2018年中考数学真题分类汇编(第二期)专题4一元一次方程及其应用试题(含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程及其应用

一.选择题

1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()

A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元

【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.

【解答】解:设两件衣服的进价分别为x、y元,

根据题意得:120﹣x=20%x,y﹣120=20%y,

解得:x=100,y=150,

∴120+120﹣100﹣150=﹣10(元).

故选:C.

【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.

2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:

一百馒头一百僧,大僧三个更无争,

小僧三人分一个,大小和尚得几丁.

意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()

A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人

C.大和尚50人,小和尚50人 D.大、小和尚各100人

【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.

【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,

根据题意得:3x+=100,

解得x=25

则100﹣x=100﹣25=75(人)

所以,大和尚25人,小和尚75人.

故选:A.

【点评】本题考查了一元一次方程的应用,关键以和尚数和馒头数作为等量关系列出方程.

二.填空题

1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B 区的物资的1.5倍少1000件,则发往A区的生活物资为3200 件.

【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A.B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,

解得:x=2800,

∴1.5x﹣1000=3200.

答:发往A区的生活物资为3200件.

故答案为:3200.

【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.

3.(2018•上海•4分)方程组的解是,.

【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.

【解答】解:

②+①得:x2+x=2,

解得:x=﹣2或1,

把x=﹣2代入①得:y=﹣2,

把x=1代入①得:y=1,

所以原方程组的解为,,

故答案为:,.

【点评】本题考查了解高次方程组,能把二元二次方程组转化成一元二次方程是解此题的关键.

三.解答题

1.(2018•广东•7分)某公司购买了一批A.B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?

(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.

【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,

根据题意得:=,

解得:x=35,

经检验,x=35是原方程的解,

∴x﹣9=26.

答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.

(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,

根据题意得:26a+35(200﹣a)=6280,

解得:a=80.

答:购买了80条A型芯片.

【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.

2.(2018•海南•8分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?

【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.

【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,

相关文档
最新文档