陶瓷材料的力学性能

陶瓷材料的力学性能
陶瓷材料的力学性能

Ti3SiC2高温力学性能的研究

Ti3SiC2同时显示金属和陶瓷独特组合的性质。然而,它的刚度和强度在1050℃以上迅速降低,这是这种材料的高温应用的主要障碍。为了提高Ti3SiC2的高温力学性能,锆,铪,或Nb被掺杂进Ti3(SiAl)C2。在室温时,锆,铪,或Nb掺杂的Ti3SiC2陶瓷与Ti3SiC2陶瓷具有相当的刚度,硬度,强度,和断裂韧性。然而,在高温下(Ti1-xTx)3(SiAl)C2(T=Zr, Hf, or Nb)的刚性和强度显著改善。(Ti1-xTx)3(SiAl)C2可以保持高温刚度和强度达到1200℃,比Ti3SiC2的1050℃高了150℃。

I. Introduction

Ti3SiC2是吸引人的层状三元陶瓷Mn+1AXn的一员,其中M是过渡金属,A为IIIA或IVA族元素,X为C或N.其晶体结构可以被描述为通过硅层交错和Ti-C的层和Si层是相对较弱的Ti-C的层之间的结合。由于其独特的晶体结构,Ti3SiC2具有低密度,高弹性模量,耐损伤性在室温下,良好的机械加工性,并能抵抗热冲击和高温氧化。然而,低硬度(维氏硬度约4Gpa),低的耐磨性,和高于1000℃差的高温力学性能限制了它的广泛应用.为了提高机械性能,硬质陶瓷粒子,例如TiC,SiC和氧化铝分别加入钛碳化硅。与单片钛碳化硅相比,这些颗粒增强钛碳化硅基复合材料表现出更高的弹性模量和维氏硬度,以及在室温下提高耐磨损性。然而,这些颗粒增强钛碳化硅复合材料也显示出在1000℃以上强度不满意的机械性能。例如,钛碳化硅-SiC复合材料的强度和刚度高于1000℃迅速下降。

近日,大宗三元铝碳化物在系统中成功地合成和表征。它们的晶体结构可以被描述为通过Al3C2或(铝硅)4C3层交错的Zr-C层。由于过渡金属的碳化物和铝(硅)的碳化物非常保守强共价键合,这些锆的Al(Si)的-C陶瓷在室温下显示出相当高的硬度和刚度。硬度为大约ZrC的一半,但三至四倍该钛碳化硅的,并且弹性刚度为约80%-90%的ZrC那的。最重要的是,Zr-Al系(Si)的-C陶瓷的杨氏模量随温度缓慢降低,并且1600℃弹性刚度保持约80%在室温下的这一点。高度的刚度即保持在升高的温度下赋予它们作为极有希望的候选者用于在高温和超高温环境下的应用。另外,该含铌MAX相如Nb2AlC和Nb4AlC3,陶瓷也显示出了优异的高温机械性能。一般来说,高温刚性的劣化,强度以及蠕变多晶陶瓷的电阻可以由几个原因,包括晶界滑移,晶界的软化,并且位错运动引起的。我们以前的工作已经表明,有在最大相,锆- 铝(Si)的-C和Hf-的Al-C的陶瓷的晶粒边界无非晶相。这些结果已给出一个提示,大尺寸的过渡金属如锆,铪,铌和可在这些碳化物陶瓷的高温力学性能方面发挥关键作用。以前的工作已经证明,掺杂Y,La和Zr的Al2O3增加了Al2O3抗蠕变性通过在晶界处形成强的化学结合的。如含锆,铪,铌的陶瓷具有优异的高温机械性能,预计钛碳化硅与锆,铪,和铌掺杂将增强钛碳化硅的高温机械性能。批准这一假设,在本工作中,我们制备ZR-,HF-Nb-掺杂,并通过原位热压/固- 液反应法,并在室温和高温下测得的机械性能。正如我们将展示在后面的章节中,该ZR-,HF-,以及Nb掺杂TI3(的SiAl)C2的室温机械性能接近TI3(的SiAl)C 2,而高温机械性能大大提高,其中突出了新的途径,在高温下,以改善最大相的机械性能。

I I . Experimental Procedure

锆掺杂的TI3(的SiAl)C 2散装材料具有不同的Zr含量为1,3,5,7,8,和10原子%是由原位热压/固液钛的反应(99%,300制成目),锆(99%200目),硅(99.5%,400目),铝(99.5%,300目),和石墨(99%,200目)的粉末。在所有的样品中,约5原子%的Si,以消除的TiC杂质代替铝。根据目标组合物的混合粉末,在300rpm用无水乙醇和玛瑙球在玛瑙罐的速率匀化在行星式球磨机15小时。然后,将磨碎的粉末进行干燥和热处1560在流动氩气氛下,30兆帕加压1小时,并随后进行退火在14000.5小时。铪-以及Nb掺杂TI3(的

SiAl)C 2样品制备的过程相似的,并且将不重复此处为了简洁。

鉴定采用步进扫描型X射线衍射仪(XRD)与CuKα辐射(日本理学D /最大值-2400,东京,日本),使用的11/ min的扫描速率的相的组合物。ZR-,HF-,和铌掺杂的样品的X射线衍射图案通过Rietveld方法(在Cerius24.2 COMPU-tational程序DBWS代码为材料的研究,分子模拟公司,圣地亚哥,CA)中进行了细化。计算了掺杂样品的理论密度根据该精制晶格参数。堆积密度是通过阿基米德法测定的。

显微组织观察一个SUPRA35扫描电子显微镜(SEM)(LEO,奥伯科亨,德国)装备有能量色散谱(EDS)系统。揭露晶粒形貌,样品机械抛光和前SEM观察溶液腐蚀。

维氏硬度,用15秒的停留时间进行测试在抛光表面上,在9.8?。动态杨氏模量和Zr,HF-的内部摩擦,以及Nb掺杂TI3(的SiAl)C2分别在室温和高温下测得的在一个RFDA-HTVP1750-C的试验机(IMCE,迪彭贝克,比利时)在低真空(?10?2PA)。两个组的试样的尺寸为放电从所制备的样品的强度和韧性的测试加工。弯曲强度通过用0.5毫米/分钟的十字头速度的三点弯曲法测定。高温抗弯强度在高温万能试验机在真空(103帕)试验。断裂韧性是由人字形确定切口梁(CNB)方法。人字形凹口由金刚石涂覆轮开槽引入和凹口的宽度为约150毫米。/进行断裂韧性测量四点弯曲以0.05毫米的十字头速度测试分钟。使用CNB样本的四点弯曲试验测定的断裂韧性,使用先前建立的公式计算。内和外跨度为10和30毫米,分别在对强度和韧性两者的弯曲试验。测得的值是五个独立测量的平均值。III. Results and Discussion

为了理解Zr,Hf和Nb的掺杂剂的晶体结构和钛碳化硅的机械性能的的效果,晶体结构特征和锆掺杂的钛碳化硅的机械性能进行了系统的研究。图1示出的Zr掺杂Ti3(SiAl)C2的X射线衍射图案与掺杂量为0?10原子%。被确定没有新相,但反射转移到低角度在处的内的增加Zr含量的范围1-7%(图1的(b)- (E))。,表明晶格参数由于稍微增加形成(TiZr)3(的SiAl)C 2固溶体。当Zr含量超过8原子%,但是,的TiC的(111)和(200)的峰可以被识别(图1(F)和(g)),并且它们也转移到低角度与的增加Zr含量,表明一些锆也进入的TiC。上述结果表明,当少量的Zr的加入的Ti3(的SiAl)C 2(TiZr)3(的SiAl)C 2固溶体形成。Zr3SiC2化合物尚未合成到现在为止,这意味着Zr3SiC2的晶体结构可以是热力学不利的。因此,将Zr的钛碳化硅固溶含量应该有一个限制值。定量描述的晶格参数的变化,进行Rietveld精修。表I列出了所计算出的晶格参数,可靠性因子(RP和RWP),和固体溶液的计算和测量的密度。的晶格常数和c几乎线性变化从0.3067至0.3082纳米,和1.7672至1.7721纳米,分别,而C / A的比率几乎是不变的。的晶格参数的增加可以归因于一个事实,即Zr的原子尺寸比的Ti较大(共价的原子半径为Ti和Zr是1.32和1.45,分别为22)。测得的密度是非常接近理论值,这表明作为合成样品几乎完全致密。一种固体溶液的微观结构进行了重点研究并与TI3的比较(的SiAl)C2。它被发现,该固体溶液具有相似的微观结构,以该对TI3(的SiAl)C 2。图2示出B的扫描电子显微镜照片。C的晶粒尺寸和晶粒形态几乎相同的TI3(的SiAl)C 2。的平均晶粒尺寸为TI3(的SiAl)C 2约为16.2毫米在长度和宽度4.3毫米,以及那些对D是约16.1毫米在长度和宽度4.0mm的宽高比为TI3(的SiAl)C 2和D为3.8和4.0,分别。其它固体溶液的微观结构是相似的,这是这里未示出为了简洁。理解Zr对机械性能的影响,所述的固体溶液,包括弹性模量,维氏硬度,弯曲强度,和断裂韧性的机械性能进行了研究,并与那些TI3(的SiAl)C 2进行比较。图3显示了杨氏模量与维氏的固体溶液作为Zr含量的函数的硬度。杨氏模量略有下降,而硬度增加几乎呈线性Zr含量的增加。例如,杨氏模量和A的维氏硬度是329和5.45京帕,分别作为这些答的大约分别96.5%和134.2%。杨氏模量的降低可能与在折皱键长(晶格常数的增加示于表I)的相关联。通常,硬度是衡量结构稳定性由弹性刚度和抗塑性变形能力,以结构的变化来确定。固体溶液显示出较低的弹性刚度对于A;因此,它们应该具有比。图4的塑性变形较高

阻力示出弯曲强度和固体溶液作为Zr含量的函数的断裂韧性。该固体溶液的测定弯曲强度和断裂韧性都非常接近那些A的,这主要归因于它们的相似的显微结构。不过,A和相应的固体溶液展现高得多的断裂韧性与传统的工程陶瓷,如氧化铝和碳化硅相比。高韧性的机制,主要归因于扭曲,呛咳,分层,裂纹偏转,裂纹桥接和断裂中粮撤军(ZM太阳,未发表的数据)。这些断裂机理都涉及到在A和内在弱粘结各向异性微结构具有相对高的高宽比。

为了演示的Zr掺杂剂对A的高温机械性能的影响,图5示出的温度的杨氏模量的B和内耗,以及那些,A,B的用于比较的相关性。如C,D的内摩擦仍或多或少恒定达到临界温度(约1200),然后以指数方式增加。的杨氏模量A的几乎线性降低随温度至其临界温度,然后衰减更快。的临界温度为约150比TI3(的SiAl)C2的高,显示出在高温弹性模量一显著改善,但约250比A更低的高温力学性能的显著改进也是显而易见的测得的高温强度。图6比较A 的高温抗弯强度与B和C的一个的抗弯强度可以保持高达1200(331兆帕),然后迅速减小。弯曲强度,在1200为约74%的,在室温下进行。至于作者知道,A具有最高的剩余的弯曲强度,在1200中的所有钛碳化硅为基础的铺料残留在1350强度约为132兆帕,它是约30%的,在室温下进行。它后面的高温机械性能,包括硬度和A的强度大大提高与甲相比但是,A的高温硬度和强度仍然比乙低,尤其是那些高于1200。

如HEET研究的锆- 铝(Si)的的高温力学性能-C陶瓷比的陶瓷(MAX相)好得多。因为添加Zr掺杂剂没有改变B的晶体结构,但所形成的固溶体,硅层和Ti-C的层之间的内在弱粘结通常保留。究其原因,固体溶液的改进的高温力学性能并不清楚,当前和更多的工作是必要的。此加强效果没有在室温下观察到的,它是一个热激活过程。可能的原因是与晶格和晶界的问题,在高温下,由于锆掺杂降低扩散率有关。其次是该固体溶液在高温下的扩散控制的变形是由像锆大尺寸元件的阻碍。为了进一步证明这一假设,我们还准备了HF-和Nb掺杂B(共价原子半径的Hf和Nb are1.44和1.34,分别)。如以Zr掺杂的A的情况下,当少量的Hf和Nb的加入(O7原子%)的固体溶液形成的。是铪-和Nb掺杂A的微观结构也类似于A.图7示出温度下的杨氏模量和内耗的依赖性,以及这些的Hf-的Al-C和Nb4AlC3的。用A相比,这些HF-和Nb掺杂的固体溶液也表现出在高温力学性能显著改善;用铪- 铝- C 和A相比,然而,它们的高温机械性能仍较低。另一个可能的原因是,硅层和Ti-C的层间的接合是通过进行锆,铪,或Nb尽管这种效果不能表现出来,在室温下加强在升高的温度。它似乎是合理的,因为基于锆,铪铝三元碳化物,和Nb表现出优异的高温机械性能。总之,我们提供了一种新的方式通过与大尺寸的元素如锆,铪,和铌掺杂来提高A的高温机械性能。固溶强化在高温下不应该只为A,但也为其他MAX阶段,而更多的作品正在进行在我们的实验室。

IV. Conclusions

陶瓷的分类及性能

陶瓷材料的力学性能 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。 金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键) 陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 玻璃 — 工业玻璃 (光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 陶瓷 —普通陶瓷日用,建筑卫生,电器(绝缘) ,化工,多孔 ……特种陶瓷 -电容器,压电,磁性,电光,高温 …… 金属陶瓷 -- 结构陶瓷,工具(硬质合金) ,耐热,电工 …… 玻璃陶瓷 — 耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷 … 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种

陶瓷(人工的化学或化工原料 --- 各种化合物如氧、碳、氮、硼化合物) (2) 坯料的成形 (可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度 是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。 2 (E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低比抗压强度低一个数量级)较高的高温强度。 (4)塑性:在室温几乎没有塑性。 (5) 韧性差,脆性大。是陶瓷的最大缺点。 (6) 热膨胀性低。导热性差,多为较好的绝热材料(λ=10-2~10-5w/m﹒K) (7)热稳定性 — 抗热振性(在不同温度范围波动时的寿命)急冷到水中不破裂所能承受的最高温度。陶瓷的抗热振性很低(比金属低的多,日用陶瓷 220 ℃) (8)化学稳定性 :耐高温,耐火,不可燃烧,抗蚀(抗液体金属、酸、碱、盐) (9) 导电性 — 大多数是良好的绝缘体,同时也有不少半导体( NiO , Fe3O4 等) (10) 其它: 不可燃烧,高耐热,不老化,温度急变抗力低。 普通陶瓷

高性能陶瓷材料的研究与应用

高性能陶瓷材料的研究与应用 李 婷 (湖北武汉风神汽车修理厂 武汉 430055) 摘 要 高性能陶瓷材料是具有特殊优越性能的新型材料,各国在基础与应用研究以及工程化方面,均给予了特殊重视,特别是在信息、国防、现代交通与能源产业中均将其置于重要地位。根据高性能陶瓷材料的应用前景,笔者介绍了高性能陶瓷新材料的性能、应用范围,市场的开发应用现状和开发应用新领域,以及正在研发的高性能陶瓷材料;同时介绍了高性能陶瓷材料的发展趋势。 关键词 陶瓷材料 应用范围 发展趋势 1 高性能陶瓷材料的应用前景 高性能陶瓷是新材料的一个组成部分,它在国民经济中的能源、电子、航空航天、机械、汽车、冶金、石油化工和生物等各方面都有广阔的应用前景,成为各工业技术特别是尖端技术中不可缺少的关键材料,在国防现代化建设中,武器装备的发展也离不开特种陶瓷材料。随着我国国民经济的高速发展,工业技术水平的不断提高,人民生活的不断改善以及国防现代化的需要,迫切地需要大量的特种陶瓷产品,市场前景十分广阔。石油化工行业需要大量的耐磨耐腐蚀的陶瓷部件,如球阀、缸套等。纺织行业需要大量的耐磨陶瓷件,如陶瓷剪刀、导丝轮等。国防工业需要的具有特殊性能的陶瓷材料,如防弹装甲陶瓷,耐射照高温轻质隔热材料,航空航天用的反射镜陶瓷材料,激光器用的聚光腔陶瓷材料,红外吸收、红外发射。 高性能陶瓷一般分为结构陶瓷和功能陶瓷,有的还分为陶瓷涂层及陶瓷复合材料等。结构陶瓷主要是利用其耐高温、高强度、耐磨的性能,应用于热机部件、耐磨部件,如刀具、轴承、密封环、阀门等热交换器,防弹材料及生物陶瓷等。主要材料有Si3N4、SiC、ZrO2、Al2O3、SiALON等。 高性能陶瓷材料已经在很多领域,特别是诸多高技术领域获得关键性的应用,在航空航天、国防及民用等高技术领域具有广泛且不可替代的作用,高性能陶瓷材料每年以7%~10%的速度发展。功能陶瓷主要是利用其上述功能特性,广泛应用于国防、航空航天、机械、化工、建筑等领域的绝缘子,集成电路的基片、电容器、压电和铁电及敏感元件等,已成为四大类材料(金属、陶瓷、高分子和复合材料)之一。主要的材料有Ba TiO3、ZnO、Ph)O3、A IN、ZrO2等。陶瓷粉料是发展高性能陶瓷的基础材料,是高性能陶瓷的重要组成部分,对特种陶瓷的发展起着十分重要的作用。 2 高性能陶瓷材料的性能特点 一般高温陶瓷材料的预期使用温度在1400℃~1500℃,而超高温材料是指能在1800℃以上使用的材料,主要包括过渡金属(Ti、Zr、Ta等)的硼化物、碳化物以及近年出现的Si-B-C-N超高温陶瓷材料等,还包括碳(石墨)和氮化硼等。这类材料的主要特点是超高温熔点、超高温稳定、超高温耐腐蚀性,应用于国防、航天、超高温电极、超高温耐腐蚀容器或保护器(与熔融金属接触),超高温涂层等。近年来,对Si -B-C-N超高温陶瓷材料的研究发展很快,制备工艺主要是采用有机前驱体法,对超高温稳定化机理的研究主要集中在硼的作用上。目前正在探索其作为超高温涂层材料方面的应用,有机前驱体法工艺复杂,操作严格,成本高,对超高温稳定化机理还缺乏深层的理解。因此,探索和开发新的制备技术,深入探讨超高温稳定化机理,探索和设计其他超高温材料系统(包括化

陶瓷材料的力学性能检测方法

陶瓷材料力学性能的检测方法 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My = σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =??? ? ???= z I y a P max max 21σ???? ?圆形截面 16矩形截面 332D Pa bh Pa π

其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为: =??? ? ???= z I y a P l max max 4σ???? ?圆形截面 8矩形截面 2332D Pl bh Pl π 式中l 为两个支点之间的距离(也称为试样的跨度)。 上述的应力计算公式仅适用于线弹性变形阶段。脆性材料一般塑性变形非常小,同弹性变形比较可以忽略不计,因此在断裂前都遵循上述公式。断裂载荷所对应的应力即为试样的弯曲强度。 需要注意的是,一般我们要求试样的长度和直径比约为10,并且在支点的外伸部分留足够的长度,否则可能影响测试精度。另外,弯曲试样下表面的光洁度对结果可能也会产生显著的影响。粗糙表面可能成为应力集中源而产生早期断裂。所以一般要求表面要进行磨抛处理。当采用矩形试样时,也必须注意试样的放置方向,避免使计算中b 、h 换位得到错误的结果。 2.断裂韧性 应力集中是导致材料脆性断裂的主要原因之一,而反映材料抵抗应力集中而发生断裂的指标是断裂韧性,用应力强度因子(K )表示。尖端呈张开型(I 型)的裂纹最危险,其应力强度因子用K I 表示,恰好使材料产生脆性断裂的K I 称为临界应力强度因子,用K IC 表示。金属材料的K IC 一般用带边裂纹的三点弯曲实验测定,但在陶瓷材料中由于试样中预制裂纹比较困难,因此人们通常用维氏硬度法来测量陶瓷材料的断裂韧性。 陶瓷等脆性材料在断裂前几乎不产生塑性变形,因此当外界的压力达到断裂应力时,就会产生裂纹。以维氏硬度压头压入这些材料时,在足够大的外力下,压痕的对角线的方向上就会产生裂纹,如图2-1所示。裂纹的扩展长度与材料的断裂韧性K IC 存在一定的关系,因此可以通过测量裂纹的长度来测定K IC 。其突出的优点在于快速、简单、可使用非常小的试样。如果以P C 作为可使压痕产生雷文的临界负荷,那么图中显示了不同负荷下的裂纹情况。 由于硬度法突出的优点,人们对它进行了大量的理论和实验研究。推导出了各种半经

高性能陶瓷材料

高性能陶瓷材料刘陈哲、王亚洲、李蠢、郭晨辉、谷琦琦、朱海旭 摘要:本文着重评述了高性能陶瓷的力学性能、性能检测方法、研究应用现状,并对纳米陶瓷及未来高性能陶瓷的设计、发展前景做了展望。 关键词:陶瓷,性能,检测方法,发展趋势 陶瓷材料力学性能 一、陶瓷材料的弹性变形、塑性变形与断裂 1、弹性 (1)弹性模量大 E值大,是金属材料的2倍以上。∵共价键结构有较高的抗晶格畸变、阻碍位错运动的阻力。晶体结构复杂,滑移系很少,位错 运动困难。 (2)弹性模量呈方向性;压缩模量高于拉伸弹性模量。结构不均匀性;缺陷。 (3)气孔率↑,弹性模量↓

2、塑性变形 (1)室温下,绝大多数陶瓷材料塑性变形极小。 (2)1000℃以上,大多数陶瓷材料可发生塑性变形(主滑移系运动)。 (3)陶瓷的超塑性 是微晶超塑性。∵晶界滑动,晶界液相流动。 存在条件:超细等轴晶,第二相弥散分布,晶粒间存在液相或无定形相。 如含化学共沉淀法制备的含Y2O3的ZrO2粉体,在1250℃烧结后,3.5×10-2 S-1应变速率ε =400%。 利用陶瓷的超塑性,可以对陶瓷进行超塑加工。 超塑加工+扩散焊接:新的复合加工方法。 3、断裂 以各种缺陷(表面或内部)为裂纹源,从最薄弱处裂纹扩展,瞬时脆断。 缺陷的存在是概率性的。用韦伯分布函数表示材料断裂的概率 ] dv F m v m )'()(e xp 1)(0σσ?σ σ????--=

F(ζ)—断裂概率;m—韦伯模数 ζ0—特征应力,该应力下断裂概率为0.632 ζ’、ζ—试样内部的应力及它们的最大值 若两种陶瓷材料的平均强度相同,在一定的断裂应力下,m值大的材料比m值小的材料发生断裂的几率小。 陶瓷的主要断裂机制:解理。且容易从穿晶变为沿晶断裂。 二、陶瓷材料强度和硬度 陶瓷的实际强度比其理论值小1~2个数量级。只有晶须、纤维的实际强度才比较接近理论值 (1)弯曲强度 可采用三点弯曲、四点弯曲方法测出。 四点弯曲试样工作部分缺陷存在的几率较大。 ∴强度比三点弯曲的低。 (2)抗拉强度 测试时,夹持部位易断裂(可采用加橡胶垫) ∴常用弯曲强度代之,高20%~40%。 (3)抗压强度 比抗拉强度高得多,10倍左右。 (4)硬度高 HRA,AT45N小负荷的维氏硬度或努氏硬度。 三:陶瓷材料的断裂韧度 工程陶瓷的KIC比金属的低1~2个数量级。 测定方法单边切口法、山形切口法、压痕法、双扭法、双悬臂梁法。 ∵KIC值受切口宽度的影响。金属材料:ζ↑、δ↓、KIC↓; 陶瓷材料:∵尖端塑性区很小。ζ↑、KIC↑。 四:陶瓷材料的疲劳强度

高性能结构陶瓷的应用

TECHNOLOGY AND MARKET Vol.17,No.6,2010 金属拉丝模用材质主要有三种:硬质金属(WC-Co)、聚晶(PCD)、钻石(ND)。硬质合金和钻石是传统的模具材质。长期以来,硬质合金模一直在拉丝用模中占主导地位,它的特点是强度、韧性好、耐磨性优良、修模方便、相对成本较低。绝大部分规格的模具至今仍是采用这类材质。钻石模则由于成本昂贵,加工困难,仅在部分生产细丝的成品模上应用。 材质性能比较 聚晶(PCD)是70年代发展起来的一种新型耐磨材料,它是由金刚石微晶体掺粘接金属,经过高温高压制成,用聚晶制的拉丝模机械强度良好,同时因为金刚石微晶体在成型过程中的随机取向克服了单晶体各向异性引起的偏磨性,所以聚晶模的使用效果甚至优于钻石模,但是聚晶生产成本高,设备复杂,投资大。 硬质合金是由WC和Co经高温烧结而成。Co含量一般为3—18左右。拉丝过程中,金属钴易于与被拉线材在某些区域发生“微观热焊合”产生粘着磨损或者发生塑性形变,而使“网状碳化钨”或“孤岛状碳化钨”断裂损坏,导致模具磨损失效。 陶瓷模则采用陶瓷微粉经高温烧结而成,耐磨晶体通过固相结合方式紧密结合。选择适当的烧结助剂,可以使陶瓷晶界接合强度大大增加,致密程度大为提高,线材与模具的磨擦磨损,除了润滑和变形角度等因素影响之外,模具本身硬度,晶相与粘接相的比例晶界结合强度是关键因素。由于陶瓷固相烧结,避免了金属粘接相的存在。使单位行程耐磨晶相比硬质合金明显增多,提高了体硬度。采取适当的工艺,可使陶瓷晶界强度和韧性能抵抗住拉丝压应力和剪切的破坏,改变拉丝模的磨损机制,从而有效地提高模具使用寿命。 陶瓷模与硬质合金模相比具有较低的磨擦系数,同时陶瓷与金属没有亲合性,在拉丝过程也不存在类似硬质合金一样的“微观热焊合”从而减少了拉丝阻力。对提高拉丝速度有利,一定程度上适应了拉丝机械发展的要求,陶瓷的微晶化技术使陶瓷制品具有更理想的表面光洁度,这对改善线材表面质量有利。 聚晶模耐磨性极好,是硬质合金模的20—200倍,但是聚晶模硬度高给修模带来了很大困难,修模时间及费用大大高于硬质合金模。一般聚晶模的修理费用约为其价格的三分之一。陶瓷模的硬度虽略高于硬质合金,但大大低于聚晶模。试验证实,利用原硬质合金修模手段修模,质量完全符合要求,而使用陶瓷模无需添置设备和增加修模成本,这也是使用单位乐于接受陶瓷模的一个有利因素。 成果特点 本成果是以三相复合陶瓷材料ZTA为原料,研制生产的陶瓷拉制模具和陶瓷塔轮及其工业应用产品。实验证明,ZTA材料所制成的陶瓷拉制模具和陶瓷塔轮,完全可以替代工业上常用的硬质合金拉制模具和金属塔轮在生产线上使用。 陶瓷材料在应用于制造拉丝模方面比硬质合金具有很多优良的特点,并且,原料成本远低于硬质合金、聚晶和天然钻石。目前国内企业至今没有普遍使用的原因就在于虽然制作陶瓷拉丝模的原料成本较低,延用硬质合金模的制作工艺(即烧成后进行打孔、研磨等工序)来制作陶瓷拉丝模的成本却很高。对陶瓷材料来讲,烧成后材料硬度很高,研磨很困难。因此,传统的制作方法样品加工成本太高,难以推广使用。本项目采用成型时就将陶瓷拉丝模的模孔和各部工作区一次成型出来的办法,烧结完毕后只需将表面抛光即可使用,避免了烧结后的研磨加工工序,从而大大降低了陶瓷拉丝模的制作成本,另外,采用先进的微波烧结方法,提高了材料的性能指标和使用寿 高性能结构陶瓷的应用院校成果 122

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

陶瓷力学性能

陶瓷的力学性能 newmaker 化学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其 杂而表面能小。因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使。因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。本节主要讨论弹性、硬度、强度因素、环境因素的影响。 能 性模量 脆性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。因此,其弹性性质就显得尤为重要。与其瓷的弹性变形可用虎克定律来描述。 变形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。弹性模量反映的是原子间距的微小变化所需外力的大小。在室温下的弹性模量。 性模量的影响 距和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。原子间距增大,由成j变为d,(见图11.2)而该处弹性模量降低。因此,固体的弹性模量一般均随温度的升高而降低。图11.3给出一些陶瓷的弹性模量随温度的变化情况。一般来说,往往具有较高的弹性模量。

与熔点的关系 高低反映其原子间结合力的大小。一般来说,弹性模量与熔点成正比例关系。不同种类的陶瓷材料样性模量之间大体上有如下关系氧

挪<碳化物。 描述陶瓷材料弹性变形的重要参数。表11.4给出一些陶瓷材料和金属的泊松比。可以看出除BeO与MgO外大多数陶瓷材料的泊松泊松比。 与材料致密度的关系 致密度对其弹性模量影响很大。图11.5给出AL2O3陶瓷的弹性模量随气孔率的变化及某些理论计算值的比较。Fros指出弹性模量与关系 P) 。 气孔率的增加,陶瓷的弹性模量量急剧下降。

陶瓷材料的分类及性能

陶瓷材料的力学性能 高分子091 项淼学号17 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。 金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键) 陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 ※玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 ※陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔…… 特种陶瓷--电容器,压电,磁性,电光,高温…… 金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工…… ※玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷… 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合) 普通陶瓷(粘土,石英,长石等天然材料) 特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物) (2)坯料的成形(可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。

功能陶瓷材料总复习题

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 频率围: 松弛极化 铁电体, 晶体在某温度围具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据 介电陶瓷的改性机理。 1、居里区与相变扩: 热起伏相变扩、应力起伏相变扩、成分起伏相变扩散、结构起伏相

陶瓷材料的分类及发展前景

陶瓷材料的分类及发展前景 学校: 太原理工大学 学院: 材料科学与工程 专业:无机0801 姓名:孙佩

摘要: 根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。通过对各类陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 引言 陶瓷材料在人类生活和现代化建设中是不可缺少的一种材料。它是继金属材料,非金属材料之后人们所关注的无机非金属材料中最重要的材料之一。它兼有金属材料和高分子材料的共同优点,在不断改性的过程中,已经使它的易碎性有了很大的改善。陶瓷材料以其优异的性能在材料领域独树一帜,受到人们的高度重视,在未来的社会发展中将发挥非常重要的作用。陶瓷材料按其性能及用途可分为两大类:结构陶瓷和功能陶瓷。现代先进陶瓷的性能稳定、高强度、高硬度、耐高温、耐腐蚀、耐酸耐碱、耐磨损、抗氧化以及良好的光学性能、声学性能、电磁性能、敏感性等性能远优于金属材料和高分子材料;而且,先进陶瓷是根据所要求的产品性能,经过严格的成分和生产工艺制造出来的高性能材料,因此可用于高温和腐蚀介质的环境当中,是现代材料科学发展最活跃的领域之一。在此,笔者将对先进陶瓷的种类及应用领域做详细的介绍。 1.结构陶瓷 陶瓷材料优异的特性在于高强度、高硬度、高的弹性模量、耐高温、耐磨损、耐腐蚀、抗氧化、抗震性、高导热性能、低膨胀系数、

质轻等特点,因而在很多场合逐渐取代昂贵的超高合金钢或被应用到金属材料所不可胜任的的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷、陶瓷基复合材料。 1.1氧化物陶瓷 氧化物陶瓷主要包括氧化镁陶瓷、氧化铝陶瓷、氧化铍陶瓷、、氧化锆陶瓷、氧化锡陶瓷、二氧化硅陶瓷、莫来石陶瓷,氧化物陶瓷最突出的优点是不存在氧化问题。 氧化铝陶瓷,利用其机械强度较高,绝缘电阻较大的性能,可用作真空器件、装置瓷、厚膜和薄膜电路基板、可控硅和固体电路外壳、火花塞绝缘体等。利用其强度和硬度较大的性能,可用作磨料磨具、纺织瓷件、刀具等。 氧化镁陶瓷具有良好的电绝缘性,属于弱碱性物质,几乎不被碱性物质侵蚀,对碱性金属熔渣有较强的抗侵蚀能力。不少金属如铁、镍、铀、釷、钼、镁、铜、铂等都不与氧化镁作用。因此,氧化镁陶瓷可用作熔炼金属的坩埚,浇注金属的模子,高温热电偶的保护管,以及高温炉的炉衬材料等。氧化镁在空气中易吸潮水化生成Mg(OH)2,在制造过程中必须注意。为了减少吸潮,应适当提高煅烧温度,增大粒度,也可增加一些添加剂,如TiO2、Al2O3等。 氧化铍陶瓷具有与金属相似的良好的导热系数,约为209.34W/(m.k),可用来做散热器件;氧化铍陶瓷还具有良好的核性能,对中子减速能力强,可用作原子反应堆的减速剂和防辐射材料;另外,

陶瓷材料的应用

一、先进陶瓷材料发展现状 先进陶瓷材料又称精密陶瓷材料,是新材料的一个重要组成部分,广泛应用于通讯、电子、航空、航天、军事等高技术领域,在信息与通讯技术方面有着重要的应用。电子技术、大规模集成技术电路,离不开压电、铁电和磁性陶瓷;电子计算机的记忆系统需要具有方形磁滞回线的铁磁体陶瓷;高速硬盘转动系统需要陶瓷轴承;在火箭和导弹的发射中,鼻锥和透波陶瓷天线罩是关键部件,它要承受高温气流的摩擦和冲刷,要求材料具有高的高温强度和好的抗氧化性能,只有陶瓷材料才能满足这些要求;作为新能源的磁流体发电机,需要采用陶瓷做电极材料;高温燃料电池、高能量蓄电池,需要采用陶瓷块离子导体做隔膜材料等等。目前,先进陶瓷已形成一个巨大的高新技术产业。全世界先进陶瓷产品的销售总额超过300亿美元,并以每年l0%以上的速度增长。美国与日本在该领域处于领先地位。先进陶瓷材料因其优异的高温力学性能及特有的光、声、电、磁、热或功能复合效应在高新技术产业、传统产业改造和国防军工等领域发挥着越来越大的作用。 先进陶瓷今后的重点发展方向是加强工艺-结构-性能的设计与研究,有效地控制工艺过程,使其达到预定的结构(包括薄膜化、纤维化、气孔的含量、非晶态化、晶粒的微细化等),重视粉体标准化、系列化的研究与开发及精密加工技术,降低制造成本,提高制品的重复性、可靠性及使用寿命。 (一)纳米级原料制备技术与纳米陶瓷据国外有关资料统计,2000年后,纳米材料结构器件市场容量约为6375亿美元,纳米材料薄膜器件市场容量为340亿美元,纳米粉体、纳米复合陶瓷及其复合材料的市场容量为5457亿美元。目前精细陶瓷用纳米粉体制备方法有三大类:物理制备法、气相法、湿化学法。制备的纳米陶瓷粉体有:Al203、Zr02、Si02、Si3N、SiC、BaTi03、Ti02等。纳米陶瓷的研制,带动了一些新的快速烧结设备的开发,如真空烧结工艺、微波烧结工艺和等离子烧结技术(SPS)等。 (二)先进陶瓷的复合技术与制品取各种材料性能之长,进行组分设计,使新材料具有多种功能,以满足各种工作条件下对材料和制品的要求。 (1)陶瓷基纤维复合材料。利用纤维的柔性来改善结构陶瓷的脆性是行之有效的途径之一。近10年来,用晶须或短纤维来补强陶瓷材料以外的各种连续陶瓷纤维也相继问世。

陶瓷材料的力学性能

第九章陶瓷材料的力学性能 §9-1 陶瓷材料 概况 陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。 金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键) 陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) §9-2 陶瓷材料的力学性能 强度(高温、低温、室温)韧性、硬度、断裂韧度、疲劳等。 一、陶瓷材料的弹性变形、塑性变形与断裂(图9-23) (1)弹性 A)弹性模量大 是金属材料的2倍以上。 ∵共价键结构有较高的抗晶格畸变、阻碍位错运动的阻力。 晶体结构复杂,滑移系很少,位错运动困难。 B)弹性模量呈方向性;压缩模量高于拉伸弹性模量 结构不均匀性;缺陷 C)气孔率↑,弹性模量↓ (2)塑性变形 a)室温下,绝大多数陶瓷材料塑性变形极小。 b)1000℃以上,大多数陶瓷材料可发生塑性变形(主滑移系运动) c)陶瓷的超塑性 超细等轴晶,第二相弥散分布,晶粒间存在无定形相。 1250℃,3.5×10-2 S-1应变速率ε=400%。 利用陶瓷的超塑性,可以对陶瓷进行超塑加工(包括扩散焊接) (3)断裂

压电陶瓷材料的主要性能及参数

压电陶瓷材料的主要性能及参数 自由介电常数εT33(free permittivity) 电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。 相对介电常数εTr3(relative permittivity) 介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。 介质损耗(dielectric loss) 电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。 损耗角正切tgδ(tangent of loss angle) 理想电介质在正弦交变电场作用下流过的电流比电压相位超前90 0,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ+ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。即:? 电学品质因数Qe(electrical quality factor) 电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。若用并联等效电路表示交变电场中的压电陶

瓷的试样,则Qe=1/ tgδ=ωCR 机械品质因数Qm(mechanical quanlity factor) 压电振子在谐振时储存的机械能与在一个周期内损耗的机械能之 比称为机械品质因数。它与振子参数的关系式为: 泊松比(poissons ratio) 泊松比系指固体在应力作用下的横向相对收缩与纵向相对伸长之比,是一个无因次的物理量,用δ表示:? δ= - S 12 /S11 串联谐振频率fs(series resonance frequency) 压电振子等效电路中串联支路的谐振频率称为串联谐振频率,用f s 表示,即 ? 并联谐振频率fp(parallel resonance frequency) 压电振子等效电路中并联支路的谐振频率称为并联谐振频率,用f p 表示,即f p =? 谐振频率fr(resonance frequency)

陶瓷材料的分类及性能

陶瓷材料的力学性能 高分子091项淼学号17 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。 金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键) 陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 ※玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 ※陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔…… 特种陶瓷--电容器,压电,磁性,电光,高温…… 金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工…… ※玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷… 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合) 普通陶瓷(粘土,石英,长石等天然材料) 特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物)(2)坯料的成形(可塑成形,注浆成形,压制成形) (3)烧成或烧结 3.陶瓷的性能 (1)硬度是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。(E/1

陶瓷材料分类

先进的陶瓷具有两种截然相反的电性能,一种是介电性能,一种是导电性能。介电就是不导电的意思,所以有些陶瓷可用作电介质。传统的硅酸盐陶瓷就是良好的电介质,至今仍是高压输电线路的电器设备上不可缺少的绝缘材料。但是,这种陶瓷含有较多量的钾离子和钠离子,使他在高频电场中的电性能下降先进陶瓷中的氧化铝、氧化铍、氮化硼、氮化硅都有良好的电绝缘性,特别是他们在高温下并不减少多少。氧化铍陶瓷在常温下的比电阻大于105。Cm,即是到500摄氏度仍有1013欧姆。Cm。,在陶瓷中是较好的一种。这里的电性能优越的另一种表现是介电损耗小,就是说电介质在电场作用下由于发热而消耗的能量少。介电损耗越小,绝缘性能越好。氧化铝陶瓷能透过无线电波就像玻璃能透过光线一样,而像金属那样的导电物质却不能透过无线电波。如果材料的介电损耗大,无线电波透过时损失的多,透过的少。所以,导弹的雷达保护罩、人造卫星的天线窗微波调速器的调速窗等,都是采用介电损耗小的陶瓷材料来做。有些陶瓷的介电常数很大,如金红石陶瓷、钛酸钡陶瓷等。介电常数的意思是,采用某中介质的电容器的电容量与同样尺寸的真空电容器的电容量的比值。介电常数大的陶瓷,做成电容器的电容量大,因而能制造体积小、质量轻的电容器。 先进陶瓷总体上可分为结构陶瓷、功能陶瓷、陶瓷(功能)复合材料、纳米陶瓷四大类。1、结构陶瓷: 高温结构陶瓷(航天陶瓷、导弹核弹陶瓷、磁流体发电、核能、等离子体能利结构陶瓷用陶瓷、发动、机用陶瓷) 超硬陶瓷材料、 耐磨陶瓷材料 2、功能陶瓷: ⑴电子陶瓷 压电铁电陶瓷(压电、铁电、热释放、反铁电、透明铁电陶瓷)、 电介质陶瓷(介电陶瓷):装置陶瓷(绝缘陶瓷)、高压电瓷高导热陶瓷、电容器陶瓷 微波介质陶瓷、电解质陶瓷、导电陶瓷 ⑵半导体陶瓷(敏感陶瓷): 传感器(敏感)陶瓷:热(温)敏陶瓷、压敏陶瓷、磁敏陶瓷、气(嗅)敏陶瓷、温敏陶瓷 ⑶磁性陶瓷 铁氧体陶瓷、磁记录陶瓷、高矫顽力陶瓷 ⑷光学陶瓷 透明陶瓷、红外陶瓷、激光陶瓷、光色陶瓷、光纤陶瓷 ⑸生物陶瓷 ⑹多孔陶瓷 ⑺陶瓷分离膜(陶瓷薄膜) ⑻能源技术陶瓷 ⑼超导陶瓷、高温超导体陶瓷 ⑽核技术陶瓷 ⑾计算机高技术陶瓷 3、陶瓷复合材料 多功能陶瓷复合材料 机敏陶瓷复合材料 智能陶瓷复合材料 4、纳米陶瓷

常见陶瓷材料性能及运用

4 科技资讯 SCIENCE & TECHNOLOGY INFORMATION 1 前言 20世纪后期随着许多新技术(如电子技术、空间技术、激光技术、计算机技术等)的兴起,以及基础理论(如矿物学、冶金学、物理学等)和测试技术(如电子显微镜技术、X 射线衍射技术和各种频谱仪等)的发展,人们对材料结构和性能之间的关系有了深刻认识。通过控制材料的化学成分和微观组织结构,研制出了许多具有不同性能的陶瓷材料,如各种功能陶瓷(电子材料、光导纤维、敏感陶瓷材料)及高温结构陶瓷。与传统陶瓷材料相比其强度得到了成百上千倍的提高,再加上陶瓷材料本身具备的优异的耐高温、耐磨、耐腐蚀、绝缘等特性,使其在许多重要领域得到了越来越广泛的应用。 常用工程陶瓷材料主要包括:金属(过渡金属或与之相近的金属)与硼、碳、硅、氮、氧等非金属元素组成的化合物,以及非金属元素所组成的化合物,如硼和硅的碳化物和氮化物。根据其元素组成的不同可以分为:氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硅化物陶瓷和硼化物陶瓷。此外,近年来玻璃陶瓷作为结构材料也得到了广泛的应用。 2 氧化物陶瓷 氧化物陶瓷材料的原子结合以离子键为主,存在部分共价键,因此具有许多优良的性能。大部分氧化物具有很高的熔点,良好的电绝缘性能,特别是具有优异的化学稳定性和抗氧化性,在工程领域已得到了较广泛的应用。 2.1氧化铝陶瓷 氧化铝陶瓷又称刚玉瓷,一般以α-Al2O3 为主晶相。根据Al2O3 含量和添加剂的不同,有不同系列。如根据Al2O3含量不同可分为75瓷,85瓷,95瓷,99瓷等;根据其主晶相的不同可分为莫来石瓷、刚玉-莫来瓷和刚玉瓷;根据添加剂的不同又分为铬刚玉、钛刚玉等。 Al2O3陶瓷是耐火氧化物中化学性质最稳定、机械强度最高的一种;Al2O3陶瓷与大多数熔融金属不发生反映,只有Mg、Ca、Zr和Ti在一定温度以上对其有还原作用;热的硫酸能溶解Al2O3 ,热的HCl,HF对其也有一定腐蚀作用;Al2O3 陶瓷的蒸汽压和分解压都是最小的。由于Al2O3 陶瓷优异的化学稳定性,可广泛地用于耐酸泵叶轮、泵体、泵盖、轴套,输送酸的管 道内衬和阀门等。 氧化铝的含量高于95%的Al2O3 陶瓷 具有优异的电绝缘性能和较低的介质损耗等特点,因而在电子、电器方面有十分 广阔的应用领域。 Al2O3 陶瓷的高硬度和耐磨性在机械 领域得到了广泛应用。如制造纺织耐磨 零件、刀具。 各种发动机中还大量使用Al2O3 陶瓷 火花塞。 透明Al2O3 陶瓷对于可见光和红外线 有良好的透过性,同时具有高温强度高、耐热性好、耐腐蚀性强等特点。可用于制造高压钠灯灯管、红外检测窗口材料等。2.2氧化锆(ZrO2)陶瓷ZrO2 有三种同素异形体:立方结构(c相)、四方结构(t相)及单斜结构(m相)。根据所含相的成分不同,ZrO2陶瓷可分为稳定ZrO2 陶瓷材料、部分稳定ZrO2 陶瓷。2.2.1稳定ZrO2 陶瓷稳定ZrO2 陶瓷主要由立方相组成,其耐火度高、比热与导热系数小,是理想的高温隔热材料,可以用做高温炉内衬,也可作为各种耐热涂层。稳定ZrO2 陶瓷化学稳定性好,高温时仍能抗酸性和中性物质的腐蚀,但不能抵抗碱性物质的腐蚀。周期表中第Ⅴ、Ⅵ、Ⅶ族金属元素与其不发生反应,可以用来作为熔炼这些金属的坩埚。纯ZrO2 是良好的绝缘体,由于其明显的高温离子导电特性,可作为2000℃使用的发热元件,高温电极材料,还可用作产生紫外线的灯。此外利用稳定ZrO2 的氧离子传导特性,可制成氧气传感器,进行氧浓度的测量。2.2.2部分稳定ZrO2 陶瓷部分稳定ZrO2 陶瓷由t+c双相组织组成,具有非常高的强度,断裂韧性和抗热冲击性能,被称为“陶瓷钢”。同时其热传导系数小,隔热效果好,而热膨胀系数又比较大,比较容易与金属部件匹配,在目前所研制的陶瓷发动机中用于气缸内壁、活塞、缸盖板部件。部分稳定ZrO2 陶瓷还可作为采矿和矿物工业的无润滑轴承,喷砂设备的喷嘴,粉末冶金工业所用的部件,制药用的冲压模等。另外,部分稳定ZrO2 陶瓷还可用作各种高韧性,高强度工业与医用器械。 如纺织工业落筒机用剪刀、羊毛剪,磁带生产中的剪刀,微电子工业用工具,此外由于其不与生物体发生反应,也可用作生物陶瓷材料。2.3 MgO陶瓷MgO陶瓷的主晶相为MgO,属立方晶系氯化钠结构,熔点2800℃,理论密度3.58g/cm3,在高温下比体积电阻高,介质损耗低,介电系数为9.12,具有良好的电绝缘性,属于弱碱性物质。MgO对碱性金属熔渣有较强的抗侵蚀能力,与镁、镍、铀、钍、铝、钼等不起作用,可用于制备熔炼 金属的坩锅、浇注金属的模子,高温热电偶的保护管,高温炉的炉衬材料等。3 氮化物陶瓷氮化物包括非金属和金属元素氮化物,他们是高熔点物质。氮化物陶瓷的 种类很多,但都不是天然矿物,而是人工合成的。目前工业上应用较多的氮化物陶瓷有氮化硅(Si3N4)、氮化硼(BN)、氮化铝(AlN)、氮化钛(TiN)等。 3.1氮化硅(Si3N4)陶瓷Si3N4陶瓷材料的热膨胀系数小,因此具有较好的抗热震性能;在陶瓷材料中,Si3N4 的弯曲强度比较高,硬度也很高,同时具有自润滑性,摩擦系数小,与加油的金属表明相似,作为机械耐磨 材料使用具有较大的潜力;Si3N4陶瓷材料的常温电阻率比较高,可以作为较好的绝缘材料;Si3N4陶瓷耐氢氟酸以外的所有无机酸和某些碱液的腐蚀,也不被 铅、锡、银、黄铜、镍等熔融金属合金所浸润与腐蚀;高温氧化时材料表面形成的氧化硅膜可以阻碍进一步氧化, 抗氧化温度达1800℃。Si3N4陶瓷可用作热机材料、切削工具、高级耐火材料,还可用作抗腐蚀、耐磨损的密封部件等。3.2氮化铝(AlN)陶瓷AlN属于共价键化合物,六方晶系,纤维锌矿型结构,白色或灰白色,密度3.26g/cm3 ,无熔点,在2200~2250℃ 升华分解,热硬度很高,即使在分解温度前也不软化变形。具有优异的抗热震 常见陶瓷材料性能及运用 高仁金 (闽江学院化学与化学工程系 福建福州 350108 ) 摘 要:陶瓷材料因组成元素的不同会产生不同的性能,它作为一种结构材料在各行业得到广泛的应用。关键词:陶瓷 性能 应用

相关文档
最新文档