高等数学电子教案
高等数学教案word版

高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。
高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。
一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。
[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。
(2)值域:函数值的集合,即{yy?f(x),x?D}。
例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。
高等数学下电子教案

高等数学下电子教案一、引言1.1 课程介绍本课程是高等数学下的电子教案,主要面向大学本科生和研究生,涵盖高等数学的基本概念、理论和方法。
1.2 教学目标通过本课程的学习,使学生掌握高等数学的基本知识,培养学生的逻辑思维能力和解决实际问题的能力。
二、极限与连续2.1 极限的定义与性质2.1.1 极限的定义2.1.2 极限的性质2.1.3 极限的存在性定理2.2 无穷小与无穷大2.2.1 无穷小的概念2.2.2 无穷小的比较2.2.3 无穷大2.3 极限的运算法则2.3.1 极限的四则运算法则2.3.2 复合函数的极限2.4 极限的求解方法2.4.1 直接代入法2.4.2 因式分解法2.4.3 洛必达法则2.5 连续函数的性质2.5.1 连续函数的定义2.5.2 连续函数的性质2.5.3 连续函数的例子三、导数与微分3.1 导数的定义与性质3.1.1 导数的定义3.1.2 导数的性质3.1.3 导数的计算法则3.2 高阶导数3.2.1 二阶导数3.2.2 三阶导数及更高阶导数3.3 隐函数求导3.3.1 隐函数求导的基本方法3.3.2 隐函数求导的例子3.4 微分3.4.1 微分的定义3.4.2 微分的性质3.4.3 微分的计算四、微分中值定理与导数的应用4.1 微分中值定理4.1.1 罗尔定理4.1.2 拉格朗日中值定理4.1.3 柯西中值定理4.2 导数的应用4.2.1 函数的单调性4.2.2 函数的极值4.2.3 函数的凹凸性五、不定积分与定积分5.1 不定积分5.1.1 不定积分的概念5.1.2 不定积分的性质5.1.3 不定积分的计算方法5.2 定积分5.2.1 定积分的概念5.2.2 定积分的性质5.2.3 定积分的计算方法5.3 定积分的应用5.3.1 面积的计算5.3.2 弧长的计算5.3.3 质心、转动惯量的计算六、定积分的进一步应用6.1 定积分在几何中的应用6.1.1 计算平面区域的面积6.1.2 计算曲线围成的面积6.1.3 计算旋转体的体积6.2 定积分在物理中的应用6.2.1 计算物体的质量6.2.2 计算物体受到的力6.2.3 计算物体的动能和势能6.3 定积分在概率论中的应用6.3.1 概率密度函数的定义6.3.2 计算概率6.3.3 计算期望和方差七、微分方程7.1 微分方程的基本概念7.1.1 微分方程的定义7.1.2 微分方程的阶数7.1.3 微分方程的解7.2 一阶微分方程7.2.1 分离变量法7.2.2 积分因子法7.2.3 变量替换法7.3 高阶微分方程7.3.1 线性高阶微分方程7.3.2 非线性高阶微分方程7.3.3 常系数线性微分方程八、线性代数8.1 矩阵8.1.1 矩阵的定义8.1.2 矩阵的运算8.1.3 矩阵的性质8.2 线性方程组8.2.1 高斯消元法8.2.2 克莱姆法则8.2.3 矩阵的逆8.3 向量空间与线性变换8.3.1 向量空间的概念8.3.2 线性变换的概念8.3.3 特征值与特征向量九、概率论与数理统计9.1 概率论基本概念9.1.1 随机试验与样本空间9.1.2 事件与概率9.1.3 条件概率与独立性9.2 离散型随机变量9.2.1 离散型随机变量的定义9.2.2 离散型随机变量的分布律9.2.3 离散型随机变量的期望与方差9.3 连续型随机变量9.3.1 连续型随机变量的定义9.3.2 连续型随机变量的分布函数9.3.3 连续型随机变量的期望与方差9.4 数理统计的基本概念9.4.1 统计量与抽样分布9.4.2 估计理论9.4.3 假设检验十、复变函数10.1 复数的基本概念10.1.1 复数的定义10.1.2 复数的运算10.1.3 复数的性质10.2 复变函数的基本概念10.2.1 复变函数的定义10.2.2 复变函数的运算10.2.3 复变函数的性质10.3 复变函数的积分10.3.1 复变函数的积分公式10.3.2 复变函数的积分计算10.3.3 复变函数的line integral10.4 复变函数的应用10.4.1 复变函数在几何中的应用10.4.2 复变函数在物理中的应用10.4.3 复变函数在工程中的应用重点和难点解析一、极限与连续1.1 极限的定义与性质:理解极限的概念,特别是无穷小和无穷大的比较,以及极限的存在性定理。
《高等数学电子教案》课件

《高等数学电子教案》PPT课件第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,了解函数的图像。
教学内容:函数的定义,函数的性质,函数的图像。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,学会求极限。
教学内容:极限的定义,极限的性质,极限的求法。
第二章:导数与微分2.1 导数的概念与性质教学目标:理解导数的概念,掌握导数的性质,学会求导数。
教学内容:导数的定义,导数的性质,求导数的方法。
2.2 微分的概念与性质教学目标:理解微分的概念,掌握微分的性质,学会求微分。
教学内容:微分的定义,微分的性质,求微分的方法。
第三章:积分与微分方程3.1 不定积分的概念与性质教学目标:理解不定积分的概念,掌握不定积分的性质,学会求不定积分。
教学内容:不定积分的定义,不定积分的性质,求不定积分的方法。
3.2 定积分的概念与性质教学目标:理解定积分的概念,掌握定积分的性质,学会求定积分。
教学内容:定积分的定义,定积分的性质,求定积分的方法。
第四章:向量与线性方程组4.1 向量的概念与性质教学目标:理解向量的概念,掌握向量的性质,学会求向量的运算。
教学内容:向量的定义,向量的性质,向量的运算。
4.2 线性方程组的概念与性质教学目标:理解线性方程组的概念,掌握线性方程组的性质,学会解线性方程组。
教学内容:线性方程组的定义,线性方程组的性质,解线性方程组的方法。
第五章:矩阵与行列式5.1 矩阵的概念与性质教学目标:理解矩阵的概念,掌握矩阵的性质,学会求矩阵的运算。
教学内容:矩阵的定义,矩阵的性质,矩阵的运算。
5.2 行列式的概念与性质教学目标:理解行列式的概念,掌握行列式的性质,学会求行列式的值。
教学内容:行列式的定义,行列式的性质,求行列式的方法。
第六章:级数与泰勒公式6.1 级数的概念与性质教学目标:理解级数的概念,掌握级数的性质,学会求级数的收敛性。
教学内容:级数的定义,级数的性质,求级数的收敛性。
高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种规则,将一个非空数集(定义域)中的每一个元素对应到另一个非空数集(值域)中的唯一元素。
函数的性质:单调性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个确定的值L,称f(x)当x趋近于a时的极限为L,记作:lim(x→a)f(x)=L。
极限的性质:保号性、传递性、夹逼性等。
1.3 极限的计算极限的基本计算方法:代数法、几何法、泰勒公式等。
极限的运算法则:加减法、乘除法、复合函数的极限等。
1.4 无穷小与无穷大无穷小的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于0,称f(x)为无穷小。
无穷大的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于正无穷或负无穷,称f(x)为无穷大。
第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在点x处的导数,记作f'(x)或df/dx,表示函数在该点的瞬时变化率。
导数的几何意义:函数图像在某点处的切线斜率。
2.2 导数的计算基本导数公式:常数函数、幂函数、指数函数、对数函数等的导数。
导数的运算法则:和差法、乘法法、链式法则等。
2.3 微分的概念与计算微分的定义:函数f(x)在点x处的微小变化量,记作df(x)。
微分的计算:微分的基本公式df(x)=f'(x)dx,以及微分的运算法则。
2.4 微分方程的概念与解法微分方程的定义:含有未知函数及其导数的方程。
微分方程的解法:分离变量法、积分因子法等。
第三章:积分与面积3.1 不定积分的概念与计算不定积分的定义:函数f(x)的不定积分,记作∫f(x)dx,表示f(x)与x轴之间区域的面积。
基本积分公式:幂函数、指数函数、对数函数等的不定积分。
3.2 定积分的概念与计算定积分的定义:函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx,表示f(x)在[a,b]区间上的累积面积。
2024年高等数学电子教案word

2024年高等数学电子教案word一、教学内容本教案依据《高等数学》教材,涉及第三章“一元函数微分学”的3.1节至3.3节。
详细内容包括导数的定义、求导法则、高阶导数、隐函数求导、微分中值定理及导数的应用等。
二、教学目标1. 理解并掌握导数的定义,能熟练运用导数求解实际问题。
2. 掌握求导法则,能对常见函数求导。
3. 了解导数与函数图形的关系,能运用导数分析函数的性质。
三、教学难点与重点重点:导数的定义及求导法则,导数的应用。
难点:高阶导数的求法,隐函数求导,微分中值定理的理解与应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、《高等数学》辅导书、笔记本、文具。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的优化问题,如最短路径、最大利润等,引导学生思考如何解决这类问题,从而引出导数的概念。
2. 理论讲解(10分钟)详细讲解导数的定义、几何意义、物理意义等,让学生对导数有一个全面的认识。
3. 例题讲解(15分钟)讲解例题,涵盖求导法则、高阶导数、隐函数求导等,让学生掌握求导方法。
4. 随堂练习(10分钟)设计针对性强的练习题,让学生及时巩固所学知识。
5. 课堂小结(5分钟)六、板书设计1. 黑板左侧:导数的定义、求导法则、高阶导数公式。
2. 黑板右侧:例题及解答,随堂练习。
七、作业设计1. 作业题目:(1)求下列函数的导数:y=x^3, y=sin(x), y=e^x。
(2)已知函数f(x)=x^2+3x+1,求f(x)在x=2时的导数。
(3)求隐函数y=x^2+2x^3的导数。
2. 答案:(1)y'=3x^2, y'=cos(x), y'=e^x。
(2)f'(x)=2x+3,所以f'(2)=7。
(3)y'=2x+6x^2。
八、课后反思及拓展延伸1. 反思:本节课学生对导数的定义和求导法则掌握较好,但在高阶导数和隐函数求导方面存在一定困难,需要在课后加强练习。
大学高数教案模板电子版

一、课程基本信息1. 课程名称:高等数学2. 学科类别:数学3. 教学班级:[班级名称]4. 教学时间:[教学周次]周5. 教学地点:[教室编号]6. 教学对象:[专业名称]专业学生7. 教材名称及版本:[教材名称] [版本号]8. 教师姓名:[教师姓名]9. 教学目标:- 知识目标:使学生掌握高等数学的基本概念、基本理论和方法。
- 能力目标:培养学生运用高等数学知识解决实际问题的能力。
- 素质目标:培养学生的逻辑思维能力、创新能力和团队协作精神。
二、教学内容1. 课题:[具体章节名称]2. 主要内容:- [具体知识点1]- [具体知识点2]- [具体知识点3]3. 教学重点:- [教学重点1]- [教学重点2]4. 教学难点:- [教学难点1]- [教学难点2]三、教学过程1. 导入新课- 通过回顾旧知识,引出本节课的主题。
- 提出问题,激发学生的学习兴趣。
2. 讲授新课- 按照教学重点和难点,详细讲解知识点。
- 结合实例,帮助学生理解和掌握知识。
3. 课堂练习- 设计基础练习题,巩固学生对知识点的掌握。
- 引导学生进行小组讨论,培养学生的团队协作能力。
4. 案例分析- 分析实际案例,让学生学会运用所学知识解决实际问题。
- 鼓励学生提出问题,培养学生的创新思维。
5. 总结与回顾- 总结本节课所学内容,帮助学生梳理知识体系。
- 提出课后思考题,引导学生进一步学习。
四、教学手段1. 多媒体课件2. 板书3. 实物教具4. 网络资源五、教学评价1. 课堂表现:学生的参与度、回答问题的情况。
2. 作业完成情况:学生对知识点的掌握程度。
3. 期中/期末考试:对教学效果的全面评估。
六、课后作业1. 完成课后习题,巩固所学知识。
2. 预习下一节课的内容,为下一节课的学习做好准备。
七、教学反思- 教师在教学过程中遇到的问题及解决方法。
- 学生对教学内容的反馈及改进措施。
- 教学效果的评估及后续教学计划。
---注意事项:- 教案应根据实际情况进行调整,以适应不同学生的学习需求。
高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。
函数的性质:单调性、连续性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理等。
1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。
无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。
1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。
导数的概念:函数在某一点的导数表示函数在该点的切线斜率。
第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。
导数的计算:基本导数公式、导数的四则运算法则等。
2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。
微分的计算:微分的基本公式、微分的四则运算法则等。
2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。
积分的计算:基本积分公式、积分的换元法、分部积分法等。
2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。
第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。
微分方程的分类:常微分方程、偏微分方程等。
3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。
3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。
第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。
《高等数学电子教案》课件

《高等数学电子教案》课件一、第1章函数与极限1.1 函数的概念与性质定义域、值域、对应关系奇函数、偶函数、周期函数单调性、连续性、可导性1.2 极限的概念与性质极限的定义(洛必达法则)无穷小、无穷大、极限的存在性极限的运算法则、夹逼定理、单调有界定理二、第2章导数与微分2.1 导数的定义与计算导数的定义(极限比值法)基本导数公式、导数的运算法则高阶导数、隐函数求导、参数方程求导2.2 微分的作用与应用微分的定义、微分的运算法则微分在近似计算、物理应用等方面的作用微分方程的解法与应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算泰勒公式的定义、泰勒级数常见函数的泰勒展开式泰勒公式在近似计算中的应用3.2 不定积分的概念与计算不定积分的定义、基本积分公式换元积分、分部积分积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算定积分的定义、定积分的性质牛顿-莱布尼茨公式、定积分的换元法、分部积分法定积分在几何、物理等方面的应用4.2 反常积分的概念与计算反常积分的定义、无穷区间上的积分瑕点、解析延拓、魏尔斯特拉斯函数反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法微分方程的定义、微分方程的解常微分方程、线性微分方程、非线性微分方程分离变量法、积分因子法、变量替换法5.2 线性微分方程组的概念与解法线性微分方程组的定义、解的结构高阶线性微分方程、齐次线性微分方程特解法、待定系数法、常数变易法六、第6章级数6.1 数项级数的概念与判别法数项级数的定义、收敛性与发散性收敛级数的性质、级数的收敛准则(比较检验、比值检验、根值检验)绝对收敛与条件收敛6.2 幂级数的概念与性质幂级数的定义、收敛半径、收敛区间幂级数的运算、泰勒级数与麦克劳林级数幂级数在函数逼近与数值计算中的应用七、第7章多元函数的极限与连续7.1 多元函数的概念与性质多元函数的定义、偏导数、全微分多元函数的单调性、连续性、可微性方向导数与梯度7.2 多元函数的极限与连续多元函数的极限定义、极限的存在性多元函数的连续性、无穷远点多元函数极限与单变量函数极限的对比八、第8章多元函数的导数与微分8.1 多元函数的导数与微分多元函数的偏导数、全导数高阶偏导数、隐函数求导、参数方程求导微分的概念与性质、微分在多元函数中的应用8.2 多元函数的泰勒公式与不定积分多元函数的泰勒公式、泰勒级数不定积分的概念、多元函数的不定积分积分在多元函数中的应用九、第9章多元函数的定积分与反常积分9.1 多元函数的定积分多元函数定积分的定义、性质多元函数定积分的计算、换元法、分部积分法多元函数定积分在几何、物理等方面的应用9.2 多元函数的反常积分多元函数反常积分的定义、无穷区间上的积分多元函数瑕点、解析延拓、魏尔斯特拉斯函数多元函数反常积分在实际应用中的意义十、第10章向量分析与线性代数10.1 向量分析的概念与方法向量的定义、向量的运算空间解析几何、向量场的概念梯度、散度、旋度、格林公式10.2 线性代数的基本理论向量空间、线性变换、特征值与特征向量矩阵的运算、行列式、特征方程线性方程组、最小二乘法、正交投影重点和难点解析一、第1章函数与极限1.1 函数的概念与性质重点关注函数的奇偶性、周期性及单调性难点解析:奇偶性的判断、周期性的求解、单调性的证明1.2 极限的概念与性质重点关注极限的定义、性质及运算法则难点解析:极限的判断(洛必达法则)、无穷小与无穷大的比较、极限的夹逼定理与单调有界定理二、第2章导数与微分2.1 导数的定义与计算重点关注导数的定义、基本导数公式及导数的运算法则难点解析:导数的计算(隐函数求导、参数方程求导)、高阶导数的应用、导数在实际问题中的应用2.2 微分的作用与应用重点关注微分的定义及微分的运算法则难点解析:微分的应用(近似计算、物理应用)、微分方程的解法及应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算重点关注泰勒公式的定义、常见函数的泰勒展开式难点解析:泰勒公式的应用(近似计算)、泰勒级数的收敛性判断3.2 不定积分的概念与计算重点关注不定积分的定义、基本积分公式及积分方法难点解析:不定积分的计算(换元积分、分部积分)、积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算重点关注定积分的定义、性质及计算方法难点解析:定积分的计算(牛顿-莱布尼茨公式、换元法、分部积分法)、定积分在几何、物理等方面的应用4.2 反常积分的概念与计算重点关注反常积分的定义、性质及计算方法难点解析:反常积分的计算(瑕点、解析延拓、魏尔斯特拉斯函数)、反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法重点关注微分方程的定义、解的结构及解法难点解析:微分方程的解法(分离变量法、积分因子法、变量替换法)、高阶线性微分方程的解法5.2 线性微分方程组的概念与解法重点关注线性微分方程组的定义、解的结构及解法难点解析:线性微分方程组的解法(特解法、待定系数法、常数变易法)、线性微分方程组的应用全文总结与概括:本文针对《高等数学电子教案》课件的十个章节进行了重点和难点的解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学电子教案【篇一:高等数学下册电子教案】第四章常微分方程4.1 基本概念和一阶微分方程甲内容要点一.基本概念1.常微分方程含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。
2.微分方程的阶微分方程中未知函数的导数的最高阶数称为该微分方程的阶3.微分方程的解、通解和特解满足微分方程的函数称为微分方程的解;通解就是含有独立常数的个数与方程的阶数相同的解;通解有时也称为一般解但不一定是全部解;不含有任意常数或任意常数确定后的解称为特解。
4.微分方程的初始条件要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。
5.积分曲线和积分曲线族微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。
6.线性微分方程如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。
不含未知函数和它的导数的项称为自由项,自由项为零的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。
二.变量可分离方程及其推广1.变量可分离的方程(1)方程形式:dydydx=p(x)q(y)(q(y)≠0) 通解?p(x)dx+c ?q(y)=(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:m1(x)n1(y)dx+m2(x)n2(y)dy=0通解?m1(x)m2(x)dx+?n2(y)n1(y)dy=c (m2(x)≠0,n1(y)≠0)2.变量可分离方程的推广形式(1)齐次方程yxdydxdy?y?=f ? dx?x? 令则=u, =u+xdudx=f(u)f(u)-udydxdu=?dxx+c=ln|x|+c (2)=f(ax+by+c)(a≠0,b≠0)令ax+by+c=u,则dudx=a+bf(u)a+bf(u)=dxdydu=x+c ?a1x+b1y+c1? ? =f (3) ?dx?a2x+b2y+c2?①当?=a1v?? a1+b1?a1u+b1v?u?属于齐次方程情形 ?=fv?a2u+b2v? ?a+b 2?2u??b1b2b1=0情形,令a2a1=令u=a1x+b1y,则du属于变量可分离方程情形。
三.一阶线性方程及其推广1.一阶线性齐次方程dydx+p(x)y=0-?p(x)dx 它也是变量可分离方程,通解公式y=ce2.一阶线性非齐次方程dydx+p(x)y=q(x) ,(c为任意常数)用常数变易法可求出通解公式令y=c(x)e-?p(x)dx代入方程求出c(x)则得y=e-?p(x)dx[?q(x)e?p(x)dxdx+c ]3.贝努利方程dy把原方程化为dz再按照一阶线性非齐次方程求解。
4.方程:dydx=1q(y)-p(y)x可化为dxdy+p(y)x=q(y)以y为自变量,x为未知函数再按照一阶线性非齐次方程求解。
四.全微分方程及其推广(数学一)1.全微分方程p(x,y)dx+q(x,y)dy=0,满足通解:u(x,y)=c,其中u(x,y)满足du(x,y)=p(x,y)dx+q(x,y)dy求u(x,y)的常用方法。
第一种:凑全微分法p(x,y)dx+q(x,y)dy= =du(x,y)把常见的一些二元函数的全微分公式要倒背如流,就很有帮助。
x2+y2;(1)xdx+ydy=d ?2??x2-y2;(2)xdx-ydy=d ?2q?x=?p?y(3)ydx+xdy=d(xy);(4)ydx+xdyxyxdx+ydyx+y22=d(lnxy);(5)?122?=d?lnx+y?;2()(6)xdx-ydyx-y22?122?=d?lnx-y?;2()(7)xdy-ydxx2?y?=d ?; ?x?(8)ydx-xdyy2?x?=d ??; y??x=d arctan ; y??y??=d arctan?; x?? (9)ydx-xdyx+y22 (10)xdy-ydxx+y22(11)ydx-xdyx-y22?1x-y??=d ln ?; x+y??21x+y=d ln ; 2x-y?? (12)xdy-ydxx+y22(13)xdx+ydy(x(x2+y2))2?1?1?; =d -2? 22x+y1?1?; =d -2? 22x-y??122=d arctanx+y; ?2? (14)xdx-ydy2-y22 (15)xdx+ydy1+x+y((22))2() (16)xdx-ydy1+x-y222?122?=d arctanx-y?; ?2?()第二种:特殊路径积分法(因为积分与路径无关)【篇二:高等数学电子教案8】第八章空间解析几何与向量代数教学目的:2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。
3、理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。
4、掌握平面方程和直线方程及其求法。
5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6、会求点到直线以及点到平面的距离。
7、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
8、了解空间曲线的参数方程和一般方程。
9、了解空间曲线在坐标平面上的投影,并会求其方程。
教学重点:1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算;2、两个向量垂直和平行的条件;3、平面方程和直线方程;4、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件;5、点到直线以及点到平面的距离;6、常用二次曲面的方程及其图形;7、旋转曲面及母线平行于坐标轴的柱面方程;8、空间曲线的参数方程和一般方程。
教学难点:1、向量积的向量运算及坐标运算,数量积和向量积的运算;2、平面方程和直线方程及其求法;3、空间曲线在坐标面上的投影4、点到直线的距离;5、二次曲面图形;6、旋转曲面及柱面的方程。
主要外语词汇:vector, mold, direction cape, direction cosine, the quantity accumulate,the vector accumulate, curved face square distance, revolve curved face,pillar noodles, curves, equations, plane, straight line.辅助教学情况:多媒体课件第四版和第五版(修改)参考教材:同济大学《高等数学》第五版8 1 向量及其线性运算一、教学目的与要求:1.理解空间直角坐标系,理解向量的概念及其表示。
2.掌握向量的线性运算、掌握单位向量、方向余弦、两向量的夹角、向量的坐标表达式以及用坐标表达式进行向量运算的方法。
二、重点(难点):向量的运算三、主要外语词汇:vector,mold,direction cape ,direction cosine.一、向量概念向量:既有大小, 又有方向, 这一类量叫做向量.在数学上, 用一条有方向的线段(称为有向线段)来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向.向量的符号:以a为起点、b为终点的有向线段所表示的向量记作ab. 向量可用粗体字母表示, 也可用上加箭头书写体字母表示, 例如, a、r、v、f 或a、r、v、f.自由向量: 由于一切向量的共性是它们都有大小和方向, 所以在数学上我们只研究与起点无关的向量, 并称这种向量为自由向量, 简称向量. 因此, 如果向量a和b的大小相等, 且方向相同, 则说向量a和b 是相等的, 记为a = b. 相等的向量经过平移后可以完全重合.向量的模: 向量的大小叫做向量的模.向量a、a、ab的模分别记为|a|、|a|、|ab|.单位向量: 模等于1的向量叫做单位向量.零向量: 模等于0的向量叫做零向量, 记作0或0. 零向量的起点与终点重合, 它的方向可以看作是任意的.向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a与b平行, 记作a // b. 零向量认为是与任何向量都平行.当两个平行向量的起点放在同一点时, 它们的终点和公共的起点在一条直线上. 因此, 两向量平行又称两向量共线.类似还有共面的概念. 设有k(k≥3)个向量, 当把它们的起点放在同一点时, 如果k个终点和公共起点在一个平面上, 就称这k个向量共面.二、向量的线性运算1.向量的加法向量的加法: 设有两个向量a与b, 平移向量使b的起点与a的终点重合, 此时从a的起点到b的终点的向量c称为向量a与b的和, 记作a+b, 即c=a+b .三角形法则平行四边形法则:当向量a与b不平行时, 平移向量使a与b的起点重合, 以a、b为邻边作一平行四边形, 从公共起点到对角的向量等于向量a与b的和a+b.c ccba a →→→→→→→→→→bb(1)交换律a+b=b+a;(2)结合律(a+b)+c=a+(b+c).由于向量的加法符合交换律与结合律, 故n个向量a1, a2, ? ? ?, an(n ≥3)相加可写成a1+a2+ ? ? ?+an,并按向量相加的三角形法则, 可得n个向量相加的法则如下: 使前一向量的终点作为次一向量的起点, 相继作向量a1, a2, ? ? ?, an, 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即为所求的和.负向量: 设a为一向量, 与a的模相同而方向相反的向量叫做a的负向量, 记为-a.2.向量的减法:我们规定两个向量b与a的差为b-a=b+(-a).即把向量-a加到向量b上, 便得b与a的差b-a.特别地, 当b=a时, 有a-a=a+(-a)=0.a- b a b a b-a显然, 任给向量ab及点o, 有ab=ao+ob=ob-oa,因此, 若把向量a与b移到同一起点o, 则从a的终点a向b的终点b所引向量ab便是向量b与a的差b-a .三角不等式:由三角形两边之和大于第三边的原理, 有|a+b|≤|a|+|b|及|a-b|≤|a|+|b|,其中等号在b与a同向或反向时成立.3.向量与数的乘法向量与数的乘法的定义:1a=a, (-1)a=-a. →→→→→→→【篇三:高等数学电子教案4】教学目的:第四章不定积分1、理解原函数概念、不定积分的概念。