高等数学电子教案(大专版)

合集下载

高等数学电子教案6

高等数学电子教案6

第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

教学重点:1、定积分的元素法、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。

2、旋转体的体积及侧面积,计算变力所做的功、引力、压力和函数的平均值等。

教学难点:1、截面面积为已知的立体体积。

2、引力。

§6. 1 定积分的元素法一、问题的提出回顾:曲边梯形求面积的问题曲边梯形由连续曲线)(x f y =)0)((≥x f 、x 轴与两条直线a x =、b x =所围成。

面积表示为定积分的步骤如下(1)把区间],[b a 分成n 个长度为i x ∆的小区间,相应的曲边梯形被分为n 个小窄曲边梯形,第i 个小窄曲边梯形的面积为i A ∆,则∑=∆=ni i A A 1(2)计算i A ∆的近似值(3) 求和,得A 的近似值(4) 求极限,得A 的精确值若用A ∆ 表示任一小区间],[x x x ∆+上的窄曲边梯形的面积,则∑∆=A A ,并取abi i i xf A ∆≈∆)(ξii x ∆∈ξ.)(1i i n i x f A ∆≈∑=ξi i n i x f A ∆=∑=→)(lim 10ξλ⎰=ba dxx f )(dx x f A )(≈∆,于是∑≈dx x f A )(当所求量U 符合下列条件:(1)U 是与一个变量x 的变化区间[]b a ,有关的量;(2)U 对于区间[]b a ,具有可加性,就是说,如果把区间[]b a ,分成许多部分区间,则U 相应地分成许多部分量,而U 等于所有部分量之和;(3)部分量i U ∆的近似值可表示为i i x f ∆)(ξ;就可以考虑用定积分来表达这个量U元素法的一般步骤:1) 根据问题的具体情况,选取一个变量例如x 为积分变量,并确定它的变化区间],[b a 2)设想把区间],[b a 分成n 个小区间,取其中任一小区间并记为],[dx x x +,求出相应于这小区间的部分量U ∆的近似值.如果U ∆能近似地表示为],[b a 上的一个连续函数在x 处的值)(x f 与dx 的乘积,就把dx x f )(称为量U 的元素且记作dU ,即dx x f dU )(=;3)以所求量U 的元素dx x f )(为被积表达式,在区间],[b a 上作定积分,得⎰=badx x f U )(,即为所求量U 的积分表达式. 这个方法通常叫做元素法.应用方向:平面图形的面积;体积;平面曲线的弧长;功;水压力;引力和平均值等.∑=dx x f A )(lim .)(⎰=badx x f§6. 2 定积分在几何上的应用一、平面图形的面积 1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S ba ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=dc dy y y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分31]3132[)(10323102=-=-=⎰x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积.解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ.(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y .例3 求椭圆12222=+by a x 所围成的图形的面积.解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以⎰=aydx S 04.椭圆的参数方程为: x =a cos t , y =b sin t ,于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为 θθϕd dS 2)]([21=.曲边扇形的面积为⎰=βαθθϕd S 2)]([21.例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==.例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d aπθθθπ20223]2sin 41sin 223[a a =++=.二、体 积1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体. 旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为 dV = π[f (x )]2dx , 旋转体的体积为 dx x f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积. 解: 直角三角形斜边的直线方程为x h r y =.所求圆锥体的体积为dx x h r V h 20)(π⎰=hx h r 0322]31[π=231hr π=. 例2. 计算由椭圆12222=+bya x 所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积.解: 这个旋转椭球体也可以看作是由半个椭圆22x a ab y -=及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为 dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=aa dx x a ab V )(2222πa a x x a ab --=]31[3222π234ab π=. 例2 求星形线323232a y x =+)0(>a 绕x 轴旋转构成旋转体的体积. 解:323232x a y-=332322⎪⎪⎭⎫ ⎝⎛-=∴x a y ],[a a x -∈ 旋转体的体积dx x a V aa 33232⎪⎪⎭⎫ ⎝⎛-=⎰-π.105323a π=例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.解 所给图形绕x 轴旋转而成的旋转体的体积为 ⎰=ax dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a ⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a =5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=aay dy y x dy y x V 20212022)()(ππ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a ⎰--=ππ2023sin )sin (tdt t t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为 dx x A V ba )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -. 因而截面积为 αtan )(21)(22x R x A -=. 于是所求的立体体积为dx x R V R R αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为22)(x R h y h x A -=⋅=. 于是所求正劈锥体的体积为⎰--=RR dx x R h V 22h R d h R 2202221c o s 2πθθπ==⎰ . 三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1,M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的.1.直角坐标情形 设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度.取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=.以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dx y s 21.在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此 例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度.解: 21x y =', 从而弧长元素dx x dx y ds +='+=112.因此, 所求弧长为b a bax dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=. .2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数.因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=.所求弧长为⎰'+'=βαψϕdt t t s )()(22.例2.计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度. 解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin2=.所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a .3.极坐标情形 设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得 x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ).于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长. 解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a .§6. 3 功 水压力和引力一、变力沿直线所作的功由物理学知道,如果物体在作直线运动的过程中有一个不变的力F 作用在这物体上,且这力的方向与物体的运动方向一致,那么,在物体移动了距离s 时,力F 对物体所作的功为s F W ⋅=如果物体在运动的过程中所受的力是变化的,就不能直接使用此公式,而采用“微元法”思想.例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r qkF = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功. 例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功.提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r qkF = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r qk 2, 即功元素为dr r qk dW 2=. 于是所求的功为dr rkq W b a2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀,把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功. 解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =. 解: 在点x 处, 因为V =xS , 所以作在活塞上的力为xk S xS k S p F =⋅=⋅=.当活塞从x 移动到x +dx 时, 变力所作的功近似为dx xk,即功元素为dx xk dW =. 于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =. 例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj). 二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ , 计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=R dx x R x P 022 2γ)()(2221220x R d x RR ---=⎰γR x R 02322])(32[--=γ332R r =. 三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算.例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知, 引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m G dF x +-⋅+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为⎰-+-=222/322)(l l x y a dy am G F ρ22412la a l Gm +⋅-=ρ.。

高等数学电子教案

高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种规则,将一个非空数集(定义域)中的每一个元素对应到另一个非空数集(值域)中的唯一元素。

函数的性质:单调性、奇偶性、周期性等。

1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个确定的值L,称f(x)当x趋近于a时的极限为L,记作:lim(x→a)f(x)=L。

极限的性质:保号性、传递性、夹逼性等。

1.3 极限的计算极限的基本计算方法:代数法、几何法、泰勒公式等。

极限的运算法则:加减法、乘除法、复合函数的极限等。

1.4 无穷小与无穷大无穷小的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于0,称f(x)为无穷小。

无穷大的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于正无穷或负无穷,称f(x)为无穷大。

第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在点x处的导数,记作f'(x)或df/dx,表示函数在该点的瞬时变化率。

导数的几何意义:函数图像在某点处的切线斜率。

2.2 导数的计算基本导数公式:常数函数、幂函数、指数函数、对数函数等的导数。

导数的运算法则:和差法、乘法法、链式法则等。

2.3 微分的概念与计算微分的定义:函数f(x)在点x处的微小变化量,记作df(x)。

微分的计算:微分的基本公式df(x)=f'(x)dx,以及微分的运算法则。

2.4 微分方程的概念与解法微分方程的定义:含有未知函数及其导数的方程。

微分方程的解法:分离变量法、积分因子法等。

第三章:积分与面积3.1 不定积分的概念与计算不定积分的定义:函数f(x)的不定积分,记作∫f(x)dx,表示f(x)与x轴之间区域的面积。

基本积分公式:幂函数、指数函数、对数函数等的不定积分。

3.2 定积分的概念与计算定积分的定义:函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx,表示f(x)在[a,b]区间上的累积面积。

高等数学电子教案第二章第8讲-两个重要极限二课时教案首页

高等数学电子教案第二章第8讲-两个重要极限二课时教案首页
在极限 中只要(x)是无穷小就有
这是因为令u(x)则u0于是
((x)0)
二、第二重要极限: =e4根据数列收敛准则可以证明极限 存在
设 现证明数列{xn}是单调有界的
按牛顿二项公式有
比较xnxn1的展开式可以看出除前两项外xn的每一项都小于xn1的对应项并且xn1还多了最后一项其值大于0因此
《高等数学》课程课时教案
课题名称
第八讲两个重要极限(二)
课次
8
授课日期
10.20(1、2)
10.21(1、2)
10.21(3、4)
10.24(3、4)
授课班级
14热电1
14化工
14化设
14煤化
授课地点
14热电1
14化工
14化设
14煤化
教学目标

教学要求
1.会用第二重要极限求极限。
2.理解第二重要极限的推广形式。
例1求 10min
解:
例2求 8min
解:令 则 当 时, 所以有
例3求 6min
解:
例4求 10min
解:令
解得 当 时,
例5求 6min
解令tx则x时t于是

总结:1、 5min
2、 ((x)0)
课后作业
P36:45 46 47.
教学反思
重点难点

解决办法
重点:第二重要极限的应用。
解决办法:通过典型例题讲解,学生有针对性的做典型习题。
难点:第二重要极限形式的推广。
解决办法:用对比法推广第二重要极限。
教学设计
引课:上节我们学了第一重要极限,今天我们再学用第二重要极限求极限
的方法。5min

高等数学电子教案2

高等数学电子教案2

高等数学电子教案(最新版)第一章:函数与极限1.1 函数的概念与性质定义函数的概念函数的性质(单调性、奇偶性、周期性等)1.2 极限的概念与性质极限的定义(无穷小、无穷大)极限的性质(保号性、单调性等)1.3 极限的运算极限的基本运算规则极限的运算法则(和、差、积、商的极限)1.4 无穷小的比较无穷小的大小比较无穷小的比较法则(比较大小、比较极限等)第二章:导数与微分2.1 导数的概念与性质导数的定义导数的性质(单调性、连续性等)2.2 导数的运算导数的四则运算复合函数的导数(链式法则)2.3 高阶导数高阶导数的定义高阶导数的运算规则2.4 微分的方法与应用微分的定义与性质微分在函数求解中的应用第三章:泰勒公式与不定积分3.1 泰勒公式的概念与性质泰勒公式的定义泰勒公式的性质与应用3.2 不定积分的概念与性质不定积分的定义不定积分的性质(线性性、保守性等)3.3 不定积分的运算不定积分的四则运算常用积分公式与积分法则3.4 不定积分在实际问题中的应用不定积分在物理学、经济学等领域的应用第四章:定积分与反常积分4.1 定积分的概念与性质定积分的定义定积分的性质(可积性、可加性等)4.2 定积分的运算定积分的四则运算定积分的换元法与分部积分法4.3 反常积分的概念与性质反常积分的定义反常积分的性质与应用4.4 反常积分在实际问题中的应用反常积分在物理学、工程学等领域的应用第五章:微分方程与微分几何5.1 微分方程的概念与性质微分方程的定义微分方程的性质(解的存在性、唯一性等)5.2 微分方程的求解方法常微分方程的求解方法(分离变量法、积分因子法等)偏微分方程的求解方法(偏导数法、能量法等)5.3 微分几何的基本概念微分几何的定义与发展微分几何的基本概念(曲线、曲面等)5.4 微分几何的应用微分几何在物理学、计算机图形学等领域的应用第六章:级数与级数展开6.1 级数的概念与性质级数的定义级数的性质(收敛性、发散性等)6.2 幂级数的概念与性质幂级数的定义幂级数的性质与应用6.3 泰勒级数与麦克劳林级数泰勒级数与麦克劳林级数的定义泰勒级数与麦克劳林级数的性质与应用6.4 级数的运算与判定级数的四则运算级数的收敛性判定方法(比较判别法、比值判别法等)第七章:多元函数的微分学7.1 多元函数的概念与性质多元函数的定义多元函数的性质(连续性、可微性等)7.2 多元函数的微分法多元函数的偏导数与全导数多元函数的微分法则7.3 多元函数的泰勒公式与全微分多元函数的泰勒公式多元函数的全微分的定义与性质7.4 多元函数的极值与最值多元函数的极值的概念与性质多元函数的最值的求解方法与应用第八章:重积分与曲线积分8.1 重积分的概念与性质重积分的定义重积分的性质与应用8.2 重积分的运算重积分的四则运算重积分的换元法与分部积分法8.3 曲线积分的概念与性质曲线积分的定义曲线积分的性质与应用8.4 曲线积分的运算与计算方法曲线积分的运算规则曲线积分的计算方法(参数法、极坐标法等)第九章:曲面与空间解析几何9.1 曲面的概念与性质曲面的定义曲面的性质(连续性、曲率等)9.2 空间解析几何的基本概念空间解析几何的定义与发展空间解析几何的基本概念(点、直线、平面等)9.3 曲面的方程与参数方程曲面的方程表示法曲面的参数方程表示法9.4 空间解析几何的应用空间解析几何在物理学、工程学等领域的应用第十章:常微分方程的应用10.1 常微分方程的解法与应用常微分方程的解法(分离变量法、积分因子法等)常微分方程在生物学、化学等领域的应用10.2 常微分方程的稳定性与振动问题常微分方程的稳定性的定义与判定常微分方程的振动问题的定义与解法10.3 常微分方程组的概念与性质常微分方程组的定义常微分方程组的性质与应用10.4 常微分方程组的解法与应用常微分方程组的解法(消元法、矩阵法等)常微分方程组在物理学、经济学等领域的应用第十一章:偏微分方程与波动方程11.1 偏微分方程的概念与性质偏微分方程的定义偏微分方程的性质(解的存在性、唯一性等)11.2 偏微分方程的求解方法偏微分方程的直接求解法偏微分方程的变换法(如分离变量法、积分变换法等)11.3 波动方程的概念与性质波动方程的定义波动方程的性质与应用11.4 波动方程的求解方法与应用波动方程的直接求解法波动方程在物理学、工程学等领域的应用第十二章:数值方法与计算机算法12.1 数值方法的概念与性质数值方法的定义数值方法的性质与应用12.2 数值微积分的方法数值微积分的定义与性质数值微积分的算法(如梯形法、辛普森法等)12.3 数值解微分方程的方法数值解微分方程的定义与性质数值解微分方程的算法(如欧拉法、龙格-库塔法等)12.4 计算机算法与应用计算机算法的定义与性质计算机算法在高等数学中的应用第十三章:概率论与数理统计13.1 概率论的基本概念随机试验与样本空间事件与概率13.2 随机变量及其分布随机变量的定义与性质离散型随机变量与连续型随机变量的分布13.3 数理统计的基本概念统计量与参数点估计与区间估计13.4 假设检验与回归分析假设检验的定义与方法回归分析的定义与方法第十四章:线性代数与矩阵论14.1 线性代数的基本概念向量与线性空间矩阵与线性方程组14.2 矩阵的运算与性质矩阵的加法、数乘与乘法矩阵的转置、逆矩阵与行列式14.3 线性方程组的求解方法高斯消元法与克莱姆法则矩阵的逆与线性方程组的解14.4 矩阵论的应用矩阵论在物理学、工程学等领域的应用第十五章:数学物理方法与数值分析15.1 数学物理方法的概念与性质数学物理方法的定义数学物理方法的应用领域15.2 特殊函数与积分变换特殊函数的定义与性质积分变换的定义与方法15.3 数值分析的基本概念与方法数值分析的定义与性质数值分析的方法(如插值法、拟合法等)15.4 数学物理方法在实际问题中的应用数学物理方法在物理学、工程学等领域的应用重点和难点解析第一章:函数与极限重点:函数的性质、极限的定义与性质、极限的运算。

高等数学电子教案:12-3

高等数学电子教案:12-3

得通解代回
X Y
x h, y k,
(2) 0, 未必有解, 上述方法不能用.
当b1 0时, a1与b中必至少有一个为零.
若 b 0, 可分离变量的微分方程.
若 b 0,a1 0,
令 z ax by,
dy 1 ( dz a), dx b dx
1 ( dz a) f ( z c)
解 令 x y u, dy du 1 代入原方程 dx dx
dy 1 u2 解得 arctanu x C, dx
代回 u x y,得 arctan( x y) x C,
原方程的通解为 y tan( x C) x.
三、小结
齐次方程 dy ( y).
dx x 齐次方程的解法 令 u y .
例2
求解微分方程
x2
dx xy
y2
dy 2y2
. xy

dy dx
2y2 x2 xy
xy y2
2 1
y 2
x
y x
y
y
2
,
x x
令u y , 则 dy xdu udx, x
u
xu
2u2 1 u
u u2
,
[1 ( 1 1) 2 1 ]du dx ,
2 u2 u u2 u1
x
可化为齐次方程的方程 令 x X h, y Y k.
思考题
方程 x 0
2 y(t)
t 2 y2(t) dt xy( x)
是否为齐次方程?
思考题解答
方程两边同时对 x求导: 2 y x2 y2 y xy, xy x2 y2 y, y 1 y 2 y ,
x x
0时,

高职高等数学教案第四章不定积分

高职高等数学教案第四章不定积分

第四章 不定积分§4-1 不定积分的概念与性质一、不定积分的概念1.原函数定义定义1:如果在区间I 上,可导函数()F x 的导数为()f x ,即对任一xI ,都有()()F x f x 或()()dF x f x dx ,则称()F x 为()f x 在区间I 上的一个原函数。

例:(sin )cos x x ,则sin x 是cos x 的一个原函数;1(sin 1)(sin )(sin 3)cos 2x xx x ,则都是cos x 的原函数。

2.原函数性质定理1:如果()f x 在区间I 上连续,则在该区间原函数一定存在。

定理2:如果()F x 是()f x 的一个原函数,则()F x C 是()f x 的全体原函数,且任一原函数与()F x 只差一个常数。

例:验证2211cos 2,sin 2,cos 233x x x 都是sin 2x 的原函数 证:2211(cos 2)sin 233(sin 2)sin 2(cos 2)sin 2x x x x xx,则三个函数都是sin 2x 的原函数3.不定积分定义定义2:()f x 的全体原函数称为()f x 的不定积分,记作()f x dx ,其中称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量。

说明:如果()F x 是()f x 在区间I 上的一个原函数,则()F x C 就是()f x 的不定积分,即()()f x dxF x C例1:求23x dx解:因为32()3x x ,所以3x 是23x 的一个原函数则233x dx x C例2:求1dx x解:当0x时,1(ln )x x当0x 时,11ln()x xx 所以1 ln ||(0)dx x C xx4.不定积分几何意义在相同横坐标的点处切线是平行的,切线斜率都为()f x ,可由()yF x 沿y 轴平移得到。

例:一条积分曲线过点(1,3),且平移后与231y x x 重合,求该曲线方程解:设2()31f x x x C由于曲线过(1,3) 则3131C ,2C2()31f x xx二、不定积分性质性质1:[()()]()()f x g x dx f x dx g x dx性质2:()(0)()0(0)kf x dx k kf x dxdxC k性质3:(())(),()()f x dx f x f x dx f x C三、基本积分表(1)kdx kx C (k 是常数) (2)111ααx dxx C α(3)1ln ||dx x C x (4)x xe dx e C (5)ln x xa a dxC a(6)sin cos xdxxC(7)cos sin xdx x C (8)221sec tan cos dx xdx x C x(9)221csc cot sin dx xdx x C x (10)sec tan sec x xdx xC(11)csc cot csc x dx xC (12)21arctan 1dxx C x(13)21arcsin 1dx x C x例1:求51dx x解:55154111514dx x dxx CC x x例2:求x xdx解:313522223512x x xdx x dxCx C例3:求3(sin )xx dx解:433(sin )sin cos 4x x x dx xdxx dxxC例4:求2(1)x dx x解:22(1)211(2)x x x dx dx x dx xx x2122ln ||2x xdx dxdx xx C x注:根式或多项式函数需化成αx 形式,再利用公式。

《高等数学》课程电子教案

《高等数学》课程电子教案

《高等数学》课程电子教案本课程为我校第二批精品课程建设立项项目,学院为此专门抽调各教研室骨干教师组成课程组,充分发挥和强化其建设与改革职能,前期建设所取得的成果要紧表达在以下几个方面:一、师资队伍建设本课程组共12名成员,其中正副教授5人,讲师3人,助教5人,其中具有博士学位3人,具有硕士学位6人,已初步建立一支数量充足、结构合理、素养优良、充满生气与活力的专任教师队伍。

二、教材建设考虑到师范院校属性及相关学科的教学特点,构建融会贯穿的课程体系,我们差不多编写出下述《高等数学》系列教材:1. 孙国正主编,高等数学,安徽大学出版社20032. 刘树德编,高等数学,校科类基础课,教材,已申请出版3. 刘树德编,高等数学续论,选修课教材,校内胶印使用三、教学改革1. 加强教学内容的整合力度,以社会进展的新科技、新成果充实教学内容,提高教学起点。

2. 深入进行教学方法改革,多用启发式、讨论式、研究式教学方法,从改变教师的教学方式之入手,达到转变学生的学习方式之目的。

3. 运用现代教育手段提升教学水平。

为教师制作CAI课件,使用多媒体授课,加快运算机辅助教学软件的开发积极制造条件。

四、教学研究项目1. 省高校教学研究项目, 高等数学课程的优化设计,1999-2002;2. 校教材建设基金资助项目,出版校科类基础课教材《高等数学》, 20063. 校第二批精品课程建设立项项目, 《高等数学》,2005-2008课程建设是一项长期困难的工作,今后我们要连续努力,加快建设的步伐。

2005.12《高等数学》课程电子教案(节选)授课人:刘树德教学内容:1、微积分学的差不多定理与差不多公式;2、定积分的换元积分法与分部积分法。

教学目的:1、明白得微积分学的差不多定理与差不多公式的涵义和重要性;2、熟练把握和运用定积分的换元积分公式与分部积分公式。

教学重点:定积分的换元积分法与分部积分法教学难点:微积分学的差不多定理与差不多公式教学手段:讲授§6.2 微积分学的差不多定理与差不多公式若已知f(x)在[a,b]上的定积分存在,如何样运算那个积分值呢?假如利用定积分的定义,由于需要运算一个和式的极限,能够想象,即使是专门简单的被积函数,那也是十分困难的。

(完整word版)高等数学教案

(完整word版)高等数学教案

高等数学教案教 学 过 程§3 函数的极限一、函数的极限1.自变量趋于有限值时函数的极限定义:如果当x 无限接近于xo , 函数f(x)的值无限接近于常数A , 则称当x 趋于x0 时, f(x)以A 为极限. 记作 0lim x x →f(x)A 或f(x)→A(当x →0x ).定义的简单表述:A x f x x =→)(lim 0⇔∀ε>0, ∃δ>0, 当0<|x -x0|<δ时, |f(x)-A|<ε .2. 单侧极限:若当x →x0- 时, f(x)无限接近于某常数A , 则常数A 叫做函数f(x)当x →x0时的左极限, 记为A x f x x =-→)(lim 0或f(0x -)=A ;若当x →x0+ 时, f(x)无限接近于某常数A , 则常数A 叫做函数f(x)当x →x0时的右极限, 记为A x f x x =+→)(lim 0或f(0x +)=A .3.自变量趋于无穷大时函数的极限设f(x)当|x|大于某一正数时有定义. 如果存在常数A , 对于任意给定的正数ε, 总存在着正数X , 使得当x 满足不等式|x|>X 时, 对应的函数数值f(x)都满足不等式|f(x)-A|<ε,则常数A 叫做函数f(x)当x →∞时的极限, 记为A x f x =∞→)(lim 或f(x)→A(x →∞). A x f x =∞→)(lim ⇔∀ε >0, ∃X >0, 当|x|>X 时, 有|f(x)-A|<ε .类似地可定义A x f x =-∞→)(lim 和A x f x =+∞→)(lim .结论:A x f x =∞→)(lim ⇔A x f x =-∞→)(lim 且A x f x =+∞→)(lim .y y =x -1 -1 1 y =x +1 xO教 学 过 程§4 无穷大与无穷小.无穷大与无穷小1. 无穷小定义:如果函数f(x)当x →x0(或x →∞)时的极限为零, 那么称函数f(x)为当x →x0(或x →∞)时的无穷小.特别地, 以零为极限的数列{xn}称为n →∞时的无穷小.例如,因为01lim =∞→x x , 所以函数x 1为当x →∞时的无穷小.因为0)1(lim 1=-→x x , 所以函数为x -1当x →1时的无穷小.因为011lim =+∞→n n , 所以数列{11+n }为当n →∞时的无穷小.讨论: 很小很小的数是否是无穷小?0是否为无穷小?提示: 无穷小是这样的函数, 在x →x0(或x →∞)的过程中, 极限为零. 很小很小的数只要它不是零, 作为常数函数在自变量的任何变化过程中, 其极限就是这个常数本身, 不会为零.无穷小与函数极限的关系:定理1 在自变量的同一变化过程x →x0(或x →∞)中, 函数f(x)具有极限A 的充分必要条件是f(x)=A +α, 其中α是无穷小.证明: 设Ax f x x =→)(lim 0, ∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ时, 有|f(x)-A|< .令α=f(x)-A , 则α是x →x0时的无穷小, 且f(x)=A +α .这就证明了f(x)等于它的极限A 与一个无穷小α之和.反之, 设f(x)=A +α , 其中A 是常数, α是x →x0时的无穷小, 于是|f(x)-A|=|α|.因α是x →x0时的无穷小, ∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有|α|< 或|f(x)-A|这就证明了A 是f(x) 当 x →x0时的极限.简要证明: 令α=f(x)-A , 则|f(x)-A|=|α|.如果∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有f(x)-A|,就有|α|< ; 反之如果∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有|α|<,就有f(x)-A| .这就证明了如果A 是f(x) 当 x →x0时的极限, 则α是x →x0时的无穷小; 如果α是x →x0时的无穷小, 则A 是f(x) 当 x →x0时的极限.类似地可证明x →∞时的情形. 例如, 因为333212121x x x +=+, 而021lim 3=∞→x x , 所以2121lim 33=+∞→x x x . 定理2 有限个无穷小的和也是无穷小定理3 有界函数与无穷小的乘积是无穷小 2. 无穷大定义:如果当x →x0(或x →∞)时, 对应的函数值的绝对值|f(x)|无限增大, 就称函数 f(x)为当x →x0(或x →∞)时的无穷大. 记为∞=→)(lim 0x f x x(或∞=∞→)(lim x f x ).应注意的问题: 当x →x0(或x →∞)时为无穷大的函数f(x), 按函数极限定义来说, 极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说“函数的极限是无穷大”, 并记作∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ).定理2 (无穷大与无穷小之间的关系):在自变量的同一变化过程中, 如果f(x)为无穷大, 则)(1x f 为无穷小; 反之, 如果f(x)为无穷小, 且f(x)≠0, 则)(1x f 为无穷大.简要证明: 如果0)(lim 0=→x f x x , 且f(x)≠0, 那么对于M 1=ε, ∃δ>0, 当0<|x -0x |<δ时,有M x f 1|)(|=<ε, 由于当0<|x -0x |<δ时, f(x)≠0, 从而M x f >|)(1|, 所以)(1x f 为x →x0时的无穷大.如果∞=→)(lim 0x f x x , 那么对于ε1=M , ∃δ>0,当0<|x -0x |<δ时,有ε1|)(|=>M x f , 即ε<|)(1|x f , 所以为x →x 时的无穷小.简要证明:如果f(x)→0(x →x0)且f(x)≠0, 则∀ε >0, ∃δ>0,当0<|x - x0|<δ时, 有|f(x)|<ε , 即, 所以f(x)→∞(x →x0). 如果f(x)→∞(x →x0), 则∀M >0, ∃δ>0,当0<|x - x0|<δ时, 有|f(x)|>M , 即, 所以f(x)→0(x →x0).教 学 过 程§5 极限运算法则一、极限运算法则定理1 如果lim f (x)=A , lim g (x)=B , 那么(1) lim [f (x)±g(x)] = lim f (x) ±lim g (x) =A ± B ; (2) lim f (x)⋅g(x) = lim f (x) ⋅ lim g (x) =A ⋅B ;(3)B Ax g x f x g x f ==)(lim )(lim )()(lim(B ≠0).证明(1): 因为lim f (x)=A , lim g (x)=B , 根据极限与无穷小的关系, 有f (x)=A +α,g (x)=B +β,其中α及β 为无穷小. 于是f (x) ±g (x)=(A +α) ± (B +β) =(A ± B) +(α± β),即f (x) ± g (x)可表示为常数(A ± B)与无穷小(α± β)之和. 因此lim [f (x) ± g (x)] =lim f (x) ± lim g (x) = A ± B .定理2 如果(x)≥(x), 而lim (x)=a , lim ψ(x)=b , 那么a ≥b . 推论1 如果lim f (x)存在, 而c 为常数, 则lim [c f (x)]=c lim f (x).推论2 如果lim f (x)存在, 而n 是正整数, 则lim [f (x)]n =[lim f (x)]n .例3. 求93lim 2 3--→x x x .教 学 过 程§6 极限存在准则·两个重要极限极限存在准则·两个重要极限 1. 夹逼准则准则I 如果数列{xn }、{yn}及{zn}满足下列条件:(1)yn ≤xn ≤zn(n 1, 2, 3, ⋅ ⋅ ⋅), (2)ay n n =∞→lim ,az n n =∞→lim ,那么数列{xn }的极限存在, 且ax n n =∞→lim .证明:因为a y n n =∞→lim , a z n n =∞→lim , 以根据数列极限的定义, ∀ε >0, ∃N 1>0, 当n >N 1时,有|y n -a |<ε ; 又∃N 2>0, 当n >N 2时, 有|z n -a |<ε . 现取N =max{N 1, N 2}, 则当 n >N 时, 有|y n -a |<ε , |z n -a |<ε同时成立, 即a -ε<y n <a +ε , a -ε<z n <a +ε ,同时成立. 又因yn ≤xn ≤zn , 所以当 n >N 时, 有a -ε<y n ≤x n ≤z n <a +ε ,即 |x n -a |<ε . 这就证明了ax n n =∞→lim .简要证明: 由条件(2), ∀ε >0, ∃N >0, 当n >N 时,有 |y n -a |<ε 及|z n -a |<ε , 即有 a -ε<y n <a +ε , a -ε<z n <a +ε , 由条件(1), 有a -ε<y n ≤x n ≤z n <a +ε , 即 |x n -a |<ε . 这就证明了a x n n =∞→lim .准则I '如果函数f(x)、g(x)及h(x)满足下列条件:(1) g(x)≤f(x)≤h(x);(2) lim g(x)=A , lim h(x)=A ; 那么lim f(x)存在, 且lim f(x)=A .第一重要极限:1sin lim 0=→xx x证明 首先注意到, 函数x xsin 对于一切x ≠0都有定义. 参看附图: 图中的圆为单位圆,BC ⊥OA , DA ⊥OA . 圆心角∠AOB x (0<x <2 π). 显然 sin x CB , x ⋂AB , tan x AD .因为S ∆AOB <S 扇形AOB <S ∆AOD ,所以21sin x <21x <21tan x ,即 sin x <x <tan x . 不等号各边都除以sin x , 就有x x x cos 1sin 1<<, 或 1sin cos <<x x x .注意此不等式当2 π<x <0时也成立. 而1cos lim 0=→x x , 根据准则I ', 1sin lim 0=→x x x .简要证明: 参看附图, 设圆心角∠AOBx (2 0π<<x ). 显然 BC < AB <AD , 因此 sin x < x < tan x ,从而 1sin cos <<x x x (此不等式当x <0时也成立).因为1cos lim 0=→x x , 根据准则I ', 1sin lim 0=→x x x .应注意的问题: 在极限)()(sin limx x αα中, 只要(x)是无穷小, 就有1)()(sin lim =x x αα.这是因为, 令u(x), 则u →0, 于是)()(sin limx x αα1sin lim 0==→u u u .1sin lim 0=→xx x1)()(sin lim=x x αα((x)→0)2. 单调有界收敛准则准则II 单调有界数列必有极限.如果数列{x n}满足条件x 1≤x 2≤x 3≤ ⋅ ⋅ ⋅ ≤x n ≤x n 1≤ ⋅ ⋅ ⋅,就称数列{x n}是单调增加的; 如果数列{x n}满足条件x 1≥x 2≥x 3≥ ⋅ ⋅ ⋅ ≥x n ≥x n 1≥ ⋅ ⋅ ⋅,就称数列{x n}是单调减少的. 单调增加和单调减少数列统称为单调数列. 如果数列{x n}满足条件x n ≤x n 1, n ∈N +,在第三节中曾证明: 收敛的数列一定有界. 但那时也曾指出: 有界的数列不一定收敛. 现在准则II 表明: 如果数列不仅有界, 并且是单调的, 那么这数列的极限必定存在, 也就是这数列一定收敛.O CADB 1 x准则II 的几何解释:单调增加数列的点只可能向右一个方向移动, 或者无限向右移动, 或者无限趋近于某一定点A , 而对有界数列只可能后者情况发生.根据准则II , 可以证明极限nn n )11(lim +∞→存在.设nn n x )11(+= 现证明数列{xn}是单调有界的.按牛顿二项公式, 有nn n n n n n n n n n n n n n n n n n x 1!)1( )1( 1!3)2)(1(1!2)1(1!11)11(32⋅+-⋅⋅⋅-+⋅⋅⋅+⋅--+⋅-+⋅+=+= )11( )21)(11(!1 )21)(11(!31)11(!2111n n n n n n n n --⋅⋅⋅--+⋅⋅⋅+--+-++=,)111( )121)(111(!1 )121)(111(!31)111(!21111+--⋅⋅⋅+-+-+⋅⋅⋅++-+-++-++=+n n n n n n n n x n )11( )121)(111()!1(1+-⋅⋅⋅+-+-++n n n n n .比较x n , x n +1的展开式, 可以看出除前两项外, x n 的每一项都小于x n +1的对应项, 并且x n +1还多了最后一项, 其值大于0, 因此 x n < x n +1 ,这就是说数列{xn}是单调有界的.这个数列同时还是有界的. 因为xn 的展开式中各项括号内的数用较大的数1代替, 得3213211211121 212111!1 !31!2111112<-=--+=+⋅⋅⋅++++<⋅⋅⋅++++<--n nn n n x第二重要极限:根据准则II , 数列{xn}必有极限. 这个极限我们用e 来表示. 即en n n =+∞→)11(lim .我们还可以证明ex x x =+∞→)11(lim . e 是个无理数, 它的值是e 2. 718281828459045⋅ ⋅ ⋅.指数函数y e x 以及对数函数y ln x 中的底e 就是这个常数. 在极限)(1)](1lim[x x αα+中, 只要(x)是无穷小, 就有e x x =+)(1)](1lim[αα.这是因为, 令)(1x u α=, 则u →∞, 于是)(1)](1lim[x x αα+e u u u =+=∞→)11(lim .e x x x =+∞→)11(lim , ex x =+)(1)](1lim[αα((x)→0).例3. 求xx x )11(lim -∞→.解: 令t x , 则x →∞时, t →∞. 于是x x x)11(lim -∞→tt t -∞→+=)11(lim e t t t 1)11(1lim=+=∞→.教 学 过 程§8 函数的连续性函数的连续性 1. 变量的增量:设变量u 从它的一个初值u1变到终值u2, 终值与初值的差u2u1就叫做变量u 的增量, 记作u , 即u u2u1.设函数y f(x)在点x0的某一个邻域内是有定义的. 当自变量x 在这邻域内从x0变到x0x 时, 函数y 相应地从f(x0)变到f(x0x), 因此函数y 的对应增量为y f(x0x) f(x0).2. 函数连续的定义设函数y f(x)在点x0 的某一个邻域内有定义, 如果当自变量的增量x x x0趋于零时, 对应的函数的增量y f(x0x) f(x0 )也趋于零, 即 0lim 0=∆→∆y x , 或)()(lim 00x f x f x x =→,那么就称函数y f(x)在点x0 处连续.注: ①0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x②设xx0+x , 则当x →0时, x →x0, 因此0lim 0=∆→∆y x ⇔0)]()([lim 00=-→x f x f x x ⇔)()(lim 00x f x f x x =→.函数连续的等价定义2:设函数y f(x)在点x0的某一个邻域内有定义, 如果对于任意给定义的正数 , 总存在着正数 , 使得对于适合不等式|x x0|< 的一切x , 对应的函数值f(x)都满足不等式|f(x)f(x0)|< ,那么就称函数y f(x)在点x0处连续.3. 左右连续性:如果)()(lim 00x f x f x x =-→, 则称y f(x)在点0x 处左连续.如果)()(lim 00x f x f x x =+→, 则称y f(x)在点0x 处右连续. 左右连续与连续的关系:函数y f(x)在点x0处连续⇔函数y f(x)在点x0处左连续且右连续. 函数在区间上的连续性:在区间上每一点都连续的函数, 叫做在该区间上的连续函数, 或者说函数在该区间上连续. 如果区间包括端点, 那么函数在右端点连续是指左连续, 在左端点连续是指右连续.4. 连续函数举例:1. 如果f(x)是多项式函数, 则函数f(x)在区间(∞, ∞)内是连续的. 这是因为, f(x)在(∞, ∞)内任意一点x0处有定义, 且)()(lim 00x P x P x x =→2. 函数x x f =)(在区间[0, ∞)内是连续的.3. 函数y sin x 在区间(∞, ∞)内是连续的. 证明: 设x 为区间(∞, ∞)内任意一点. 则有y =sin(x +x)-sin x)2cos(2sin2x x x ∆+∆=,因为当x →0时,y 是无穷小与有界函数的乘积,所以lim 0=∆→∆y x .这就证明了函数y sin x 在区间(∞, ∞)内任意一点x 都是连续的.4. 函数y cos x 在区间(∞, ∞)内是连续的.函数的间断点 1. 间断定义:设函数f(x)在点x0的某去心邻域内有定义. 在此前提下, 如果函数f(x)有下列三种情形之一:(1)在x0没有定义; (2)虽然在x0有定义, 但limx x →f(x)不存在;(3)虽然在x0有定义且0lim x x →f(x)存在, 但0limx x →f(x)≠f(x0);则函数f(x)在点x0为不连续, 而点x0称为函数f(x)的不连续点或间断点.例1. 正切函数ytan x 在2 π=x 处没有定义, 所以点2 π=x 是函数tan x 的间断点.因为∞=→x x tan lim 2π, 故称2 π=x 为函数tan x 的无穷间断点. 例2.函数x y 1sin =在点x 0没有定义, 所以点x 0是函数x 1sin 的间断点. 当x →0时, 函数值在1与1之间变动无限多次, 所以点x0称为函数x 1sin 的振荡间断点. 例3. 函数112--=x x y 在x1没有定义, 所以点x 1是函数的间断点. 因为11lim 21--→x x x 2)1(lim 1=+=→x x , 如果补充定义: 令x1时y 2, 则所给函数在x1成为连续. 所以x 1称为该函数的可去间断点.例4.设函数⎪⎩⎪⎨⎧=≠==1 211)(x x x x f y .因为1lim )(lim 11==→→x x f x x ,21)1(=f , )1()(lim 1f x f x ≠→, 所以x1是函数f(x)的间断点.如果改变函数f(x)在x 1处的定义:令f(1)1, 则函数f(x)在x 1 成为连续, 所以x 1也称为该函数的可去间断点.例5.设函数⎪⎩⎪⎨⎧>+=<-=0 1000 1)(x x x x x x f . 因为1)1(lim )(lim 00-=-=--→→x x f x x , 1)1(lim )(lim 00=+=++→→x x f x x)(lim )(lim 00x f x f x x ++→→≠,所以极限)(lim 0x f x →不存在, x =0是函数f(x)的间断点. 因函数f(x)的图形在x0处产生跳跃现象, 我们称x 0为函数f(x)的跳跃间断点.2. 间断点的分类:通常把间断点分成两类:如果x0是函数f(x)的间断点, 但左极限f(x00)及右极限f(x00)都存在, 那么x0称为函数f(x)的第一类间断点. 不是第一类间断点的任何间断点, 称为第二类间断点. 在第一类间断点中, 左、右极限相等者称为可去间断点, 不相等者称为跳跃间断点. 无穷间断点和振荡间断点显然是第二间断点.初等函数的连续性1. 连续函数的和、积及商的连续性 定理1设函数f(x)和g(x)在点x0连续, 则函数f(x)±g(x), f(x)⋅g(x),)()(x g x f (当0)(0≠x g 时)在点x0也连续.f(x)±g(x)连续性的证明:因为f(x)和g(x)在点x0连续, 所以它们在点x0有定义, 从而f(x)±g(x)在点x0也有定义, 再由连续性和极限运算法则, 有)()()(lim )(lim )]()([lim 000x g x f x g x f x g x f x x x x x x ±=±=±→→→.根据连续性的定义, f(x)±g(x)在点x0连续.例1. sin x 和cos x 都在区间(-∞, +∞)内连续,故由定理3知tan x 和cot x 在它们的定义域内是连续的.三角函数sin x , cos x , sec x , csc x , tan x , cot x 在其有定义的区间内都是连续的. 二、反函数与复合函数的连续性定理2 如果函数f(x)在区间Ix 上单调增加(或单调减少)且连续, 那么它的反函数x =f -1(y)也在对应的区间Iy ={y|y =f(x),x ∈Ix}上单调增加(或单调减少)且连续. 证明(略).例2. 由于y =sin x 在区间]2 ,2[ππ-上单调增加且连续, 所以它的反函数y =arcsin x在区间[-1, 1]上也是单调增加且连续的.同样,y =arccos x 在区间[-1, 1]上也是单调减少且连续; y =arctan x 在区间(-∞, +∞)内单调增加且连续;y =arccot x 在区间(-∞, +∞)内单调减少且连续.总之, 反三角函数arcsin x 、arccos x 、arctan x 、arccot x 在它们的定义域内都是连续的. 定理3 设函数y =f[g(x)]由函数y =f(u)与函数u =g(x)复合而成,gf D x U⊂)(0. 若)lim 0u x g x x =(→, 而函数y =f(u)在0u 连续, 则)()(lim )][lim 00u f u f x g f u u x x ==(→→.简要证明 要证∀ε >0, ∃δ>0, 当0<|x -x0|<δ 时, 有|f[g(x)]-f(u0)|<ε .因为f(u)在0u 连续, 所以∀ε >0, ∃η>0, 当|u -u0|<η 时, 有|f(u)-f(u0)|<ε .又g(x)→u0(x →x0), 所以对上述η>0, ∃δ>0, 当0<|x -x0|<δ 时, 有|g(x)-u0|<η. 从而 |f[g(x)]-f(u0)|<ε . (2)定理的结论也可写成)](lim [)]([lim 0x g f x g f x x x x →→=. 求复合函数f[g(x)]的极限时, 函数符号f 与极限号可以交换次序.)(lim )]([lim 0u f x u f u u x x →→=表明,在定理3的条件下, 如果作代换u =g(x),那么求)]([lim 0x g f x x →就转化为求)(lim 0u f u u →, 这里)(lim 00x g u x x →=.把定理5 中的x →x0换成x →∞, 可得类似的定理.例3. 求93lim23--→x x x .解93lim23--→x x x 93lim 23--=→x x x 61=.提示:932--=x x y 是由u y =与932--=x x u 复合而成的. 93lim 23--→x x x 61=, 函数u y =在点61=u 连续 =g(x0)定理4 设函数y =f[g(x)]由函数y =f(u)与函数u =g(x)复合而成, U(x0)⊂Df og . 若函数u =g(x)在点x0连续, 函数y =f(u)在点u0=g(x0)连续, 则复合函数y =f[(x)]在点x0也连续. 证明: 因为(x)在点x0连续, 所以limx x →(x)=(x0)=u0.又y =f(u)在点u =u0连续, 所以 0limx x →f[(x)]=f(u0)=f[(x0)].这就证明了复合函数f[(x)]在点x0连续.例4. 讨论函数x y 1sin =的连续性. 解: 函数x y 1sin =是由y =sin u 及x u 1=复合而成的. sin u 当-∞<u<+∞时是连续的,x 1当-∞<x<0和0<x<+∞时是连续的,根据定理4, 函数x 1sin 在无限区间(-∞, 0)和(0, +∞)内是连续的.2、初等函数的连续性在基本初等函数中, 我们已经证明了三角函数及反三角函数的它们的定义域内是连续的.我们指出, 指数函数ax (a>0, a ≠1)对于一切实数x 都有定义,且在区间(-∞, +∞)内是单调的和连续的, 它的值域为(0, +∞).由定理4, 对数函数log ax (a>0, a ≠1)作为指数函数ax 的反函数在区间(0, +∞)内单调且连续.幂函数y =x 的定义域随的值而异, 但无论为何值, 在区间(0, +∞)内幂函数总是有定义的.可以证明, 在区间(0, +∞)内幂函数是连续的. 事实上, 设x>0, 则y =x =xa a log μ, 因此, 幂函数x 可看作是由y =au , u =logax 复合而成的, 由此, 根据定理6, 它在(0, +∞)内是连续的.如果对于取各种不同值加以分别讨论, 可以证明幂函数在它的定义域内是连续的.结论: 基本初等函数在它们的定义域内都是连续的.最后, 根据初等函数的定义, 由基本初等函数的连续性以及本节有关定理可得下列重要结论:一切初等函数在其定义区间内都是连续的. 所谓定义区间, 就是包含在定义域内的区间.初等函数的连续性在求函数极限中的应用:如果f(x)是初等函数, 且x0是f(x)的定义区间内的点, 则limx x →f(x)=f(x0).例5求21lim x x -→解 初等函数f(x)=21x -在点00=x 是有定义的,所以 111lim 20==-→x x .例6求xx sin ln lim 2π→解 初等函数f(x)=ln sin x 在点2 0π=x 是有定义的, 所以 02 sin ln sin ln lim 2==→ππx x .例7. 求x x x 11lim 20-+→.解: x x x 11lim 20-+→)11()11)(11(lim 2220++++-+=→x x x x x02011lim 20==++=→x x x .例8. 求x x a x )1(log lim0+→.教 学 过 程§1 导数概念一、 导数概念 1. 引例直线运动的速度设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: S =f (t ),求动点在时刻t 0的速度. 考虑比值000)()(t t t f t f t t s s --=--,这个比值可认为是动点在时间间隔t =t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样:令t =t 0→0, 取比值0)()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 00)()(lim 0t t t f t f v t t --=→,这时就把这个极限值v 称为动点在时刻t 0的速度.2.切线问题设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线.设曲线C 就是函数y f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0000)()(tan x x x f x f x x y y --=--=ϕ, 其中为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存在, 设为k , 即 00)()(limx x x f x f k x x --=→存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k tan ,其中是切线MT 的倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线.二、导数的定义1. 函数在一点处的导数与导函数从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00)()(lim 0x x x f x f x x --→.令△x =x -x 0, 则△y =f (x 0+△x )-f (x 0)=f (x )-f (x 0), x →x 0相当于△x →0, 于是0)()(limx x x f x f x x --→成为xyx ∆∆→∆0lim 或xx f x x f x ∆-∆+→∆)()(lim 000.定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量△x (点x 0+△x 仍在该邻域内)时, 相应地函数y 取得增量△y =f (x 0+△x )-f (x 0); 如果△y 与△x 之比当△x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即xx f x x f xyx f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(0000,也可记为0|x x y =',0 x x dx dy =或0)(x x dx x df =. 函数f (x )在点x 0处可导有时也说成f (x )在点x 0具有导数或导数存在.导数的定义式也可取不同的形式, 常见的有hx f h x f x f h )()(lim )(0000-+='→, 000)()(lim )(0x x x f x f x f x x --='→.在实际中, 需要讨论各种具有不同意义的变量的变化“快慢”问题, 在数学上就是所谓函数的变化率问题. 导数概念就是函数变化率这一概念的精确描述.如果极限xx f x x f x ∆-∆+→∆)()(lim000不存在, 就说函数y =f (x )在点x 0处不可导.如果不可导的原因是由于∞=∆-∆+→∆xx f x x f x )()(lim000, 也往往说函数y =f (x )在点x 0处的导数为无穷大.如果函数y =f (x )在开区间I 内的每点处都可导, 就称函数f (x )在开区间I 内可导, 这时, 对于任一x ∈I , 都对应着f (x )的一个确定的导数值. 这样就构成了一个新的函数, 这个函数叫做原来函数y =f (x )的导函数, 记作 y ',)(x f ',dx dy , 或dxx df )(. 2. 导函数的定义式:xx f x x f y x ∆-∆+='→∆)()(limhx f h x f h )()(lim-+→. f '(x 0)与f '(x )之间的关系:函数f (x )在点x 0处的导数f '(x )就是导函数f '(x )在点x =x 0处的函数值, 即0)()(0x x x f x f ='='.导函数f '(x )简称导数, 而f '(x 0)是f (x )在x 0处的导数或导数f '(x )在x 0处的值. 左右导数: 所列极限存在, 则定义f (x )在0x 的左导数:hx f h x f x f h )()(lim )(0000-+='-→-;f (x )在0x 的右导数:hx f h x f x f h )()(lim )(0000-+='+→+.如果极限hx f h x f h )()(lim 000-+-→存在,则称此极限值为函数在x 0的左导数.如果极限hx f h x f h )()(lim 000-++→存在,则称此极限值为函数在x 0的右导数.导数与左右导数的关系:A x f =')(0⇔A x f x f ='='+-)()(00.三、求导数举例例1.求函数f (x )C (C 为常数)的导数.解: hx f h x f x f h )()(lim)(0-+='→0lim 0=-=→hC C h . 即(C ) '=0.例2 求xx f 1)(=的导数解 hxh x h x f h x f x f h h 11lim )()(lim )(00-+=-+='→→2001)(1lim )(limx x h x x h x h h h h -=+-=+-=→→例3求x x f =)(的导数解 hx h x h x f h x f x f h h -+=-+='→→00lim )()(lim)( xx h x x h x h h h h 211lim )(lim 00=++=++=→→ 例4.求函数f (x )x n (n 为正整数)在x a 处的导数.解: f '(a )a x a f x f ax --=→)()(lima x a x n n a x --=→lim ax →=lim (x n1ax n2⋅ ⋅ ⋅a n 1)=na n 1.把以上结果中的a 换成x 得 f '(x )=nx n 1, 即 (x n )'=nx n 1. (C )'=0, 21)1(xx-=', xx 21)(=', 1)(-⋅='μμμx x .例5.求函数f (x )sin x 的导数.解: f '(x )hx f h x f h )()(lim-+=→h x h x h sin )sin(lim 0-+=→ 2sin )2cos(21lim 0h h x h h +⋅=→ x h hh x h cos 22sin )2cos(lim 0=⋅+=→.即 (sin x )'=cos x .用类似的方法, 可求得 (cos x )'=-sin x . 例6.求函数f (x )a x (a >0, a ≠1) 的导数.解: f '(x )h x f h x f h )()(lim0-+=→h a a x h x h -=+→0limh a a h h x 1lim 0-=→t a h =-1令)1(log lim 0t t a a t x +→ a a ea x a x ln log 1==.特别地有(e x )′=e x .例7.求函数f (x )log a x (a >0, a ≠1) 的导数.解: hx h x hx f h x f x f a a h h log )(log lim )()(lim )(0-+=-+='→→h xa h a h a h xh x x h h x x x h x h )1(log lim 1)1(log lim 1)(log 1lim 000+=+=+=→→→ a x e x a ln 1log 1==.解:h xh x x f a ah log )(log lim )(0-+='→)1(log 1lim 0xh h a h +=→ h xa h x h x )1(log lim 10+=→ax e x a ln 1log 1==.即 ax x a ln 1)(log ='. :特殊地 xx 1)(ln ='.ax x a ln 1)(log ='xx 1)(ln ='.1.单侧导数:极限h x f h x f h )()(lim0-+→存在的充分必要条件是hx f h x f h )()(lim 0-+-→及h x f h x f h )()(lim 0-++→都存在且相等.f (x )在0x 处的左导数:hx f h x f x f h )()(lim )(00-+='-→-, f (x )在0x 处的右导数:hx f h x f x f h )()(lim )(00-+='+→+.2.导数与左右导数的关系:函数f (x )在点x 0处可导的充分必要条件是左导数左导数f '(x 0) 和右导数f '(x 0)都存在且相等.如果函数f (x )在开区间(a , b )内可导, 且右导数f '(a ) 和左导数f '(b )都存在, 就说f (x )有闭区间[a , b ]上可导. 例8.求函数f (x )x |在x 0处的导数.解: 1||lim )0()0(lim )0(00-==-+='--→→-h h hf h f f h h , 1||lim )0()0(lim )0(00==-+='++→→+h h hf h f f h h ,因为f '(0)≠ f '(0), 所以函数f (x )|x |在x 0处不可导.四、导数的几何意义函数y =f (x )在点x 0处的导数f '(x 0)在几何上表示曲线y =f (x )在点M (x 0, f (x 0))处的切线的斜率, 即f '(x 0)=tan , 其中是切线的倾角.如果y =f (x )在点x 0处的导数为无穷大, 这时曲线y =f (x )的割线以垂直于x 轴的直线x =x 0为极限位置, 即曲线y =f (x )在点M (x 0, f (x 0))处具有垂直于x 轴的切线x =x 0. : 由直线的点斜式方程, 可知曲线y f (x )在点M (x 0, y 0)处的切线方程为 y -y 0=f '(x 0)(x -x 0).过切点M (x 0, y 0)且与切线垂直的直线叫做曲线y =f (x )在点M 处的法线如果f '(x 0)≠0, 法线的斜率为)(10x f '-, 从而法线方程为)()(1000x x x f y y -'-=-.例9. 求等边双曲线x y 1=在点)2 ,21(处的切线的斜率, 并写出在该点处的切线方程和法线方程.解: 21xy -=', 所求切线及法线的斜率分别为 4)1(2121-=-==x xk , 41112=-=k k .所求切线方程为)21(42--=-x y , 即4xy 40. 所求法线方程为)21(412-=-x y , 即2x8y150.例10. 求曲线x x y =的通过点(0, -4)的切线方程.解 设切点的横坐标为x 0, 则切线的斜率为 0212302323)()(0x x x x f x x =='='=. 于是所求切线的方程可设为 )(230000x x x x x y -=-.根据题目要求, 点(0, -4)在切线上, 因此 )0(2340000x x x x -=--,解之得x 0=4. 于是所求切线的方程为 )4(42344-=-x y , 即3x -y -4=0.五、函数的可导性与连续性的关系设函数yf (x )在点x 0 处可导, 即)(lim 00x f xy x '=∆∆→∆存在. 则00)(lim lim lim lim 00000=⋅'=∆⋅∆∆=∆⋅∆∆=∆→∆→∆→∆→∆x f x x yx xy y x x x x .这就是说, 函数y f (x )在点x 0 处是连续的. 所以, 如果函数y =f (x )在点x 处可导, 则函数在该点必连续.另一方面, 一个函数在某点连续却不一定在该点处可导.例7. 函数3)(x x f =在区间(∞, ∞)内连续, 但在点x =0处不可导. 这是因为函数在点x =0处导数为无穷大hf h f h )0()0(lim0-+→+∞=-=→h h h 0lim 30.x(u +v -w )'=u '+v '-w '.(uvw )'=[(uv )w]'=(uv )'w +(uv )w '=(u 'v +uv ')w +uvw '=u 'vw +uv 'w +uvw '.即 (uvw )'=u 'vw +uv 'w +uvw '.在法则(2)中, 如果v =C (C 为常数), 则有 (Cu )'=Cu '.例1.y =2x 3-5x 2+3x -7, 求y '解: y '=(2x 3-5x 2+3x -7)'= (2x 3)'-5x 2)'+3x )'-7)'= 2(x 3)'- 5x 2)'+ 3x )' =2⋅3x 2-5⋅2x +3=6x 2-10x +3.例2.2 sin cos 4)(3π-+=x x x f , 求f '(x )及)2(πf '.解: x x x x x f sin 43)2(sin )cos 4()()(23-='-'+'='π,443)2 (2-='ππf .例3.y =e x (sin x +cos x ), 求y '.解: y '=e x )'(sin x +cos x )+ e x (sin x +cos x )' = e x (sin x +cos x )+ e x (cos x -sin x ) =2e x cos x . 例4.y =tan x , 求y '.解: xx x x x x x x y 2cos )(cos sin cos )(sin )cos sin ()(tan '-'='='='x xx x x 22222sec cos 1cos sin cos ==+=.即 (tan x )'=sec 2x . 例5.y =sec x , 求y '.解: xx x xx y 2cos )(cos 1cos )1()cos 1()(sec '⋅-'='='='xx2cos sin ==sec x tan x . 即 (sec x )'=sec x tan x .用类似方法, 还可求得余切函数及余割函数的导数公式: (cot x )'=-csc 2x ,(csc x )'=-csc x cot x .例8设x =a y (a >0, a ≠1)为直接函数, 则y =log a x 是它的反函数. 函数x =a y 在区间I y =(-∞, +∞)内单调、可导, 且 (a y )'=a y ln a ≠0.因此, 由反函数的求导法则, 在对应区间I x =(0, +∞)内有 ax aa a x y ya ln 1ln 1)(1)(log =='='.到目前为止, 所基本初等函数的导数我们都求出来了, 那么由基本初等函数构成的较复杂的初等函数的导数如可求呢?如函数lntan x 、3x e 、的导数怎样求?复合函数的求导法则定理3 如果u =g (x )在点x 可导, 函数y =f (u )在点u =g (x )可导, 则复合函数y =f [g (x )]在点x 可导, 且其导数为)()(x g u f dxdy'⋅'=或dx du du dy dx dy ⋅=.证明: 当u =g (x )在x 的某邻域内为常数时, y =f [(x )]也是常数, 此时导数为零,结论自然成立.当u =g (x )在x 的某邻域内不等于常数时, u ≠0, 此时有 xx g x x g x g x x g x g f x x g f x x g f x x g f xy ∆-∆+⋅-∆+-∆+=∆-∆+=∆∆)()()()()]([)]([)]([)]([xx g x x g u u f u u f ∆-∆+⋅∆-∆+=)()()()(,xx g x x g u u f u u f x y dx dy x u x ∆-∆+⋅∆-∆+=∆∆=→∆→∆→∆)()(lim )()(lim lim 000= f '(u )⋅g '(x ).简要证明x u u y x y dx dy x x ∆∆⋅∆∆=∆∆=→∆→∆00lim lim )()(lim lim 00x g u f xu u yx u ''=∆∆⋅∆∆=→∆→∆. 例9 3x e y =, 求dxdy.解 函数3x e y =可看作是由y =e u , u =x 3复合而成的, 因此32233x u e x x e dxdu du dy dx dy =⋅=⋅=. 例10 212sin xx y +=, 求dx dy.解 函数212sin x x y +=是由y =sin u , 212xx u +=复合而成的,因此 2222222212cos )1()1(2)1()2()1(2cos xx x x x x x u dx du du dy dx dy +⋅+-=+-+⋅=⋅=. 对复合函数的导数比较熟练后, 就不必再写出中间变量, 例11.lnsin x , 求dxdy .解:)(sin sin 1)sin (ln '⋅='=x x x dx dyx x xcot cos sin 1=⋅=. 例12.3221x y -=, 求dxdy.解: )21()21(31])21[(2322312'-⋅-='-=-x x x dx dy 322)21(34x x --=.复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y =f (u ), u =ϕ(v ),v =ψ(x ), 则dxdv dv du du dy dx du du dy dx dy ⋅⋅=⋅=. 例13.y =lncos(e x ), 求dxdy.解: ])[cos()cos(1])cos([ln '⋅='=x x x e e e dx dy)tan()()]sin([)cos(1x x x x x e e e e e -='⋅-⋅=.例14.x e y 1sin =, 求dxdy.解: )1(1cos )1(sin )(1sin 1sin 1sin '⋅⋅='⋅='=x x e x e e dx dy x x xxe x x 1cos 11sin2⋅⋅-=. 例15设x >0, 证明幂函数的导数公式 (x μ)'=μ x μ-1.解 因为x μ=(e ln x )μ=e μ ln x , 所以(x μ)'=(e μ ln x )'= e μ ln x ⋅(μ ln x )'= e μ ln x ⋅μ x -1=μ x μ-1.基本求导法则与导数公式 1.基本初等函数的导数:(1)(C )'=0,(2)(x )'= x -1, (3)(sin x )'=cos x , (4)(cos x )'=-sin x , (5)(tan x )'=sec 2x , (6)(cot x )'=-csc 2x ,(7)(sec x )'=sec x ⋅tan x , (8)(csc x )'=-csc x ⋅cot x , (9)(a x )'=a x ln a , (10)(e x )'=e x , (11) ax x a ln 1)(log =',(12) xx 1)(ln =',(13) 211)(arcsin x x -=', (14) 211)(arccos xx --='.(15) 211)(arctan xx +=',(16) 211)cot arc (xx +-='.2.函数的和、差、积、商的求导法则 设u =u (x ), v =v (x )都可导, 则 (1)(u ±v )'=u '±v ',(2)(C u )'=C u ', (3)(u v )'=u '⋅v +u ⋅v ',(4)2)(vv u v u vu '-'='. 反函数的求导法则设x =f (y )在区间I y 内单调、可导且f '(y )≠0, 则它的反函数y =f -1(x )在I x =f (I y )内也可导, 并且)(1])([1y f x f '='-. 或dydx dxdy1=.复合函数的求导法则设y =f (x ), 而u =g (x )且f (u )及g (x )都可导, 则复合函数y =f [g (x )]的导数为 dxdudu dy dx dy ⋅=或y '(x )=f '(u )⋅g '(x ). 例16. 求双曲正弦sh x 的导数.解因为)(21sh x x e e x --=, 所以x e e e e x x x x x ch )(21)(21)sh (=+='-='--,即 (sh x )'=ch x . 类似地, 有(ch x )'=sh x . 例17. 求双曲正切th x 的导数解因为x x x ch sh th =, 所以xx x x 222ch sh ch )(th -='x 2ch 1=.例18. 求反双曲正弦arsh x 的导数解 因为)1ln(arsh 2x x x ++=, 所以 22211)11(11)arsh (x x x x x x +=++⋅++='. 由)1ln(arch 2-+=x x x , 可得11)arch (2-='x x .由x x x -+=11ln 21arth , 可得211)arth (xx -='.类似地可得11)arch (2-='x x 211)arth (x x -='例19.y =sin nx ⋅sin n x (n 为常数), 求y '.解: y '=(sin nx )' sin n x + sin nx ⋅ (sin n x )'= n cos nx ⋅sin n x +sin nx ⋅ n ⋅ sin n -1 x ⋅(sin x )'= n cos nx ⋅sin n x +n sin n -1 x ⋅ cos x =n sin n -1 x ⋅ sin(n +1)x .教 学 过 程§4 高阶导数一般地, 函数y =f (x )的导数y '=f '(x )仍然是x 的函数. 我们把y '=f '(x )的导数叫做函数y =f (x )的二阶导数, 记作 y ''、f ''(x )或22dxyd ,即 y ''=(y ')', f ''(x )=[f '(x )]',)(22dxdydx d dx y d =.相应地, 把y =f (x )的导数f '(x )叫做函数y =f (x )的一阶导数.类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, ⋅ ⋅ ⋅, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作y ''', y (4), ⋅ ⋅ ⋅ , y (n ) 或33dx y d , 44dx y d , ⋅ ⋅ ⋅ , nn dxyd . 函数f (x )具有n 阶导数, 也常说成函数f (x )为n 阶可导. 如果函数f (x )在点x处具有n 阶导数, 那么函数f (x )在点x 的某一邻域内必定具有一切低于n 阶的导数. 二阶及二阶以上的导数统称高阶导数.y '称为一阶导数 y '' y ''' y (4) ⋅ ⋅ ⋅ y (n )都称为高阶导数例1.y ax +b , 求y ''. 解: y '=a , y ''=0.例2.s =sin t , 求s ''.解: s '=cos t , s ''=-sin t . 例3.证明: 函数22x x y -=满足关系式y3y ''+1=0.证明: 因为22212222x x xxx x y --=--=',22222222)1(2x x x x xx x x y -------='')2()2()1(22222x x x x x x x ----+-=32321)2(1yx x -=--=所以y 3y ''+1=0.例4.求函数y =e x 的n 阶导数. 解; y '=e x , y ''=e x , y '''=e x , y ( 4)=e x , 一般地, 可得y ( n )=e x , 即 (e x )(n )=e x .例5.求正弦函数与余弦函数的n 阶导数. 解: y =sin x ,)2sin(cos π+=='x x y ,)22sin()2 2sin()2cos(ππππ⋅+=++=+=''x x x y ,)23sin()2 2 2sin()2 2cos(ππππ⋅+=+⋅+=⋅+='''x x x y ,)24sin()2 3cos()4(ππ⋅+=⋅+=x x y ,一般地, 可得)2sin()(π⋅+=n x y n , 即)2sin()(sin )(π⋅+=n x x n .用类似方法, 可得)2cos()(cos )(π⋅+=n x x n .例6.求对函数ln(1+x )的n 阶导数解: y =ln(1+x ), y '=(1+x )1, y ''=-(1+x )2,y '''(-1)(-)(1-x )3, y (4)=(-1)(-2)(-3)(1+x )4, 一般地, 可得y (n )=(-1)(-2)⋅ ⋅ ⋅(n -1)(1-x )n nn x n )1()!1()1(1+--=-, 即 nn n x n x )1()!1()1()]1[ln(1)(+--=+-. 例7.求幂函数y =x (是任意常数)的n 阶导数公式.解: : y '=μx μ-1,y ''=μ(μ-1)x μ-2,y '''=μ(μ-1)(μ-2)x μ-3,y ( 4)=μ(μ-1)(μ-2)(μ-3)x μ-4, 一般地, 可得y (n )=μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n , 即 (x μ )(n ) =μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n . 当μ=n 时, 得到(x n )(n ) = μ(μ-1)(μ-2) ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1=n ! . 而 (x n )( n +1)=0 .如果函数u =u (x )及v =v (x )都在点x 处具有n 阶导数, 那么显然函数u (x )±v (x )也在点x 处具有n 阶导数, 且(u ±v )(n )=u (n )+v (n ) .教 学 过 程§5 隐函数的导数以及由参数方程所确定的函数的导数 一、隐函数的导数显函数: 形如y =f (x )的函数称为显函数. 例如y sin x , y =ln x ++e x .隐函数: 由方程F (x , y )=0所确定的函数称为隐函数. 例如, 方程x +y 3 -1=0确定的隐函数为y 31x y -=. 如果在方程F (x , y )=0中, 当x 取某区间内的任一值时, 相应地总有满足这方程的唯一的y 值存在, 那么就说方程F (x , y )=0在该区间内确定了一个隐函数.把一个隐函数化成显函数, 叫做隐函数的显化. 隐函数的显化有时是有困难的, 甚至是不可能的. 但在实际问题中, 有时需要计算隐函数的导数, 因此, 我们希望有一种方法, 不管隐函数能否显化, 都能直接由方程算出它所确定的隐函数的导数来.例1.求由方程e y +xy -e =0 所确定的隐函数y 的导数. 解: 把方程两边的每一项对x 求导数得 (e y )'+(xy )'-(e )'=(0)', 即 e y ⋅ y '+y +xy '=0,从而 y e x yy +-='(x +e y ≠0). 例2.求由方程y 5+2y -x -3x 7=0 所确定的隐函数y =f (x )在x =0处的导数y '|x =0.解: 把方程两边分别对x 求导数得 5y ⋅y '+2y '-1-21x 6=0,由此得 2521146++='y x y . 因为当x =0时, 从原方程得y =0, 所以 21|25211|0460=++='==x x y x y .例3.求椭圆191622=+y x 在)323 ,2(处的切线方程.解: 把椭圆方程的两边分别对x 求导, 得 0928='⋅+y y x .从而 yx y 169-='.当x =2时, 323=y , 代入上式得所求切线的斜率43|2-='==x y k .所求的切线方程为)2(43323--=-x y , 即03843=-+y x .例4.求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数.解: 方程两边对x 求导, 得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》教案第一讲 函数与极限1.函数的定义 设有两个变量x ,y 。

对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。

记作y=f(x),x ∈D 。

其中x 叫自变量,y 叫因变量。

函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。

例1:设f(x+1)=2x 2+3x-1,求f(x).解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2∴f(x)=2x 2 – x – 2定义域:使函数有意义的自变量的集合。

因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0例2 求函数y=6—2x -x +arcsin712x -的定义域. 解:要使函数有定义,即有:1|712|062≤-≥--x x x ⇔ 4323≤≤--≤≥x x x 或⇔4323≤≤-≤≤-x x 或 于是,所求函数的定义域是:[-3,-2]Y [3,4].例3 判断以下函数是否是同一函数,为什么? (1)y=lnx 2与y=2lnx (2)ω=u 与y=x解 (1)中两函数的 定义域不同,因此不是相同的函数. (2)中两函数的 对应法则和定义域均相同,因此是同一函数. 2. 初等函数(1)基本初等函数常数函数:y=c(c 为常数) 幂函数: y=μx (μ为常数) 指数函数:y=xa (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数)三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx(2)复合函数 设),(u f y =其)(x u ϕ=中,且)(x ϕ的值全部或部分落在)(u f 的定义域内,则称)]([x f y ϕ=为x 的复合函数,而u 称为中间变量.例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0,∴sinx ≥0,x ∈[2k π,π+2k π]例5:分析下列复合函数的结构(1)y=2cotx (2)y=1sin 2+x e解:(1)y=u ,u=cosv ,v=2x(2)y=ue ,u=sinv ,v=t ,t=x 2+1例6:设f(x)=2x g(x)=x 2 求f[g(x)] g[f(x)]解:f[g(x)]=f(x 2)=(x 2)2=4x g[f(x)]=g(2x )=22x3. 极限(1)定义 函数y=f(x),当自变量x 无限接近于某个目标时(一个数x 0,或+∞或—∞),因变量y 无限接近于一个确定的常数A ,则称函数f(x)以A 为极限。

定理1 函数 )(x f 当0x x →时的极限存在的充分必要条件是,)(x f 当0x x →时的左右极限都存在并且相等.即 ⇔=→A x f x x )(lim 0=-→)(lim 0x f x x A x f x x =+→)(lim 0例7:判断下列函数在指定点的是否存在极限⑴ ⎩⎨⎧<>+=2,2,1x x x x y (当2→x 时) ⑵ ⎪⎩⎪⎨⎧><=0,310,sin x x x x y (当0→x 时)解:⑴ ∵3lim ,2lim 22==+-→→y y x x ,yy x x +-→→≠22lim lim∴ 函数在指定点的极限不存在。

⑵ ∵0031lim ,00sin lim 00=⨯===+-→→y y x x ,y y x x +-→→=00lim lim∴ 函数在指定点的极限y x 0lim →=04.无穷小量与无穷大量极限为0的量称为无穷小量,简称无穷小;若∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ),则称)(x f 为当0x x →(或)时的无穷大量,简称无穷大。

例如:0sin lim 0=→x x ,所以,当x →0时,sin x 是无穷小量。

同样,当x →0时αx (α>0),1-cosx ,arcsinx 等都是无穷小量。

当x →+∞时,01lim =+∞→n n ,所以{n1}是无穷小量.无穷小量的性质:(1)有限个无穷小量的代数和是无穷小量。

(2)无穷小量与有界量之积是无穷小量。

推论1:任一常数与无穷小量之积是无穷小量。

推论2:有限个无穷小量之积是无穷小量。

(注:两个无穷小之商未必是无穷小) 5.极限的运算设x 在同一变化过程中)(lim x f (此处省略了自变量x 的变化趋势,下同)及)(lim x g 都存在,则有下列运算法则:法则1、lim [f(x)±g(x)]= lim f(x)± lim g(x) 法则2、lim [f(x)• g(x)]= lim f(x) •lim g(x) 法则3、lim)()(x g x f =)(lim )(lim x g x f (lim g(x)≠0) (1)直接代入求值 例8 求2lim →x (3x 2-4x+1)解:2lim →x (3x 2-4x+1)=3•22-4•2+1=5例8 求1lim -→x 234222+-+x x x解:1lim -→x 234222+-+x x x =)23(lim )42(lim 2121+-+-→-→x x x x x = -53例10 求45127lim 224+-+-→x x x x x解:45127lim 224+-+-→x x x x x =4lim →x )4)(1()4)(3(----x x x x =4lim →x 13--x x =31(2)∞∞型 例11 求∞→x lim 233222+--+x x x x解:∞→x lim 233222+--+x x x x =∞→x lim 22213312xx x x +--+=32 小结:∞→x 时,∞∞型的极限,可用分子分母中x 的最高次幂除之(3)∞-∞型,0型,例12 求下列函数极限1、1lim →x (313x --x-11) 2、0lim →x x x 11-+ 3、+∞→x lim 31cos xx x +解:1、1lim →x (313x --x -11)=1lim →x )1)(1()1(322x x x x x ++-++- =1lim→x )1)(1()1)(2(2x x x x x ++--+=1lim →x 212xx x+++=1 2、0lim→x x x 11-+=0lim →x )11()11)(11(++-+-+x x x x =0lim→x )11(++x x x =0lim→x 111++x =213、+∞→x lim31cos xx x +=+∞→x limx xx cos 13•+=0(4)利用两个重要极限100lim→x xxsin =1特点:①它是“00”型 ②1sin lim 0=∆∆→∆ (三角形∆代表同一变量)例13 求∞→x lim x x 1sin •解: 0lim →x x x 2sin =0lim →x 222sin •x x=2注:∞→x limxxsin ≠1 ∞→x limxx sin =∞→x lim x x sin 1•=0 例14 求∞→x lim xx 1sin •解: ∞→x lim x x 1sin •=∞→x limxx 11sin=1 例15 求0lim →x x x4sin 3sin解: 0lim →x x x 4sin 3sin =0lim →x [x x x x x x 4sin 44333sin ••]=43例16 求20cos 1lim x xx -→解:原式=0lim→x 222sin 2x x=0lim →x [21)22sin (2•x x ]=210lim →x [22sin x x ]2=21 20 ∞→x lim (1+x1)x= e 特点:(1)∞→x lim (1+无穷小)无穷大案 ,即1∞型;(2)“无穷小”与“无穷大”的解析式互为倒数,e =∆+∆∞→∆)11(lim 推广:①e x xx =+→1)1(lim ②e =∆+∆→∆10)1(lim例17 ∞→x lim (1+x21)x3 解:原式=∞→x lim [x x2)211(+]23=23e例18 ∞→x lim (1+x21)23+x 解:原式=∞→x lim [(1+x 21)23+x •(1+x 21)2]=∞→x lim (1+x 21)x 3•∞→x lim (1+x21)2=23e例19 ∞→x lim (1+x3)x解:原式=∞→x lim (1+31x)33•x=3e(5)利用常用的几个等价无穷小代换:当0→x 时,有x sin ~ x ;tanx ~x ;arcsinx ~x ;arctanx ~x ;-1cosx ~22x ;ln(1+x) ~x ;xe 1-~x ;11-+x ~x 21。

例20 求0lim→x x x4sin 3sin解:0lim →x x x 4sin 3sin =0lim →x x x 43=43例21 求0lim →x 2cos 1x x-解:0lim →x 2cos 1x x -=0lim →x 222x x =21例22 求0lim→x x x5sin 2tan解:0lim →x x x 5sin 2tan =0lim →x x x 52=52例23 0lim →x 3sin tan xxx - 解:0lim →x x x x x cos )cos 1(sin 3-=0lim →x xx xx cos 2132••=0lim →x x cos 21=21 注:10用等价代换时,必须对分子或分母的整体替换(或对分子、分母的因式进行替换)20分子或分母中若有“+”“-”号连接的各部分不能分别作替换。

(6)利用函数的连续性定义 1 设y=f(x)在点0x 的某邻域上有定义,如果自变量的增量0x x x -=∆趋于零时,对应的函数增量也趋于零,即0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x 则称f(x)在点0x 是连续的。

定义2 设函数y=f(x)在点0x 的某邻域内有定义,若)()(lim 00x f x f x x =→,则称函数f(x)在点0x 处连续。

定义3(间断点的分类):设0x 是)(x f 的一个间断点,如果:(1))(x f 的左右极限都存在,称0x 为)(x f 第一类间断点,当-→0lim x x )(x f +→≠0lim x x )(x f ,则称0x 为)(x f 的跳跃间断点(2))(x f 的左右极限都存在,称0x 为)(x f 第一类间断点,当)(lim 0x f x x →存在,但不等于)(0x f ,则称0x 为)(x f 的可去间断点(3)除(1)(2)以外的,称0x 为)(x f 的第二类间断点,当0lim x x →)(x f =∞,称0x 为)(x f 的无穷间断点。

相关文档
最新文档