超出部分每平方米收取 4 元.平方米时,每个月在收取(1)求以下图的 y 与 x 的函数分析式:(不要求写出定义域);(2)假如某学校当前的绿化面积是1200 平方米,试经过计算说明:选择哪家企业的服务,每个月的绿化保养花费较少.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.D分析: D【分析】试题剖析:依据圆周的度数为360°,可知优弧AC的度数为360°-100 °=260°,而后依据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.应选 D考点:圆周角定理2.B分析: B【分析】【剖析】依据从上面看获取的图形是俯视图,可得答案.【详解】从上面看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,应选: B.【点睛】本题考察了简单几何体的三视图,从上面看上面看获取的图形是俯视图.3.B分析: B【分析】【剖析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所获取的图形,仔细察看即可求解.【详解】A、正方体的左视图与主视图都是正方形,故 A 选项不合题意;B、长方体的左视图与主视图都是矩形,可是矩形的长宽不同样,故 B 选项与题意符合;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;应选 B.【点睛】本题主要考察了几何题的三视图,解题重点是能正确画出几何体的三视图.4.A分析: A【分析】【剖析】运用矩形的判断定理,即可迅速确立答案.【详解】解: A. 有一个角为直角的平行四边形是矩形知足判断条件; B 四条边都相等的四边形是菱形,故 B 错误; C 有一组邻边相等的平行四边形是菱形,故 C 错误 ;对角线相等且相互均分的四边形是矩形,则 D 错误;所以答案为 A.【点睛】本题考察了矩形的判断,矩形的判断方法有: 1.有三个角是直角的四边形是矩形; 2.对角线相互均分且相等的四边形是矩形; 3.有一个角为直角的平行四边形是矩形; 4.对角线相等的平行四边形是矩形.5.A分析: A【分析】【剖析】易得BC 长为 EF 长的 2 倍,那么菱形ABCD 的周长 =4BC 问题得解.【详解】∵ E 是 AC 中点,∵E F∥BC,交 AB 于点 F,∴EF 是△ABC 的中位线,∴BC=2EF=2× 3=6 ,∴菱形 ABCD 的周长是 4×6=24,应选 A.【点睛】本题考察了三角形中位线的性质及菱形的周长公式,娴熟掌握有关知识是解题的重点 .6.C分析: C【分析】【剖析】ABCD O, AC=6 , BD=4 ,即可得AC ⊥BD ,求得OA OB 的长,而后利用勾股定理,求得AB的长,既而求得答案.【详解】∵四边形 ABCD 是菱形, AC=6 , BD=4 ,∴AC ⊥BD ,OA=1AC=3 ,2OB=1BD=2 ,2AB=BC=CD=AD,∴在 Rt△AOB 中, AB=22+32 = 13,∴菱形的周长为413.应选 C.7.B分析: B【分析】试题剖析:从左面看易得第一层有 2 个正方形,第二层最左侧有一个正方形.应选B.考点:简单组合体的三视图.8.C分析: C【分析】从上面看,看到两个圆形,应选 C.9.B分析: B【分析】【剖析】由 AB ∥ CD ,依据两直线平行,同旁内角互补可得∠CAB=110°,再由角均分线的定义可得∠CAE=55°,最后依据三角形外角的性质即可求得答案.【详解】∵AB ∥CD,∴∠ BAC+ ∠ C=180°,∵∠ C=70°,∴∠ CAB=180° -70 °=110°,又∵ AE 均分∠ BAC ,∴∠ CAE=55°,∴∠ AED= ∠ C+∠CAE=125°,应选 B.【点睛】本题考察了平行线的性质,角均分线的定义,三角形外角的性质,娴熟掌握有关知识是解题的重点 .10.C分析: CA、 6 不可以化;B、12 =23,故;C、18=32,故正确;D、36=6,故;故 C.点睛:本主要考二次根式,熟掌握二次根式的性是解的关.11.C分析: C【分析】【剖析】第 n 个形中有a n个点( n 正整数),察形,依据各形中点的个数的化可得“a2出化律n + n+1( n 正整数)”,再代入 n= 9即可求出.n=【解】第 n 个形中有 a n个点( n 正整数),察形,可知: a123= 5=1×2+1+2,a = 10= 2×2+1+2+3, a= 16= 3×2+1+2+3+4,⋯ ,∴a n= 2n+1+2+3+ ⋯+( n+1)= n2+ n+1 (n 正整数),∴a9=×92+ ×9+1 = 73.故 C.【点睛】本考了律型:形的化,依据各形中点的个数的化找出化律“a n=n2+ n+1( n 正整数)”是解的关.12.B分析: B【分析】【剖析】商品价x 元,售价每件0.8 ×200 元,由利 =售价 -价成立方程求出其解即可.【解】解:商品的价x 元,售价每件0.8 ×200 元,由意得二、填空题13.【分析】【剖析】依据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考察一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的重点分析: 1 k 3 .【分析】依据一次函数y kx b ,k0 ,b0 时图象经过第二、三、四象限,可得 2 2k0 ,k 3 0 ,即可求解;【详解】y 2 2k x k 3经过第二、三、四象限,∴ 22k 0 , k 30 ,∴ k1,k 3,∴1 k 3 ,故答案为: 1 k 3 .【点睛】本题考察一次函数图象与系数的关系;掌握一次函数y kx b ,k与b对函数图象的影响是解题的重点.14.18【分析】【剖析】依据三角形中位线定理获取AC=2DE=5AC∥DE依据勾股定理的逆定理获取∠ ACB=90°依据线段垂直均分线的性质获取DC=BD依据三角形的周长公式计算即可【详解】∵ DE分别是 A分析: 18【分析】【剖析】依据三角形中位线定理获取AC=2DE=5 , AC ∥DE,依据勾股定理的逆定理获取∠ACB=90°,依据线段垂直均分线的性质获取DC=BD ,依据三角形的周长公式计算即可.【详解】∵D ,E 分别是 AB , BC 的中点,∴AC=2DE=5 , AC ∥ DE,AC 2+BC 2=52+12 2=169,AB 2=13 2=169,∴AC 2+BC 2=AB 2,∴∠ ACB=90°,∵AC ∥DE,∴∠ DEB=90°,又∵ E 是 BC 的中点,∴直线 DE 是线段 BC 的垂直均分线,∴DC=BD ,∴△ ACD 的周长 =AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为 18.【点睛】本题考察的是三角形中位线定理、线段垂直均分线的判断和性质,掌握三角形的中位线平行于第三边,而且等于第三边的一半是解题的重点.15.-2【分析】【剖析】若一元二次方程有实数根则根的鉴别式△=b2- 4ac≥0成立对于 a 的不等式求出 a 的取值范围还要注意二次项系数不为 0【详解】∵对于 x 的一元二次方程 (a +1)x2 -2x+ 3= 0 有实数根分析:-2【分析】【剖析】若一元二次方程有实数根,则根的鉴别式△=b2-4ac≥0,成立对于 a 的不等式,求出a 的取值范围.还要注意二次项系数不为0.【详解】∵对于 x 的一元二次方程(a+ 1)x2- 2x+ 3= 0 有实数根,∴△ =4-4 ( a+1)×3≥0,且 a+1≠0,解得 a≤- 2,且 a≠-1,3则 a 的最大整数值是 -2.故答案为: -2.【点睛】本题考察了根的鉴别式,一元二次方程ax2 +bx+c=0 ( a≠0)的根与△=b2 -4ac 有以下关系:①当△> 0 时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△< 0 时,方程无实数根.上面的结论反过来也成立.也考察了一元二次方程的定义.16.4【分析】【剖析】先依据众数的定义求出 x=5 再依据中位数的定义进行求解即可得【详解】∵数据 6x3351 的众数是 3 和 5∴x=5 则这组数据为 133556∴这组数据的中位数为 =4 故答案为: 4【点睛】本题主分析: 4【分析】【剖析】先依据众数的定义求出x=5,再依据中位数的定义进行求解即可得.【详解】∵数据6,x, 3, 3, 5, 1 的众数是3 和 5,∴x=5 ,则这组数据为1、 3、 3、 5、 5、 6,35∴这组数据的中位数为=4,2故答案为: 4.【点睛】本题主要考察众数和中位数,娴熟掌握众数和中位数的定义以及求解方法是解题的重点 .17.2【分析】剖析:分式方程的增根是分式方程转变成整式方程的根且使分式方程的分母为 0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时 3-5=-m解得 m=2故答案为: 2分析: 2【分析】剖析:分式方程的增根是分式方程转变成整式方程的根,且使分式方程的分母为0 的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当 x=3 时, 3-5=-m ,解得 m=2,故答案为: 2.点睛:本题考察了分式方程的增根.增根问题可按以下步骤进行:①让最简公分母为 0 确立增根;②化分式方程为整式方程;③把增根代入整式方程即可求得有关字母的值.18.1【分析】解: 2☆(﹣ 3)=22﹣| ﹣3|=4 ﹣3=1 故答案为 1 点睛:本题考察有理数的混淆运算掌握规定的运算方法是解决问题的重点分析: 1【分析】解: 2☆(﹣ 3) =2 2﹣ |﹣3|=4 ﹣3=1.故答案为1.点睛:本题考察有理数的混淆运算,掌握规定的运算方法是解决问题的重点.19.【分析】【剖析】利用非负数的性质联合绝对值与二次根式的性质即可求出 ab 的值从而即可得出答案【详解】∵ +|b ﹣ 1|=0 又∵∴ a﹣ b=0 且 b﹣1=0 解得: a=b=1∴a+1=2 故答案为 2【点睛】本题主要分析:【分析】【剖析】利用非负数的性质联合绝对值与二次根式的性质即可求出a,b 的值,从而即可得出答案.【详解】∵ a b +|b﹣1|=0,又∵ a b 0 , | b 1|0 ,∴a﹣ b=0 且 b﹣ 1=0 ,解得: a=b=1,∴a+1=2.故答案为2.【点睛】本题主要考察了非负数的性质以及绝对值与二次根式的性质,依据几个非负数的和为0,那么每个非负数都为0 获取对于a、 b 的方程是解题的重点.20.【分析】【剖析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形获取÷;接下来利用分式的除法法例将除法运算转变成乘法运算而后约分即可获取化简后的结果【详解】原式=÷=·=故答案为【点睛1分析:x 1【分析】【剖析】先对括号内分式的通分,并将括号外的分式的分母利用完好平方公式变形获取xx 1 1 2÷x;接下来利用分式的除法法例将除法运算转变成乘法运算,而后约分即x 11可获取化简后的结果 .【详解】原式 =xx 1 1 1 2÷1xxxx 1=2 ·x 1x=1.x 11故答案为.x 1【点睛】本题考察了公式的混淆运算,解题的重点是娴熟的掌握分式的混淆运算法例.三、解答题21. 答案看法析【分析】试题剖析:( 1)依据 “甲企业的花费 =起步价 +高出重量 ×续重单价 ”可得出 y 甲对于 x 的函数关系式,依据 “乙企业的花费 =快件重量 ×单价 +包装花费 ”即可得出 y 乙对于 x 的函数关系式;(2)分 0< x ≤1和 x >1 两种状况议论,分别令 y 甲< y 乙 、 y 甲 =y 乙 和方程或不等式即可得出结论.试题分析:( 1)由题意知:y 甲 > y 乙 ,解对于x 的当 0< x ≤1时, y 甲=22x ;当 1< x 时, y 甲 =22+15( x ﹣ 1) =15x+7.y 乙=16x+3;∴ y 甲22x? ( 0 x 1) =16x3 ;{7?(x , y 乙15x 1)(2)① 当 0 < x ≤1时,令 y 甲 < y 乙 ,即 22x < 16x+3,解得: 0< x < 1;2令 y 甲=y 乙,即 22x=16x+3,解得: x= 1;2令 y 甲> y 乙 ,即 22x > 16x+3,解得:1<x ≤1.2②x> 1 时,令 y 甲 < y 乙 ,即 15x+7< 16x+3,解得: x > 4;令 y 甲=y 乙,即 15x+7=16x+3,解得: x=4;令 y 甲> y 乙 ,即 15x+7> 16x+3,解得: 0<x < 4.综上可知:当1< x<4时,选乙快递企业省钱;当x=4 或x= 1时,选甲、乙两家快递公22司快递费同样多;当0< x<1或 x> 4 时,选甲快递企业省钱.2考点:一次函数的应用;分段函数;方案型.22.( 1) 14;( 2)10、 40、144;( 3)恰巧选用的是a1和 b1的概率为1.6【分析】【剖析】( 1)依据 D 组人数及其所占百分比可得总人数,用总人数减去其余三组人数即可得出x 的值;(2)用A、 C 人数分别除以总人数求得 A 、 C 的百分比即可得m、 n 的值,再用360°乘以C 等级百分比可得其度数;(3)第一依据题意列出表格,而后由表格求得全部等可能的结果与恰巧选用的是a1和b1的状况,再利用概率公式即可求得答案.【详解】( 1)∵被检查的学生总人数为∴x=40 ﹣( 4+16+6 )=14 ,故答案为14;6÷15%=40 人,(2)∵ m%=4×100%=10%,n%=16×10%=40%,4040∴m=10 、 n=40 ,C 等级对应的扇形的圆心角为360 °×40%=144°,故答案为10、 40、 144;(3)列表以下:a1a2b1b21a2, a1b1, a1b2, a1a2a1 a2b1 a2b2 a2a,,,1a1, b1a2, b1b2, b1b2a1, b2a2, b2b1, b2b由表可知共有12种等可能结果,此中恰巧选用的是a1和 b1的有 2 种结果,∴恰巧选用的是21a1和 b1的概率为.126【点睛】本题考察的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中获取必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小;概率=所讨状况数与总状况数之比.23. (1)A点坐标为(﹣ 4, 1),C 点坐标为(﹣ 1, 1); (2)看法析;(3)10π.2【分析】【剖析】(1)利用第二象限点的坐标特色写出A , C 两点的坐标;(2)利用对于原点对称的点的坐标特色写出A 1、 B 1、C1的坐标,而后描点即可;(3)利用网格特色和旋转的性质画出点A 、B 、 C 的对应点 A 2、 B2、 C2,而后描点获取△A 2B2C2,再利用弧长公式计算点 C 旋转至 C2经过的路径长.【详解】解: (1)A 点坐标为 (﹣ 4, 1),C 点坐标为 (﹣ 1, 1);(2)如图,△A 1B 1C1为所作;(3)如图,△A 2B 2C2为所作,OC=1232= 10,点 C旋转至 C2经过的路径长=9010 = 10 π.1802【点睛】本题考察了作图﹣旋转变换:依据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此能够经过作相等的角,在角的边上截取相等的线段的方法,找到对应点,按序连结得出旋转后的图形.也考察了弧长公式.13a25ab 3b2;( 2)m24.().m 2【分析】【剖析】1依据多项式乘多项式、完好平方公式睁开,而后再归并同类项即可;2括号内先通分进行分式的减法运算,而后再进行分式的除法运算即可.【详解】1a b a2b(2a b)2= a22ab ab2b24a24ab b23a25ab3b 2;(2) 11m24m 4 m 1m 2mm 2 m m 1=m 1 (m 2) 2m.m 2【点睛】本题考察了整式的混淆运算、分式的混淆运算,娴熟掌握它们的运算法例是解题的重点.25.( 1) y=5x+400.( 2)乙 .【分析】试题剖析:( 1)利用待定系数法即可解决问题;(2)绿化面积是1200 平方米时,求出两家的花费即可判断;b 400k5试题分析:( 1)设 y=kx+b ,则有,解得,100k b 900b400∴y=5x+400 .(2)绿化面积是1200 平方米时,甲企业的花费为6400 元,乙企业的花费为5500+4 ×200=6300 元,∵6300 < 6400∴选择乙企业的服务,每个月的绿化保养花费较少.。

2019-2020年中考数学模拟试题(一)

2019-2020年中考数学模拟试题(一) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第8页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利! 第Ⅰ卷(选择题 共30分) 注意事项: 1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码. 2.答案答在试卷上无效,每小题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号的信息点. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.1tan303的值等于

(A) 16 (B)36 (C)39 (D) 33 2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是

3.纳米是一个长度单位,1纳米=0.000 000 001米,如果把水分子看成是球形,它的直径约为0. 4纳米,用科学记数法表示为n104米,那么n的值是 (A)9 (B)10 (C)-9 (D)-10 4.如图,⊙O的直径AB=10cm,弦CD⊥AB,垂足为P.若OP︰OB =3︰5,则CD 的长为 (A)6cm (B)4cm (C)8cm (D)10cm 5.某市环保检测中心网站公布的2013年1月31日的PM2.5研究性检测部分 数据如下表: 时间 0:00 4:00 8:00 12:00 16:00 20:00 PM2.5(mg/m3) 0.027 0.035 0.032 0.014 0.016 0.032 则该日这6个时刻的PM2.5的众数和中位数分别是 (A)0.032, 0.0295 (B) 0.026, 0.0295 (C) 0.026, 0.032 (D)0.032, 0.027 6.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边 形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考三年模拟立体全新精品模拟试题一 一、选择题

1.(10苏州)在学习、生活中所涉及到的下列数值最接近实际情况的是 A.一只鸡蛋的质量约为500g B.一个中学生的正常体重约为1000N C.初中生跑100m所需的时间约为8s D.我们现在所用的物理课本长度约为26cm 答案:D 2.(2011年山东省潍坊市 第1题)噪声污染已成为危害人们生活的三大污染之一,控制噪声污染应防止噪声产生、阻断噪声传播和防止噪声进入人耳三方面着手,下事例中属于阻断噪声传播的是( )

【答案】B 3.(2011山东聊城,第Ⅰ卷第8题)如图所示,闭合开关S,使滑动变阻器的滑片向左移动,则

A.电流表示数变小 B.电压表示数变大 C.电压表示数不变 D.灯泡变亮 【答案】D 4. (2010宜宾)同学们在以“假如……”为主题的讨论中,下列四种观点正确的是 ( ) A. 假如失去摩擦力,任何物体都不可能处于静止状态 B. 假如没有了空气,声音就一定不能传播 C. 假如失去了重力,天平就不能再用来测量物体的质量 D. 假如没有了大气压强,地面上的物体都会飘向高空 答案:C 5.(09湖南娄底).物理知识渗透于我们生活的方方面面。以下的安全警示语中涉及到惯性知识的是 A.输电铁塔下挂有“严禁攀爬” B.汽车的尾部标有“保持车距” C.商场走廊过道标有“小心碰头” D.景区水池边立有“水深危险” 答案:B 甲 电子元件 乙

电压/V

电流 /A 0 0.1 0.2 0.3 0.4 0.5

1 2

5 3 4

6.(2011浙江义乌,第20题)如图甲所示,电源电压恒为9伏,滑动变阻器的最大阻值为100欧,电流在0.1安~0.4安之间时电子元件均能正常工作。若通过此电子元件的电流与其两端电压的关系如图乙所示,则下列判断正确的是 A.电子元件工作时,电阻保持不变 B.电子元件处于正常工作状态时,电路消耗的最小功率为3.6瓦 C.当P在中点时,电子元件与滑动变阻器的电压之比为1:1 D.为使电子元件处于正常工作状态,滑动变阻器的阻值范围应控制在12.5欧~70欧 【答案】D

7. (08衢州)如图所示,某同学将自己戴的近视眼镜放在蜡烛与凸透镜之间,在光屏上得到一个清晰的像。在下列表示视力矫正的光路图中,与上述实验情形一致的是 )

8.(08长沙)如图所示,小灯泡Ll和L2规格相同,当开关S闭合时,两灯均发光,电流表A和A2比较, 的示数较大。经过一时间后有一盏灯熄灭,电流表A的示数变小,且滑片P无论怎样滑动,电流表A的示数都不再发生变化,由此可判断,灯 已烧坏。

答案A;L1

9.(2011年安徽省 第12题)图为伽利略制造的第一个温度计,它可以测量气体的温度。若外部大气压不变,在气温发生变化时,球形容器内气体的体积随之发生变化,使玻璃管内液面上升或下降,从而测量出气温的高低。以下说法正确的是【 】

A.当气温升高,球内气体体积膨胀,玻璃管内液面下降 B.当气温升高,球内气体体积缩小,玻璃管内液面上升 图11(a) 图11

C.当气温降低,球内气体体积缩小,玻璃管内液面下降 D.当气温降低,球内气体体积膨胀,玻璃管内液面上升 【答案】A 10.(2011四川内江,第Ⅰ卷5题)核能的开发和利用给人类解决能源危机带来了希望,但同时也可能带来严重环境污染,1986年切尔诺贝利核电站和2011年3月日本福岛 核电站都发生了严重的核泄漏,其中,福岛第一核电站核泄漏使我国31个省市受到不同程度的核辐射污染,则关于核辐射及核能的利用,以下说法正确的是 A. 放射性元素放出的射线由α射线、β射线、γ射线 B. α射线是高速运动的电子流,β射线是带正电的氦原子核流,γ射线是穿透能力很强的电磁波 C. 人体接受少量的放射性核辐射、强剂量或长时间的照射,对人体都是有害的 D. 核反应堆是一种控制的链式反应装置,地震等自然灾害不会对它产生影响 【答案】A

二、填空题 11.(2010绍兴)在第21届冬奥会花样滑冰双人滑比赛中,申雪和赵宏博摘得了中国花样滑冰在冬奥会历史上的第一块金牌。 (1)赵宏博拉着申雪在冰场上直线滑行时(如图),申雪相对于赵宏博是_________的(填“静止”或“运动”)。 (2)如果赵宏博质量是80千克(包括鞋)。他站在冰面上时,与冰面的总接触面积约为l6厘米2,他对冰面的压强是__________帕。 (3)在冰面上滑行时。冰刀所经过的地方会出现水痕,这水痕中的水是冰____________而成的(填一物态变化名称)。 答案:静止 5×105 熔化

12.(2011年福建省泉州市,第22题)如图l1(a)所示的电路中,电源电压不变。闭合开关后.滑片由b端向a端移动过程中,电压表示数U与电流表示数I的关系如图11(b),则电源电压U= V,电阻R= Ω,滑动变阻器的最大阻值是 Ω。

【答案】6 12 48 13.(2010.扬州)已知水的比热容为4.2×103J/(kg·℃),则1kg的水温度升高50℃吸收________ _________J的热量.生活中我们经常看到司机往汽车发动机的水箱里灌水,这是因为水的_____ _____大,所以在相同条件下水能带走较多的_______ _______,冷却效果好. 【答案】_2.1×105 _比热容_热量 14.(10·烟台)某电磁波的波形如图11所示.则该电磁波的波长是 ,频率

是 . 【答案】0.04m 7.5X109Hz 15.(08黄冈)建筑工地上,施工人员用起重机吊臂上的滑轮组吊起建筑材料(如图)。绕在滑轮组上的钢丝绳最大拉力为6×103N,不计滑轮、吊钩、绳的自重及摩擦,一次最多能起吊 N的建筑材料,实际使用该滑轮组最多只能吊起5.4×103N的建筑材料,且将建筑材料1s内匀速吊起了1m,起重机的功率是 W,机械效率为 。若吊起的建筑材料 重力减小,机械效率将 。(“增大”、“减小”或“不变”) 答案:1.8×104 1.8×104 30% 减小

三、作图与实验题新课标第一网 16.(08安徽)如图所示,不计重力的杠杆OB可绕O点转动,重为6N的物体P悬挂在杠杆的中点A处,拉力F1与杠杆成30°角,杠杆在水平位置保持平衡。请在图中画出拉力F1的力臂,并求出此状态下拉力F1=_______N。

答案:;6 17.(2011江苏苏州,第24题第(2)小题))根据平面镜成像特点,在图乙中作出物体AB在平面镜MN中所成的像A′B′。

【答案】 18. (2010湛江)有下列器材和物品:①天平(含砝码)、②弹簧测力计、③量筒、④刻度尺、⑤烧杯、⑥细线(质量、体积忽略不计)、⑦水(已知水的密度ρ水)、⑧长方体小矿石. 岩岩同学测小矿石的密度,主要实验步骤是: A.用量筒测出小矿石的体积为5ml;B.将小矿石从水中取出,立即放在已调节平衡的天平盘上,加减砝码和游码,测出小矿石的质量为12.5g. (1)在调节天平时,发现指针偏向分度盘的右侧(如图10所示),此时应将平衡螺母向——(选填“左”或“右”)端调;依据岩岩的数据,小矿石密度ρ石=________g/cm3,请你评估:这一实验过程测算出的密度结果将_________(选填“偏大”、 “偏小”或“准确”),原因是_________________。 (2)请利用上述部分器材设计出另一种测小矿石密度的方法.(写一种即可) A.选择的实验器材是:____________________________(填器材前面的序号). B.主要的实验步骤:

C.小矿石密度的最终表达式:__________________________。 答案:(1)左 2.5 偏大 矿石粘水质量偏大 (2)A.选择的实验器材是:①④ B.主要的实验步骤: ①天平测出小矿石的质量m;②用刻度尺分别测出小矿石的三条棱的长度a、b和c。 C.小矿石密度表达式:ρ石=m/abc 或(2)A.选择的实验器材是:②④ B.主要的实验步骤:新课标第一网 ①用弹簧测力计测出小矿石的重量G; ②用刻度尺分别测出小矿石的三条棱的长度a、b和c。 C.小矿石密度表达式:ρ石=G/gabc 19.(2011江苏无锡,第31题)用“伏安法”测电阻,小华实验时的电路如图甲所示。 (1)请用笔画线代替导线,将实物电路连接完整. (2)正确连接电路后。闭合开关前滑片p应置于滑动变阻器的 端(选填“左”或“右”). (3)测量时,当电压表的示数为2.4V时,电流表的示数如图乙所示,则I= A,根据实验数据可得Rx Ω.

(4)如果身边只有一只电流表或电压表,利用一已知阻值为R0的定值电阻、开关、导线、电源等器材也可以测出未知电阻Rx.请仿照表中示例,设计测量Rx阻值的其他方法. 【答案】(1) (2)左新课标第一网 (3)0.5 4.8 (4)电路图

① 将电压表与R0并联,测出R0两端的电压U0②将电压表与Rx并联,测出两端电压Ux

表达式:Rx= XOUU R0

四、简答与计算题 20、【2009•雅安市】把体积为1dm3的空心铜球挂在弹簧秤上,浸没在水中静止时,弹簧秤

相关文档
最新文档