单相逆变器电路设计及仿真研究 文献综述

单相逆变器电路设计及仿真研究 文献综述
单相逆变器电路设计及仿真研究 文献综述

单相逆变器电路设计及仿真研究

前言:

随着能源消费的增长、日益恶化的生态环境和人类环保意识的提高,世界各国都在积极寻找一种可持续发展且无污染的新能源。太阳能作为一种高效无污染的绿色新能源,一种未来常规能源的替代品,尤其受到人们的重视。太阳能的直接应用主要有光热转换、光电转换和光化学转换三种形式,光电转换即光伏技术是最有发展前途的一种。太阳能光伏并网发电是太阳能光伏利用的主要发展趋势,必将得到快速的发展。在并网型光伏发电系统中,逆变器是系统中最末一级或唯一一级能量变换装置,其效率的高低,可靠性的好坏,将直接影响整个并网型系统的性能和投资。因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素。本文将对光伏并网单相逆变器进行设计仿真,通过对比不同的单相逆变器电路的逆变效果,确定其各自的适用条件。

主题:

自20世纪50年代太阳能电池的空间应用到如今的太阳能光伏集成建筑,世界光伏工业已经走过了近半个世纪的历史。在世界各国尤其是美、日、德等发达国家先后发起的大规模国家光伏发展计划和太阳能屋顶计划的刺激和推动下,光伏工业近几年保持着年均30%以上的高速增长。其中,以光伏集成建筑为核心的光伏并网发电市场己经超过离网应用,近几年的增长速度都在40%以上,成为世界光伏工业的最主要发动机。并网光伏发电已经成为光伏发电领域研究和发展的最新亮点。并网型光伏发电系统的核心为并网型逆变器。并网型逆变器是影响和决定整个系统是否能够稳定、安全、可靠、高效地运行的一个主要因素,同时也是影响整个系统使用寿命的主要因素。

国外并网型逆变器已经是一种比较成熟的市场产品,例如在欧洲光伏专用逆变器市场中就有SMA,Fronius,Sputnik,Sun Power和西门子等众多的公司具有市场化的产品,其中SMA在欧洲市场中占有的50%的份额。除欧洲外,美国、加拿大、澳大利亚、新西兰以及亚洲的日本在并网型逆变器方面也都己经产品化。以SMA和西门子为例介绍目前光伏并网发电系统用逆变器的发展情况。SMA 光伏并网逆变器目前具有三大系列产品:支路逆变器、集中逆变器和多支路逆变器,其中以SWR和SB两个系列应用最为广泛。该产品具有如下特点:高效率、高功率因数、低THD;测量数据和工作状态通过总线传输至PC机:多台逆变器可以任意组合构建系统,使系统设计更加简便、扩展更加方便。多支路逆变器是SMA最新推出的产品,该产品采用最大功率跟踪和并网逆变两级能量变换结构,多个不同支路共用同一个逆变环节,中间设置有内部直流母线,可以使系统的灵活性大为提高;输出端无工频变压器隔离,采用最新的电网阻抗检测和交、直流剩余电流检测来实现有效保护。与SMA相比较,西门子并网光伏逆变器则采用主从式构建系统,由主逆变器和若干个从逆变器来组建用户要求容量的并网光伏系统,灵活性和系统扩展等均没有SMA的强。西门子SITOP Solar主要分为隔离和非隔离两种支路逆变器,两级能量变换,最大功率跟踪和逆变部分集成在一个机箱内;功率因数高;基本单级式并网型光伏发电系统用逆变器的研究数据本地集中显示;实时发电电能显示;除SMA和西门子外,美国的Xantrex的SunTie XR系列并网逆

变器也是根据光伏市场需要推出的产品,系列覆盖了中、大功率范围,也可将多台中功率的逆变器并联构成系统。

综上所述,目前国外光伏并网逆变器产品的研发主要集中在最大功率跟踪和逆变环节集成的单级能量变换上,功率主要为几百瓦到五千瓦的范围,控制电路主要采用数字控制,注重系统的安全性、可靠性和扩展性,均具有各种完善的保护电路。

由于我国光伏发电等可再生能源发电技术的研究仍然处于起步阶段,技术水平相对国外还有一定差距。就并网型光伏发电系统的核心技术并网型逆变器而言,合肥工业大学能源研究所、燕山大学、上海交通大学、中国科学院电工研究所等科研单位和大学在这一方面进行了相关的研究,并且在“九五”、“十五”期间,国家科技部投入相当数额的经费进行开发工作。除此之外,北京索英电气技术有限公司和合肥阳光电源有限公司也在推出了适合并网光伏系统用的逆变器。北京索英电气技术有限公司的三相光伏并网逆变器,采用日本的智能功率模块IPM作为主回路功率器件,运用该公司先进的并网控制技术,具有结构简单、效率高、性能优良、电磁干扰小和安全可靠等优点。多项先进的并网发电控制技术,保证向电网优质送电,还能够追踪太阳能电池板的最大功率点,检测电网的状态,并实现对电网供电质量的调节。合肥阳光的正弦波并网充放电装置虽不是专门为并网光伏设计,但是也可应用在并网光伏系统中。从这两种成熟的市场产品可以看出,国内对并网光伏逆变器的研究比较多的采用最大功率跟踪和逆变部分相分离的两级能量变换结构,而且市场产品的种类还相对单一,系统构建死板。并网型光伏发电系统在我国还没有真正地投入商业化运行的应用,目前所建并网型光伏系统都为示范工程。并网型光伏发电系统的核心并网型逆变器还主要依赖进口或者合作研究的方式获得,导致并网型光伏系统的造价升高、依赖性强,从而制约了并网型光伏系统在国内市场的发展和推广。因此掌握并网型光伏系统的核心并网型逆变器技术对推广并网型光伏系统有着至关重要的作用。

随着电力电子元器件的发展、数字信号处理技术的应用以及先进的控制方法的提出,电力电子能量变换发生了巨大的变化。首先,元器件正向着低导通损耗、快速化、智能化、封装合理化等几个方向发展。低导通损耗将有助于并网型逆变器系统提高效率、减少发热;快速化将减小开关应力;智能化将有助于提高系统可靠性;封装的改进将减少寄生参数、有效散热、保持高机械强度。其次,数字信号处理技术的应用有助于减少并网逆变器输出的直流成分;提高开关频率,减小滤波器体积;善输出波形,提高THD;速响应电网瞬态变化。最后,先进的控制方法将有助于改善输出波形质量,从而减小滤波环节的体积;提高系统的动态响应性能。因此,并网型逆变器的发展必将沿着数字化、高频化的方向进行。

总结:

20世纪50年代太阳能电池的空间应用到如今的太阳能光伏集成建筑,世界光伏工业已经走过了近半个世纪的历史。由于太阳能资源分布相对广泛、蕴藏丰富,光伏发电系统具有清洁、安全、寿命长以及维护量小等诸多优点,光伏发电被认为将是21世纪最重要、最具活力的新能源。我国太阳能资源丰富,但相对于蓬勃发展的世界光伏工业,中国光伏工业还处于起步阶段。国际上方兴未艾的光伏并网集成建筑在国内还几乎是空白。因此,对并网型光伏系统的研究必将成

为光伏发电技术研究的重中之重。单相光伏逆变器未来的发展趋势将朝着转换效率高、性能稳定、并网型逆变器为主流的方向发展。随着太阳能逆变器技术的不断发展,转换效率持续上升,由过去90-92%上升到 98%以上,未来的目标是要达到 99%以上。因此,转换效率提高是太阳能逆变器未来发展趋势之一。性能稳定是系统运营商在选用逆变器中越来越重视的要素,光伏逆变器产品的各项特性,包括可靠度、耐用度、安装的简易与便利、并网是否安全等都是系统运营商重点考虑的范围,因此,要求光伏逆变器的性能稳定是必然趋势。从技术层面来讲,并网型逆变器朝着高频化、高效率、高功率密度、高可靠性和高度智能化是未来的发展方向。

参考文献

1李春鹏张廷元周封。太阳能光伏发电综述【J】。电工材料,2006。

2王长贵世界光伏发电技术现状和发展趋势【J】。新能源,2000。

3赵为太阳能光伏并网发电系统的研究【D】。合肥工业大学,2003。

4王飞单相光伏并网系统的分析与研究【D】。合肥工业大学,2005。

5赵清林郭小强邬伟扬单相逆变器并网控制技术研究【J】。中国电机工程学报,2007。

6 BP Statistical Review Of World Energy June 2007.

7石新春杨京燕王毅电力电子技术。中国电力出版社,2009。

8崔荣强赵春江吴达成并网型太阳能发电系统【M】。化学工业出版社,2007。

9余运江杨波吴建德邓焰全数字化控制光伏并网逆变器的设计与实现【J】。《机电工程》已录用。

10 H C Lin,etal. Enhanced FFT-based parametric algorithm for

simultaneous

multiple harmonics analysis(J).IEE Porc-Gener,Transm,Distrib.

2001.

11董密罗安光伏并网发电系统中逆变器的设计与控制方法【J】。电力系统自动化,2006。

12张超何湘宁一种用于光伏发电系统的新型高频逆变器【J】。电力系统自动化,2005。

13 S M Chin,etal. A digital measurement scheme for time-varying

transient harmonics(J). IEEE Transactions on Power Delivery,1995.

14 Charicteristics of the Utility Interface for

Photovoltaic(PV)Systems,IEC 61727 CDV(Committee Draft for Vote),2002.

15陈新峰曹志峰等基于DSP的20KW单相并网光伏逆变器。电气应用,2005。

16 2002 National Electrical Code,National Fire Protection

Association,Inc.,Quincy,MA,2002.

17 IEEE Standard for Interconnecting Distributed Resources With

Electric Power Systems IEEE Std.1547,2003.

18 Limits for Harmonic Current Emission (Equipment Input Current <16A

per Phase),EN 61000-3-2,1995.

19 汪飞可再生能源并网逆变器的研究【硕士学位论文】。浙江大学,2005。

20 张智星 MATLAB程序设计与应用【M】。清华大学出版社,2004。

21 黄忠林周向明控制系统MATLAB计算及仿真实训。国防工业出版社,

2006.

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

逆变电源设计报告a.(DOC)

逆变电源设计与总结报告 2013年5月6日星期一

目录 一、方案论证与比较 (1) 1、总体方案的比较 (1) 2、隔离型DC-DC电路方案 (2) 3、高频变压器后级整流方案 (3) 4、SPWM波产生方案 (3) 二、理论分析与计算 (3) 1.高频变压器参数设计 (3) 2.LC低通滤波参数设计 (4) 三、电路与程序设计 (5) 1.推挽式隔离型直流变换电路 (5) 2.逆变电路 (7) 3.保护电路 (7) 4.辅助电源 (8) 5.SPWM产生程序 (8) 四、测试结果及分析 (9) 1.测试方法与测试条件 (9) 2.主要测试结果 (9) 元件参数根据计算可知,L=4.7UH,C=2.2UF.仿真波形如图11所示。 (10) 五、设计总结 (10)

摘要 本设计实现了一种基于的高频链逆变电源。系统由输入欠压保护、推挽升压、全桥逆变、SPWM波产生、低通滤波、输出过流保护、辅助电源等电路组成。12V 的直流电通过推挽式变换逆变为高频方波,经高频变压器升压,再整流滤波得到一个稳定的约320V直流电压。前级DC-DC变换采用SG3525驱动MOSFET得到高压直流电,然后通过产生的SPWM驱动全桥电路,再经低通滤波得到220V的工频正弦交流电。采用反激式开关电源升压再经稳压芯片稳压供电很好的实现隔离,并且具有输入欠压保护和输出过流保护,输出功率可达100W。该电源体积小、效率高、输出电压稳定,非常适用于车载逆变器。 关键词:推挽升压全桥逆变滤波反激式

Abstract This design implements a Cortex M3 based on the high-frequency link inverter power supply.System consists of input undervoltage protection, push-pull boost, full-bridge inverter, SPWM wave generator, low pass filtering, output over-current protection, auxiliary power and other circuit.12V direct current through the push-pull inverter is a high frequency square wave transform, the high-frequency step-up transformer, then rectified and filtered to get a stable DC voltage of about 320V.Former level DC-DC conversion by using SG3525 drive MOSFET high voltage DC and then generate the SPWM drive M3 full bridge circuit, and then low-pass filter obtained by the frequency sinusoidal AC 220V.With a flyback switching power supply step-up regulator chip re-powering through the realization of good isolation, and with input voltage protection and output over-current protection, output power up to 100W.The power, small size, high efficiency, output voltage stability, ideal for automotive inverter. Key words: push-pull boost full-bridge inverter flyback M3 概述 逆变器也称逆变电源,是将直流电能转变成交流电能的变流装置,是太阳能、风力发电中一个重要部件。随着微电子技术与电力电子技术的迅速发展,逆变技术也从通过直流电动机——交流发电机的旋转方式逆变技术,发展到二十世纪六、七十年代的晶闸管逆变技术,而二十一世纪的逆变技术多数采用了MOSFET、IGBT、GTO、IGCT、MCT 等多种先进且易于控制的功率器件,控制电路也从模拟集成电路发展到单片机控制甚至采用数字信号处理器(DSP)控制。各种现代控制理论如自适应控制、自学习控制、模糊逻辑控制、神经网络控制等先进控制理论和算法也大量应用于逆变领域。其应用领域也达到了前所未有的广阔,从毫瓦级的液晶背光板逆变电路到百兆瓦级的高压直流输电换流站;从日常生活的变频空调、变频冰箱到航空领域的机载设备;从使用常规化石能源的火力发电设备到使用可再生能源发电的太阳能风力发电设备,都少不了逆变电源。毋须怀疑,随着计算机技术和各种新型功率器件的发展,逆变装置也将向着体积更小、效率更高、性能指标更优越的方向发展。 一、方案论证与比较 1、总体方案的比较 方案一:如图1所示,12V的直流电经过DC-AC逆变成10V/50HZ交流电,再经工频变压器升压到220V.

电气工程及其自动化专业光伏单相逆变器并网控制技术研究 开题报告 文献综述 外文翻译

摘要 随着“绿色环保”概念的提出,以解决电力紧张,环境污染等问题为目的的新能源利用方案得到了迅速的推广,这使得研究可再生能源回馈电网技术具有了十分重要的现实意义。如何可靠地、高质量地向电网输送功率是一个重要的问题,因此在可再生能源并网发电系统中起电能变换作用的逆变器成为了研究的一个热点。 本文以全桥逆变器为对象,详细论述了基于双电流环控制的逆变器并网系统的工作原理,推导了控制方程。内环通过控制LCL滤波中的电容电流,外环控制滤波后的网侧电流。大功率并网逆变器的开关频率相对较低,相对于传统的L 型或LC 型滤波器,并网逆变器采用LCL 型输出滤波器具有输出电流谐波小,滤波器体积小的优点,在此基础上本系统设计了LCL滤波器。本文分析比较了单相逆变器并网采用单闭环和双闭环两种控制策略下的并网电流,并对突加扰动情况下系统动态变化进行了分析。 在完成并网控制系统理论分析的基础上,本文设计并制作了基于TMS320LF2407DSP的数字化控制硬件实验系统,包括DSP 外围电路、模拟量采样及调理电路、隔离驱动电路、保护电路和辅助电源等,最后通过MATLAB仿真软件进行验证理论的可行性,实现功率因数为1的并网要求。 关键词并网逆变器;LCL滤波器;双电流环控制;DSP

Abstract With the concept of”Green and Environmental Protection”was proposed.All kinds of new energy exploitation program are in the rapid promotion,which is in order to solve the power shortage,pollution and other issues.It makes exploring renewable energy feedback the grid technology has a very important practical significance.How to deliver power into the grid reliably and quality is an important problem,the inverter mat Can transform the electrical energy in the system of the renewable resource to be fed into the grid is becoming one of the hot points in intemational research. Based on the bridge inverter the analysis of the working principle and the deduction of the control equation have been presented. The strategy integrates an outer loop grid current regulator with capacitor current regulation to stabilize the system. The current regulation is used for the outer grid current control loop. The frequency of switching is slower in the high power grid-connected inverter. Compared with tradition type L or type LC, output filter and output current’s THD of type LCL are all smaller.So on this basis, the system uses the LCL filter. This paper compares the net current of the single-phase inverter and net single loop and double loop under two control strategies, and the case of sudden disturbance of the dynamic change of the system. In complete control system on the basis of theoretical analysis, design and production of this article is based on TMS320LF2407DSP’s digital control hardware test system, including the DSP external circuit, analog sampling and conditioning circuit, isolation, driver circuit, protection circuit and auxiliary power, etc., via MATLAB software to validate the feasibility of the theory.Achieve power factor is 1 and network requirements. Keywords Grid-connected inverter;LCL filter; Double current loop control; DSP

PWM逆变器控制电路设计

SPWM逆变器控制电路设计 一、课程设计的目的 通过电力电子计术的课程设计达到以下目的:一个单相 50HZ/220V逆变电源,外部采用:交流到直流再到交流的逆变驱动格式。在220V/50HZ外电源停电时,蓄电池就逆变供电。在设计电路时,主要分为正负12V稳压电源到SPWM波发生器(其中载波频率5KHZ)至H逆变电路再到逆变升压变压器再由220V/50HZ输出. 二、课程设计的要求 1注意事项 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入直流流电源: 正负12V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:

电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 3.在整个设计中要注意培养独立分析和独立解决问题的能 力 4.课题设计的主要内容是主电路的确定,主电路的分析说 明,主电路元器件的计算和选型,以及控制电路设计。 报告最后给出所设计的主电路和控制电路标准电路图。 5.课程设计用纸和格式统一 三设计内容: 整流电路的设计和参数选择 滤波电容参数选择 逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 根据要求,整流电路采用二极管整流桥电容滤波电路,其电路图如图2.1所示:

SPWM逆变电路的工作原理 PWM控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变逆变输出频率。 1.PWM控制的基本原理 PWM控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同

基于模型的测试综述报告

基于模型的测试综述 2016年1月

摘要 面向对象软件开发应用越来越广泛,自动化测试也随之被程序员认可和接受,随之而来的就是基于UML的软件开发技术的大范围普及和基于模型的软件测试技术的普遍应用。基于模型的测试是软件编码阶段的主要测试方法之一,具有测试效率高、排除逻辑复杂故障测试效果好等特点。本文描述了基于模型的测试的模型以及建模标准,并介绍基于模型的测试的基本过程以及支持工具,同时通过七个维度对基于模型的测试方法进行描述。最后分析基于模型的测试的优缺点并列举了应用案例。 关键词:软件测试,基于模型的测试,软件模型,测试工具

目录 摘要................................................ I 1 引言 (2) 2 基于模型的测试、模型以及建模标准 (2) 2.1基于模型的测试 (2) 2.2基于模型的测试的模型 (3) 2.3建模标准 (4) 3 基于模型的测试的基本过程及支持工具 (5) 3.1基于模型的测试的基本过程 (5) 3.2支持工具 (6) 4 分类 (7) 4.1 模型主体 (7) 4.2 模型冗余程度 (7) 4.3 模型特征 (7) 4.4 模型表示法 (7) 4.5 测试用例选择标准 (8) 4.6 测试用例生成技术 (8) 4.7 联机、脱机测试用例生成 (9) 5 基于模型的测试的工具Spec Explorer (9) 5.1 Spec Explorer (9) 5.2 连接测试用例和待测系统 (9) 5.3 静态模型和实例模型 (11) 6 基于模型的测试的优缺点 (11) 参考文献 (13)

逆变器电路图

逆变器电路图 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。 电容器 C1、C2用涤纶电容,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。变压器B的绕制请参考逆变器的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。功率管要加适当的散热片,例如用100*100*3MM铝板散热。如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。 晶体管的选择:考虑到安全因素,要具有一定的安全系素。经验资料如下: 直流电源电压:晶体管集射极耐压BV CEO 6~8V≥20~30V 12~14V≥60~80V 24~28V≥80~100V 计算晶体管集电极电流:I CM(A)=输出功率P(W)÷ 输入电压V(V)× 效率。

式中输入电压即电源电压。效率与选择的电路有关,一般在百分之60~80之间。 铁芯截面积:S(平方厘米)=k×变压器额定功率的平方根,k的选择见下表 P(VA) 5-10 10-50 50-100 100-500 500-1000 k 2-1.75 1.75-1.5 1.5-1.35 1.35-1.25 1.25-1 变压器铁芯的选择:业余制作对变压器铁心要求并不严格。不过硅钢片最好选用薄而质地脆的,或者采用铁氧体磁心。漆包线用高强度的,绕线需用绕线机紧密平绕。 安插硅钢片时要严格平整。初级绕组两端电压与铁心截面积和工作频率等参数的 关系可以用公式表示如下:V=4.44×10-8SKFBN 式中 S --- 铁心截面积(平方厘米); K --- 硅钢片间隙系数(0.9~0.95); F --- 逆变器工作频率(赫兹); B --- 饱和磁通密度(T); N --- 线圈的匝数(圈); V --- 初级绕组的电压(伏特)。 K的数值与硅钢片的厚度及片与片之间的间隙有关,铁心层迭越紧,K值越高 一般K取0.9即可。逆变器的工作频率,主要由所选择的铁心决定。采用硅钢片铁心,逆变器工作频率低于2KH Z。采用不同的铁氧体磁心,工作频率在2KH Z~40KH Z之 间。如果工作频率超出了磁心的固有频率,则高频损耗十分严重。饱和磁通密度

逆变电源 毕业设计 2008

系:电气与信息工程系 专业:电气工程及其自动化班级: 0404 学号: 学生姓名: 导师姓名: 完成日期: 2008年月日

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

湖南工程学院 毕业设计(论文)任务书 设计(论文)题目:15kV A逆变电源设计 姓名陈欣宁系电气系专业_电气工程及其自动化班级学号 指导老师职称讲师教研室主任 一、基本任务及要求: 主要设计内容如下: 1、理解逆变电源的工作原理,确定系统主电路: 包括主电路结构的选择,逆变功率器件的选择,参数计算 2、确定系统驱动电路 3、设计系统的控制电路(包括保护电路、触发电路等) 4、提交毕业设计论文和图纸 参数如下: 直流侧输入电压:750V 输出交流电压:380/220V 输出频率:50HZ 容量:15kVA 进度安排及完成时间 1、2月26日至3月15日:查阅资料;写开题报告;确定总体方案。 2、3月16日至3月29日:毕业实习、撰写实习报告。 3、3月30日至4月15日:确定系统主电路 4、4月16日至4月26日:确定系统驱动电路 5、4月27日至6月2日:设计系统的控制电路 6、6月3日至6月12日撰写毕业设计论文。 7、6月13日至6月14日:指导老师评阅、电子文档上传FTP。 8、6月15日至6月18日:毕业设计答辩。

多电平逆变器主要控制策略综述

多电平逆变器主要控制策略综述 ( 本站提供应用行业:阅读次数:1082) 【字体:大中小】 1 引言 多电平逆变器具有谐波小、共模电压小、电压变化率小、电磁干扰小、开关频率低、系统效率高、适合中高压大容量变频器应用等特点,近十年得到广泛的研究[1]。研究主要集中在拓扑结构、控制策略两方面。图1是多电平逆变器的主要研究内容。 图1 多电平逆变器主要研究内容 由于多电平逆变器拓扑结构的多样性,且涉及到直流电压的均衡、开关频率的合理分配、冗余状态的利用等特殊要求,使得对多电平逆变器的控制具有一定的挑战性。 2 载波调制方法(Carrier-based Modulation) 载波调制是最常用的多电平控制方法之一,其特点是通过载波和调制波(或参考波)间的比较而获得器件的开关状态。载波调制按其采样方法可分为:自然采样和规则采样,自然采样一般用于模拟电路实现,规则采样用于数字实现。规则采样又分对称和不对称采样。在载波调制中,对于m电平逆变器,常定义幅度调制比ma和频率调制比mf分别为: 其中Ac为载波峰峰值,fc为载波频率,Am为调制波峰值,fm为调制波频率。多电平载波调制由于载

波个数的增加,而变得较复杂,但也给控制提供了更多的自由度。 2.1 子谐波脉宽调制SHPWM(SubHarmonic PWM) 由Carrara[2]提出的SHPWM的基本原理是:对m电平逆变器,将m-1个具有相同频率fc和峰峰值Ac的三角载波集连续分布。频率为fm、幅值为Am的正弦调制波置于载波集的中间。将调制波与各载波信号进行比较,得到逆变器的开关状态。在载波间的相位关系方面,Carrara考虑了三种典型配置方案: (1) PD—所有载波具有相同相位; (2) POD—正、负载波间相位相反; (3) APOD—相邻载波间相位相反。 图2是SHPWM采用PD配置的波形图。SHPWM的最大线性幅度调制比ma为1。对SHPWM的研究有如下一些重要结论[3]: ·对于三相系统,频率比mf应为取3的倍数; ·单相逆变器,APOD配置电压谐波最小; ·三相逆变器,PD配置线电压谐波最小。 图2 5电平SHPWM-PD波形(ma=0.9,mf=21) 2.2 开关频率最优脉宽调制SFOPWM(Switching Frequency Optimal PWM) 由Steinke[4]提出的SFOPWM与SHPWM基本原理相同,只是前者在三相正弦调制波中叠加了一定的零序电压(三次谐波电压)。设三相均衡参考电压分别为va,vb,vc,叠加零序电压vn,后三相参考电压分别为varef,vbrdf,vcref,具体叠加方法为:

无源三相PWM逆变器控制电路设计-参考模板

无源三相PWM逆变器控制电路设计 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1注意事项 控制框图 设计装置(或电路)的主要技术数据 主要技术数据

输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 3.在整个设计中要注意培养独立分析和独立解决问题的能 力 4.课题设计的主要内容是主电路的确定,主电路的分析说 明,主电路元器件的计算和选型,以及控制电路设计。 报告最后给出所设计的主电路和控制电路标准电路图。 5.课程设计用纸和格式统一 三设计内容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图

根据要求,整流电路采用二极管整流桥电容滤波电路, 其 电路图如图2.1所示: 图2.1 考虑电感时电容滤波的三相桥式整流电路及其波形 a )电路原理图 b )轻载时的交流侧电流波形 c )重载时的交流侧电流波形 1. 其工作原理如下所示: 该电路中,当某一对二级管导通时,输入直流电压等于交流 侧线电压中最大的一个,该线电压既向电容供电,也向负载供电。 当没有二级管导通时,由电容向负载放电,u d 按指数规律下降。 设二极管在局限电路电压过零点δ角处开始导通,并以二极 管VD 6和VD 1开始同时导通的时刻为时间零点,则线电压为 a)c)R 462 i i

华为软件概要设计模板综述

XX High Level Design Specification XX 概要设计说明书 Prepared by 拟制Name+ID 姓名+工号 Date 日期 yyyy-mm-dd Reviewed by 评审人Date 日期 yyyy-mm-dd Approved by 批准 Date 日期 yyyy-mm-dd XXXX Co., Ltd. XXXX有限公司

Revision Record 修订记录

Catalog 目录 1Introduction 简介 (6) 1.1Purpose 目的 (6) 1.2Scope 范围 (6) 1.2.1Name 软件名称 (6) 1.2.2Functions 软件功能 (6) 1.2.3Applications软件应用 (6) 2High Level Design概要设计 (6) 2.1Level 0 Design Description第零层设计描述 (6) 2.1.1Software System Context Definition 软件系统上下文定义 (6) 2.1.2Design Considerations (Optional)设计思路(可选) (7) 2.2Level 1 Design Description第一层设计描述 (8) 2.2.1Decomposition Description分解描述 (8) 2.2.2Dependency Description依赖性描述 (9) 2.2.3Interface Description接口描述 (10) 2.3Level 2 Design Description (Optional)第二层设计描述(可选) (12) 2.3.1Module name (1) 模块1名称 (12) 2.3.2Module name (2) 模块2名称 (13) 2.4Configuration and Control (Optional)配置和控制(可选) (14) 2.4.1Startup 启动 (14) 2.4.2Closing 关闭 (14) 2.4.3Creating MIB Table Item MIB表项的创建 (14) 2.4.4Deleting MIB Table Item MIB表项的删除 (14) 2.4.5Modifying MIB Table Item MIB表项的更改 (14) 2.5Database (Optional)数据库(可选) (14) 2.5.1Entity, Attributes and their relationships 实体、属性及它们之间的关系 (14) 2.5.2E-R diagram 实体关系图 (14)

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

概述软件的技术方案设计.doc

软件开发技术方案 Xxxx有限公司2018年6月13日

1.开发框架 开发的系统中所应用的技术都是基于JavaEE,技术成熟稳定又能保持先进性。采用B/S架构使系统能集中部署分布使用,有利于系统升级维护;采用MVC 的开发模式并参考SOA体系架构进行功能设计,使得能快速扩展业务功能而不会影响现有系统功能的正常使用,可根据实际业务量进行部分功能扩容,在满足系统运行要求的同时实现成本最小化。系统采用分布式部署,系统功能隔离运行,保障系统整体运行的稳定性。 图1.开发框架与体系结构图 1.1.web端技术栈 (1)前端采用elementUI/jquery/bootstrap/vue实现,前端和Controller交换数据基于json格式。 1.2业务端技术栈 (1)业务端基于springboot、springMVC、JPA、SpringData技术栈构建,对于复杂的系统则采用springCloud构建。 (2)四层分隔:controller(Facade)/service/dao/entity,其中fa?ade主要用于生成json,实现和前端的数据交换。 (2)命名:按照功能模块划分各层包名,各层一致。 2.系统安全保障 2.1 访问安全性

权限管理是系统安全的重要方式,必须是合法的用户才可以访问系统(用户认证),且必须具有该资源的访问权限才可以访问该资源(授权)。 我们系统设计权限模型,标准权限数据模型包括:用户、角色、权限(包括资源和权限)、用户角色关系、角色权限关系。权限分配:通过UI界面方便给用户分配权限,对上边权限模型进行增、删、改、查操作。 基于角色的权限控制策略根据角色判断是否有操作权限,因为角色的变化性较高,如果角色修改需要修改控制代码。 而基于资源的权限控制:根据资源权限判断是否有操作权限,因为资源较为固定,如果角色修改或角色中权限修改不需要修改控制代码,使用此方法系统可维护性很强。建议使用。 2.2 数据安全性 可以从三个层面入手:操作系统;应用系统;数据库;比较常用的是应用系统和数据库层面的安全保障措施。 在操作系统层面通过防火墙的设置。如设置成端口8080只有自己的电脑能访问。应用系统层面通过登陆拦截,拦截访问请求的方式。密码不能是明文,必须加密;加密算法必须是不可逆的,不需要知道客户的密码。密码的加密算法{ MD5--不安全,可被破解。需要把MD5的32位字符串再次加密(次数只有你自己知道),不容易破解;加密多次之后,登录时忘记密码,只能重置密码,它不会告诉你原密码,因为管理员也不知道。 3.项目计划的编制和管理 本公司项目基于敏捷过程的方式组织,项目计划基于需求和团队反复讨论的过程。在开发系统时都经过了解需求,开需求分析会议,确定开发任务,推进开发进度,测试,试点,交付等开发步骤,其中具体内容有: 1,了解需求:跟客户沟通,充分了解对方的需求,然后对需求进行过滤,最后整体成需求文档 2,需求分析会议:也就是项目启动会议之后要做的事情,对拿来的需求进行讨论,怎么做满足需求。主要对需求进行全面的梳理,让开发,产品,项目都熟悉整个需求。

正弦波逆变器设计

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

PWM逆变电源瞬时值反馈控制技术研究 硕士论文

分类号______ 密级_____ U D C ______ 硕士学位论文 PWM逆变电源瞬时值 反馈控制技术研究 学位申请人:周樑 学科专业:电力电子与电气传动 指导教师:彭力副教授 论文答辩日期学位授予日期 答辩委员会主席戴珂评阅人段善旭熊健

A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Engineering Research on the instantaneous feedback control technology of PWM inverters Candidate : Zhou Liang Major : Power Electronics and Electric Drive Supervisor : Associate Prof. Peng Li Huazhong University of Science & Technology Wuhan 430074, P.R.China April , 2006

独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日 学位论文版权使用授权书 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 保密□,在__ __年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

逆变器保护电路设计

安阳师范学院本科学生毕业设计报告逆变器保护电路设计 作者秦文 系(院)物理与电气工程学院 专业电气工程及其自动化 年级 2008级专升本 学号 081852080 指导教师潘三博 日期 2010.06.02 成绩

学生承诺书 本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料。与我一同工作的同志对本研究所做的任何贡献均以在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名: 导师签名: 日期:

逆变器保护电路设计 秦文 (安阳师范学院物理与电气工程学院,河南安阳 455002) 摘要:本文针对SPWM逆变器工作中的安全性问题,阐述了如何利用电路实现保护复位和死区调节。在PWM三相逆变器中,由于开关管存在一定的开通和关断时间,为防止同一桥臂上两个开关器件的直通现象,控制信号中必须设定几个微秒的死区时间。尽管死区时间非常短暂,引起的输出电压误差较小,但由于开关频率较高,死区引起误差的叠加值将会引起电机负载电流的波形畸变,使电磁力矩产生较大的脉动现象,从而使动静态性能下降,降低了开关器件的实际应用效果,但是却对逆变器的安全运行意义重大。 关键词:保护电路;复位电路;死区调节 1 引言 在现在的系统中电力器件的应用也越来越广而与此同时对器件的保护也被认识了其重要性。电子器件很易被损坏,保护电路的要求也很苛刻。在工程应用中,为了使SPWM 逆变器安全地工作,需要有可靠的保护系统。一个功能完善的保护系统既要保证逆变器本身的安全运行,同时又要对负载提供可靠的保护。 随着电力电子技术的发展,功率器件如IGBT、MOSFET等广泛应用于PWM变流电路中。对于任何固态的功率开关器件来讲,都具有一定的固有开通和关断时间,对于确定的开关器件,固有开通和关断时间内输入的信号是不可控的,称为开关死区时间,它引起开关死区效应,简称为死区效应。在电压型PWM逆变电路中,为避免同一桥臂上的开关器件直通,必须插入死区时间,这势必导致输出电压的误差。该误差是谐波的重要来源,它不但增加了系统的损耗,甚至还可能造成系统失稳。 随着电力电子技术的发展,逆变器主电路、控制电路发生了较大变化,其性能不断改善,当然,保护电路也应随之作相应完善。逆变器保护电路主要包括过压保护、过载(过流) 保护、过热保护等几个方面。 本文仅就保护复位电路与死区控制电路与的实现进行了分析和研究。 2 保护电路设计 较之电工产品,电力电子器件承受过电压、过电流的能力要弱得多,极短时间的过电压和过电流就会导致器件永久性的损坏。因此电力电子电路中过电压和过电流的保护装置是必不可少的,有时还要采取多重的保护措施。 2.1 死区控制电路的结构设计 死区控制电路的电路拓扑结构如图所示,其主要功能是确保主电路中的开关管S 1、S 2 不能同时导通。死区电路的波形图如图1所示,从图中可以明显地看出开关管S 1和S 2 的驱 动信号没有使S 1与 S 2 同时导通的重叠部分,这就是两个主开关管之间存在所谓的“死区”。 而通过改变HEF4528芯片的输出信号脉宽,就可以调节驱动信号的脉宽。(具体的方式是 通过改变HEF4528芯片的外接RC电路的参数值实现的,如图2所示)如图3所示R t 、C t 的值与输出脉宽的关系在本文中,选择电位器P2的阻值为10kΩ,电容C237的容值为103pF,因此由图3可知,输出信号的脉宽大约为10μs 。

相关文档
最新文档