2016最新中国部分省市光伏电站最佳安装倾角及发电量速查表

2016最新中国部分省市光伏电站最佳安装倾角及发电量速查表
2016最新中国部分省市光伏电站最佳安装倾角及发电量速查表

2016最新中国部分省市

光伏电站最佳安装倾角及发电量速查表

中国部分省市光伏电站最佳安装倾角及发电量速查表

说明:

(1)、速查表中发电量的计算已考虑79%的系统效率;

(2)、速查表已根据当地经纬度换算出组件的最佳安装倾角;

(3)、速算表中的每瓦年发电量与电站实际装机容量的乘积就是该电站的年发电量;

1.北京市太阳能发电量统计表(晶硅组件)

2.上海市太阳能发电量统计表(晶硅组件)

3.天津市太阳能发电量统计表(晶硅组件)

4.安徽省9地市太阳能发电量统计表(晶硅组件)

5.西藏自治区7地市太阳能发电量统计表(晶硅组件)

6.新疆自治区14地市太阳能发电量统计表(晶硅组件)

9.内蒙古自治区11地市太阳能发电量统计表(晶硅组件)

10.宁夏自治区5地市太阳能发电量统计表(晶硅组件)

15.湖北省7地市太阳能发电量统计表(晶硅组件)

由以上速查表可以看出,我国大部分地区的太阳能电站的最佳安装倾角主要分布在以下角度等级:25°、30°、35°、40°。我国主要地区的光伏电站安装角度等级及地区分布如下表:

太阳能电站的最佳安装倾角有一定的角度区间,为使光伏电站全年发电量达到最大,尽量取上述角度区间的中间值,减少发电量偏差。确保实现最大的经济效益。

光伏电站最佳安装倾角的确定还要根据当地的气候条件(风压、雪压、地震等),在满足电站支架强度及整体稳定性的前提下,全年发电量最大的角度为最佳安装角度。

此外,离网光伏电站要考虑最差季节满足负载的正常运行,若项目地点位于北半球,在全年发电量最大的安装倾角基础上,适当增加一定的角度。

光伏电站发电量计算方法

光伏电站平均发电量计算方法小结 一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目就是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算 /估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6 6条:发电量计算中规 疋: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置与环境条件等各种因素后计算确定。 2、光伏发电站年平均发电量 Ep计算如下: Ep=HA< PAZX K 式中: HA为水平面太阳能年总辐照量(kW? h/m2); Ep——为上网发电量(kW?h); PAZ ――系统安装容量(kW); K ――为综合效率系数。 综合效率系数K就是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数 3)光伏发电系统可用率 ;

4)光照利用率; 5)逆变器效率 ; 6)集电线路、升压变压器损耗 ; 7)光伏组件表面污染修正系数 ; 8)光伏组件转换效率修正系数。 这种计算方法就是最全面一种 ,但就是对于综合效率系数的把握 , 对非资深光伏从业人员来讲 ,就是一个考验 ,总的来讲 ,K2 的取值在 75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA< SX K1X K2 式中: HA为倾斜面太阳能总辐照量(kW? h/m2); S――为组件面积总与(m2) K1 ——组件转换效率 ; K2 ——为系统综合效率。 综合效率系数K2就是考虑了各种因素影响后的修正系数,其中包括: 1)厂用电、线损等能量折减 交直流配电房与输电线路损失约占总发电量的3%,相应折减修正系数取为 97%。 2)逆变器折减 逆变器效率为 95%~98%。 3)工作温度损耗折减光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时 , 光伏组件发电效率会呈降低趋势。一般而言 , 工作温度损耗平均值为在 2、5%左右。 其她因素折减

发电效率PR计算公式

光伏电站发电效率的计算与监测 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。 在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR公式为: E PDR PR PT = —PDR为测试时间间隔(t?)内的实际发电量;—PT为测试时间间隔(t?)内的理论发电量;

理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000 w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H i H i PDR PR PT = 0I I i i T = —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控系统获得; —I 0=1000w/m 2 。 2.2.2光伏电站日效率测试 根据气象设备计算的每日的辐射总量,计算每日的电站整体发电效率PR D D PDR PR PT = 0I I T = —PDR ,每日N 小时的实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —T ,光伏电站每日发电有效小时数

中国各省市光伏电站最佳安装倾角及发电量速查表

中国各省市光伏电站最佳安装倾角及发电量 速查表 类别城市安装角度(°)峰值日照时数 h/day 每瓦首年发电量 (kWh)/W 年有效利用小时数 (h) 直辖市北京35 4.21 1.2141213.95 上海25 4.09 1.1791179.35 天津35 4.57 1.3181317.76 重庆8 2.380.686686.27 黑龙江 哈尔滨40 4.3 1.2681239.91 齐齐哈尔43 4.81 1.3881386.96 牡丹江40 4.51 1.3011300.46 佳木斯43 4.3 1.2411239.91 鸡西41 4.53 1.3081306.23 鹤岗43 4.41 1.2721271.62 双鸭山43 4.41 1.2721271.62 黑河46 4.9 1.4151412.92 大庆41 4.61 1.3311329.29 大兴安岭-漠河49 4.8 1.3841384.08 伊春45 4.73 1.3641363.90 七台河42 4.41 1.2721271.62 绥化42 4.52 1.3041303.34 吉林 长春41 4.74 1.3671366.78 延边-延吉38 4.27 1.2311231.25 白城42 4.74 1.3691366.78 松原-扶余40 4.63 1.3361335.06 吉林41 4.68 1.3511349.48 四平40 4.66 1.3441343.71 辽源40 4.7 1.3551355.25 通化37 4.45 1.2831283.16 白山37 4.31 1.2441242.79 辽宁沈阳36 4.38 1.2641262.97 朝阳37 4.78 1.3781378.31 阜新38 4.64 1.3381337.94 铁岭37 4.4 1.2691268.74 抚顺37 4.41 1.2741271.62 本溪36 4.4 1.2711268.74 辽阳36 4.41 1.2721271.62 鞍山35 4.37 1.2621260.09 丹东36 4.41 1.2731271.62 大连32 4.3 1.2411239.91 营口35 4.4 1.2691268.74 盘锦36 4.36 1.2581257.21

无锡地区分布式光伏电站发电量模拟分析

Grid-Connected System: Simulation parameters Project :715光伏发电 Geographical Site Wuxi CH Country China Situation Latitude31.6oN Longitude120.3oE Time defined as Legal Time Time zone UT+8Altitude30 m Albedo 0.20 Meteo data :Wuxi CH, Meteonorm SYN File Simulation variant :New simulation variant Simulation date07/10/14 19h49 Simulation parameters Collector Plane Orientation Tilt23 deg Azimuth0 deg Horizon Free Horizon Near Shadings No Shadings PV Array Characteristics PV module Si-mono Model STP 250S-24/Vb Manufacturer Suntech Number of PV modules In series17 modules In parallel168 strings Total number of PV modules Nb. modules2856Unit Nom. Power250 Wp Array global power Nominal (STC)714 kWp At operating cond.639 kWp (50oC) Array operating characteristics (50oC)U mpp532 V I mpp1202 A Total area Module area5542 m2 Inverter Model SG100K3 Manufacturer Sungrow Characteristics Operating Voltage450-820 V Unit Nom. Power100 kW AC Inverter pack Number of Inverter7 units Total Power700 kW AC PV Array loss factors Thermal Loss factor Uc (const)20.0 W/m2K Uv (wind)0.0 W/m2K / m/s => Nominal Oper. Coll. Temp. (G=800 W/m2, Tamb=20oC, Wind=1 m/s.)NOCT56 oC Wiring Ohmic Loss Global array res.7.4 mOhm Loss Fraction 1.5 % at STC Module Quality Loss Loss Fraction 1.5 % Module Mismatch Losses Loss Fraction 2.0 % at MPP Incidence effect, ASHRAE parametrization IAM = 1 - bo (1/cos i - 1)bo Parameter0.05 User's needs :Unlimited load (grid)

光伏电站发电量的计算方法

光伏电站发电量计算方法 ①理论发电量 1)1MW屋顶光伏电站所需电池板面积一块235MW的多晶电池板面积 1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积 1.6368*4255.32=6965㎡ 2)年平均太阳辐射总量计算 上海倾角等于当地纬度斜面上的太阳总辐射月平均日辐照量H 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采 用表中所列数据(2月份以2 8天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5 5 5 5.3 3 9 MJ/(m 2·a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往 达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时 要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳 电池板输出功率时要考虑到0.8 9的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太 阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.9 3的影响系数。

水平屋面光伏系统固定安装最佳倾角的算例

水平屋面光伏系统固定安装最佳倾角的算例 发表时间:2018-08-21T15:43:33.267Z 来源:《电力设备》2018年第13期作者:韩等存 [导读] 摘要:屋面光伏电站安装方式按照屋面形式主要分为水泥平屋面和彩钢屋面,本文通过实例对水泥平屋面光伏系统固定式安装的最佳倾角进行了计算,得出了针对本实例的水泥平屋面光伏系统固定式安装时的最佳倾角,对比了屋面最佳倾角和规范推荐倾角以及计算机模拟最佳倾角之间的差异。 (四川宏达石油天然气工程有限公司四川省成都市 611700) 摘要:屋面光伏电站安装方式按照屋面形式主要分为水泥平屋面和彩钢屋面,本文通过实例对水泥平屋面光伏系统固定式安装的最佳倾角进行了计算,得出了针对本实例的水泥平屋面光伏系统固定式安装时的最佳倾角,对比了屋面最佳倾角和规范推荐倾角以及计算机模拟最佳倾角之间的差异。 关键词:水泥平屋面;光伏;固定式;最佳倾角 1 实例概况 某分布式光伏发电项目,位于北纬41.12°。利用园区100多栋建筑物屋顶建设分布式光伏电站,园区大部分建筑物具有相同参数(33m*18m)、坐北朝南、屋顶为现浇式水泥平屋面(以下均简称“屋面”),拟采用国内常规组件型号:270W多晶硅组件, 1.64*0.992*0.05m(长*宽*厚),固定倾角正南向安装,全额上网。 2 倾角计算 2.1安装容量计算 根据《光伏发电站设计规范》中规定:光伏方阵各排、列的布置间距,无论是固定式还是跟踪式均应保证全年9:00~15:00(当地真太阳时)时段内前、后、左、右互不遮挡,也即冬至日当天9:00~15:00时段内前、后、左、右互不遮挡。 固定式布置的光伏方阵,在冬至日当天太阳时9:00~15:00不被遮挡的间距如图1所示,可由以下公式计算: 由上式可知,光伏阵列间距受光伏组件参数、阵列倾角、和项目地理位置影响,而不同的间距会造成屋面组件的安装数量不同,考虑到光伏组件参数和项目地理位置确定,上式可化简为:

光伏发电年发电量计算

以1MW装机容量为例(300KW即0.3MW),你可以自己换算下。 电力系统的装机容量是指该系统实际安装的发电机组额定有效功率的总和。 由于光伏发电必然有损耗,所以实际发电量是无法达到理论值的。 1、1MW光伏电站理论年发电量: =年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ =6771263.8*0.28 KWH =1895953.86 KWH =189.6万度 2、实际发电效率 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件, 当光伏组件内部的温度达到50-75℃时,它的输出功率降为额定时的89%,在分析太阳电池板输出功率时要考虑到0.89的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%

的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。 由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。 另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.9 计算。 并网光伏电站考虑安装角度因素折算后的效率为0.88。 所以实际发电效率为:0.9 5 * 0.8 9 * 0.9 3*0.9 5 *0.8 8 =65.7%。 3、系统实际年发电量: =理论年发电量*实际发电效率 =189.6*0.9 5 * 0.8 9 *0.9 3*0.9 5 * 0.8 8 =189.6*65.7% =124.56万度

光伏电站平均发电量计算方法小结

光伏电站平均发电量计算方法小结 【大比特导读】一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6.6条:发电量计算中规定: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置和环境条件等各种因素后计算确定。 2 、光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中: HA——为水平面太阳能年总辐照量(kW·h/m2); Ep——为上网发电量(kW·h); PAZ ——系统安装容量(kW); K ——为综合效率系数。 综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数;

3)光伏发电系统可用率; 4)光照利用率; 5)逆变器效率; 6)集电线路、升压变压器损耗; 7)光伏组件表面污染修正系数; 8)光伏组件转换效率修正系数。 这种计算方法是最全面一种,但是对于综合效率系数的把握,对非资深光伏从业人员来讲,是一个考验,总的来讲,K2的取值在75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA×S×K1×K2 式中: HA——为倾斜面太阳能总辐照量(kW·h/m2); S——为组件面积总和(m2) K1 ——组件转换效率; K2 ——为系统综合效率。 综合效率系数K2是考虑了各种因素影响后的修正系数,其中包括: 1) 厂用电、线损等能量折减 交直流配电房和输电线路损失约占总发电量的3%,相应折减修正系数取为97%。 2) 逆变器折减 逆变器效率为95%~98%。 3) 工作温度损耗折减

光伏发电量计算及综合效率影响因素

光伏发电量计算及综合效率影响因素 Hessen was revised in January 2021

光伏发电量计算及综合效率影响因素 一、光伏电站理论发电量计算 1.太阳电池效率n的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 厂巴一AX—〃仏匕 A几A几A几 其中,At为太阳电池总而积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把At换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的而积,同时计算得到的转换效率要高一些。Pin为单位而积的入射光功率。实际测量时是在标准条件下得到的:Pin取标准光强:AM 条件,即在25°C下,Pin 二1000W / nA 2.光伏系统综合效率(PR) n 总=HIX n 2X n 3 光伏阵列效率Hl:是光伏阵列在1000 W/m2太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率112:是逆变器输岀的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率A3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV高压端,主要是升压变压器和交流线缆损失,按96%计算。

3. 理论发电量计算

太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为 1000W/m:的光照条件下,lOOOWp太阳电池1小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量二系统峰值功率(kw) x等效日照小时数(h) x系统效率 等效峰值日照小时数h/d二(日太阳辐照量m7d) /lkW/m: (H照时数:辐射强度^120W/m2的时间长度) 二、影响发电量的因素 的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的 地点和规模确定以后,前两个因素基木己经定了,要想提高发电量,只能提高 此图:来源于王斯成老师的ppi 灿观

各省光伏电站的最佳安装倾角发电量速查表!(收藏)

各省光伏电站的最佳安装倾角、发电量速查表!(收藏) (1)、速查表中发电量的计算已考虑79%的系统效率。(2)、速查表已根据当地经纬度换算出组件的最佳安装倾角。(3)、速算表中的每瓦年发电量与电站实际装机容量的乘积就是该电站的年发电量。中国各省市光伏电站最佳安装倾角及发电量速查表类别城市安装角度(°)峰值日照时数h/day每瓦首年发电量(kWh)/W年有效利用小时数(h)直辖市北京354.211.2141213.95 上海254.091.1791179.35 天津 354.571.3181317.76 重庆82.380.686686.27 安徽合肥 273.691.0641064.01 芜湖264.031.1621162.05 黄山 253.841.1071107.26安庆253.911.1271127.45 蚌埠 253.921.131130.33亳州234.411.1151113.03 池州 224.411.0481049.59滁州234.91.0561055.36阜阳 284.611.2141213.09 六安234.81.0651064.01马鞍山 224.731.0611061.13铜陵224.411.0541052.48宣城 234.521.0521052.48 吉林长春414.741.3671366.78 延边-延 吉384.271.2311231.25 白城424.741.3691366.78 松原-扶余404.631.3361335.06 吉林414.681.3511349.48 四平 404.661.3441343.71 辽源404.71.3551355.25 通化 374.451.2831283.16 白山374.311.2441242.79 辽宁沈阳364.381.2641262.97 朝阳374.781.3781378.31 阜新

光伏电站平均发电量计算方法小结

光伏电站平均发电量计算方法小结【大比特导读】一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6.6条:发电量计算中规定: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置和环境条件等各种因素后计算确定。 2 、光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中: HA——为水平面太阳能年总辐照量(kW?h/m2); Ep——为上网发电量(kW?h); PAZ ——系统安装容量(kW); K ——为综合效率系数。

综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数; in advance, closely associated with the party's patriotic youth Yu Qingzhi when Chang. Yu Qing Zhi, nanling County, Anhui Wuhu Brook family beach people, after the start of the war, participated in the third war zone relative to the officer training Corps trainees, young Chang Shen Liqun from Shangrao, Jiangxi province, is the only military 3)光伏发电系统可用率; 4)光照利用率; 5)逆变器效率; 6)集电线路、升压变压器损耗; 7)光伏组件表面污染修正系数; 8)光伏组件转换效率修正系数。 这种计算方法是最全面一种,但是对于综合效率系数的把握,对非资深光伏从业人员来讲,是一个考验,总的来讲,K2的取值在75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA×S×K1×K2 式中: HA——为倾斜面太阳能总辐照量(kW?h/m2); S——为组件面积总和(m2) K1 ——组件转换效率; K2 ——为系统综合效率。

光伏发电量计算及综合效率影响因素

一、光伏电站理论发电量计算 1.太阳电池效率η 的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 其中,At 为太阳电池总面积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把 At 换成有效面积 Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。Pin 为单位面积的入射光功率。实际测量时是在标准条件下得到的:Pin 取标准光强:AM 条件,即在 25℃下, Pin= 1000W / m 2。 2.光伏系统综合效率(PR) η总=η1×η2×η3 光伏阵列效率η1:是光伏阵列在 1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。 3.理论发电量计算 太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为1000W/m2的光照条件下,1000Wp 太阳电池 1 小时才能发一度电。而实际上,

同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率 等效峰值日照小时数h/d=(日太阳辐照量m2/d)/1kW/m2 (日照时数:辐射强度≥120W/m2的时间长度) 二、影响发电量的因素 光伏电站的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的地点和规模确定以后,前两个因素基本已经定了,要想提高发电量,只能提高系统效率。 自然原因:温度折减、不可利用太阳光; 设备原因:光伏组件的匹配度、逆变器、箱变的效率、直流线损、交流线损、设备故障,光伏组件衰减速度超出预期; 人为原因:设计不当、清洁不及时。 三、影响光伏发电效率的具体情况如下: 1.温度折减 对系统效率影响最大的自然因素就是温度。温度系数是光伏组件非常重要的一个参数。一般情况下,晶硅电池的温度系数一般是~%/℃,非晶硅电池的温度系数一般是%/℃左右。而光伏组件的温度并不等于环境温度。下图就是光伏组件输出功率随组件温度的变化情况。 在正午12点附近,图中光伏组件的温度达到60摄氏度左右,光伏组件的输出功率大约仅有85%左右。除了光伏组件,当温度升高时,逆变器等电气设备

光伏阵列安装角度选择

固定式光伏阵列安装角度 一、前言 太阳是一个巨大的能源,它以光辐射的形式每秒钟向太空发射约3.8×10M焦耳的能量,有22亿分之一投射到地球上,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。太阳光被大气层反射、吸收之后,还有70%透射到地面。亿万年来,地球以此形成生物圈。并为地球带来许多能量的来源,如风能,化学能,水能,乃至部分潮汐能均属于广义太阳能。然而,这些能源经过近代工业飞速发展,很多能源已消耗殆尽,狭义太阳能的利用逐渐被人们推向前台。被动式利用太阳能光电转换和光电转换两种方式都得到迅速发展。光热转换是把太阳能转化为热能,光电转换就是将太阳能转化为电能(即通常所说的光伏发电),其中重点是后者。 我国的太阳能资源比较丰富且分布范围较广,太阳能光伏发电的发展潜力巨大。 我国地处北半球,太阳能资源异常丰富,总面积2/3以上地区年日照时数大于2200h,其中西藏、青海、新疆、甘肃、宁夏、内蒙古高原均为太阳能资源丰富地区;除四川盆地、贵州省资源稍差外,东部、南部及东北等其它地区都是资源较富和中等区。太阳能资源理论存储总量达每年17000亿t标准煤,与美国相近,比欧洲、日本优越得多。专家统计,如果把全国1%的荒漠中的太阳能用于发电,就可以发出相当于2003年全年的耗电量。届时,新疆、西藏、甘肃等广

依照上表并对应地理位置可知,我国太阳能资源分布的主要特点有:太阳能的高值中心和低值中心都处在北纬22°~35°这一带,青藏高原是高值中心,四川盆地是低值中心;太阳年辐射总量,西部地区高于东部地区,而且除西藏和新疆两个自治区外,基本上是南部低于北部;由于南方多数地区云雾雨多,在北纬30°~40°地区,太阳能的分布情况与一般的太阳能随纬度而变化的规律相反,太阳能不是

光伏电站发电量计算及故障解析

光伏电站发电量计算及故障解析 1.1一类地区 全年日照时数为3200~3300小时,辐射量在670~837x104kJ/cm2·a。相当于225~285kg标准煤燃烧所发出的热量。主要包括青藏高原、甘肃北部、宁夏北部和新疆南部等地。 1.2二类地区 全年日照时数为3000~3200小时,辐射量在586~670x104kJ/cm2·a,相当于200~225kg标准煤燃烧所发出的热量。主要包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。 1.3三类地区 全年日照时数为2200~3000小时,辐射量在502~586x104kJ/cm2·a,相当于170~200kg标准煤燃烧所发出的热量。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏北部和安徽北部等地。 1.4四类地区

全年日照时数为1400~2200小时,辐射量在419~502x104kJ/cm2·a。相当于140~170kg标准煤燃烧所发出的热量。主要是长江中下游、福建、浙江和广东的一部分地区,春夏多阴雨,秋冬季太阳能资源还可以。 1.5五类地区 全年日照时数约1000~1400小时,辐射量在335~419x104kJ/cm2·a。相当于115~140kg标准煤燃烧所发出的热量。主要包括四川、贵州两省。 2.1光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中:HA——水平面太阳能年总辐照量(kW·h/m2);Ep——上网发电量(kW·h); PAZ ——系统安装容量(kW);K ——为综合效率系数。 综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数;2)光伏方阵的倾角、方位角修正系数;

分布式光伏电站投资成本分析

分布式光伏电站投资成本分析 有人留言问兔子君,说为什么现在市场上分布式光伏电站的造价报价范围从5元/瓦-10元/瓦不等,到底什么价格才是正常的呢今天兔子君与大家一同解剖光伏电站的构成及成本,让大家在购买光伏电站设备及选择安装服务商的时候做到心中有数。 兔子君简要的介绍一个分布式光伏电站都会涉及到什么内容及相应的价格 1、光伏组件 光伏组件是光伏电站的核心构成部分,组件的发电效率和寿命关系着电站建成后的收益,价格也占电站总价的50%以上,因此选购光伏组件的选购是电站建设中的重点。然而,光伏组件在生产过程中,为了确保客户的发电性能,一般都会在出厂时做严格检测,凡是一致化程度较差或有一些瑕疵的组件都会做等外品处理,也就是说每个厂家在生产过程中都会产生一定数量的等外品(B类组件)。这种B类组件,首先从质量角度就有问题,自然发电量无法与A类组件相比;其次,因为存在瑕疵,后续的功率和衰减率也无法保证能符合国家规定,最关键的,这类组件根本无法保证能有25年的使用寿命。某些不良安装服务商采用劣质的降级组件,可以将电站的造价极大的降低,代价则是业主收益完全无法保证。 目前市场上一线厂商组件价格:265W以上多晶光伏组件价格在元/瓦不等;而单晶270W以上组件价格则在元/瓦之间不等;CIGS组件价格在4-6元/瓦不等。当然,具体的购买价格会随组件的品牌、组件功率以及项目规模而定。当然,目前行业预期在630后,组件会有较大幅度的降价潮,兔子君预期降价在元/瓦。 2、逆变器 根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。目前光伏系统一般采用并网方式,逆变器将光伏产生的直流电变成交流电,将电力送入电网。逆变器是电力转化的上网的关键设备,因此逆变器的选择与购买对系统的稳定运营有极大的影响。 目前500KW-1MW的集中式逆变器价格约在元/瓦,组串式逆变器在元/瓦,微

国家电网公司光伏理论发电功率及受阻电量计算方法(试行)

光伏理论发电功率及受阻电量计算方法 第一章总则 第一条为进一步完善电网实时平衡能力监视功能,规范日内市场环境下光伏理论发电功率及受阻电量等指标的统计分析,依据《光伏发电站太阳能资源实时监测技术要求》(GB/T 30153-2013)、《光伏发电功率预测气象要素监测技术规范》(Q/GDW 1996-2013)的有关要求,制定本方法。 第二条本方法所称的光伏电站,是指按照公共电站要求已签订《并网调度协议》、集中并入电网的光伏发电站,不包括分布式光伏发电系统。 第三条本方法适用于国家电网公司各级电力调度机构和调管范围内并网光伏电站开展理论发电功率及受阻电量统计计算工作。 第二章术语和定义 第四条光伏电站发电功率指标包括理论发电功率和可用发电功率。光伏电站理论发电功率指在当前光资源情况下站内所有逆变器均可正常运行时能够发出的功率,其积分电量为光伏电站理论发电量;光伏电站可用发电功率指考虑站内设备故障、缺陷或检修等原因引起受阻后能够发出的功率,其积分电量为光伏电站可用发电量。 第五条光伏电站受阻电力分为站内受阻电力和站外受

阻电力两部分:站内受阻电力指光伏电站理论发电功率与可用发电功率之差,其积分电量为站内受阻电量;站外受阻电力指光伏电站可用发电功率与实发功率之差,其积分电量为站外受阻电量。 第六条全网理论发电功率指所有光伏电站理论发电功率之和;全网可用发电功率指考虑断面约束的光伏电站可用发电功率之和;可参与市场交易的光伏富余电力指全网可用发电功率与实发功率之差。 第七条全网站内受阻电力指所有光伏电站站内受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的光伏受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第八条计算理论发电功率和受阻电力需准备的实时数据包括光伏电站实际发电功率、逆变器运行数据和状态信息、气象监测数据、开机容量;非实时数据包括光伏电站基本参数 (格式见附表)、样板逆变器型号及其数量、全站逆变器型号及其数量等。 第九条所有光伏电站应配备气象监测设备,并向调度机构实时上报气象测量数据,气象数据满足以下条件:(一)气象监测设备测量要素

最佳光伏倾角

光伏电站最佳倾角 在光伏方阵的设计时,如果采用固定式的安装方式,会有一个“最佳倾角”的概念,这里的最佳倾角指的是当光伏方阵按照某一 角度倾斜放置时,光伏板倾斜面上的年总辐射量达到最大,但通常 情况下,与这个最佳倾角相近的角度辐射量差别其实很小。而当在 电站容量一定的情况下,降低倾角可以节约土地、电缆,增加支架 的抗风性;在用地面积一定的情况下,降低倾角可以提高装机容量 和发电量,增加收益。下面以甘肃某地区分布式电站为例,进行对 比分析。 通过软件计算当角度为35°时倾斜面上的年总辐射量最大。23°~37°倾斜面上年总辐射量变化见下图。 图1:不同角度下倾斜面上的年总辐射量 从上图可以看出,23°~37°倾斜面上年总辐射量变化曲线十分 平缓,也就是说最佳倾角附近倾斜面上的总辐射年总量相差很少。

该项目可利用土地面积有限,在这种情况下,分别对35°、30°、25°三个角度电站的装机容量、发电量、投资收益进行对比,结果如下: 图2:不同角度下电站装机容量、发电量、收益当光伏组件倾斜角度为35°时,电站装机容量4.0MW,年平均 发电量534万kW,融资前税前内部收益率12.64%;当倾斜角度为30°时,电站装机容量4.4MW,年平均发电量586万kW,融资前税 前内部收益率12.72%;当倾斜角度为25°时,电站装机容量5.5MW,年平均发电量586万kW,融资前税前内部收益率12.83%。 由此可见,与最佳倾角35°相比,25°收益更好。因此,最佳 只是说辐射量最大,对于电站整体收益未必最佳,不同项目应该根 据项目情况进行多方案对比,最终确定光伏阵列的安装角度。

最新光伏电站发电量计算方法

光伏电站发电量计算方法 本篇文章将以①理论发电量②系统预估实际年发电量③电站实际发电量三个方面给大家做介绍。Ps:本片文章以上海地区为例,其他地区可参照修改参数后结合实际情况做出估算对比。 (本文由光伏行业专业EPC——展宇光伏小编编写。 早于市场拥有300kw光伏组件技术的厂家,相对比较年轻但实力雄厚的企业。2017年“0630”累计装机量达到共600兆瓦。专注于光伏领域,做光伏行业技术的开发者,光伏行业的开拓者。在北极星太阳能光伏网、索比光伏网、OFweek等光伏行业专业网站上经常能看到的品牌和项目信息。具体项目举例介绍地面电站(滨海县5.5MW光伏电站扶贫项目)水面电站(滨海县13.5MW水面集中式光伏电站项目)厂房屋顶电站(江苏南通海安县3.22兆瓦分布式光伏电站)等。我们承诺为用户提供做安全的光伏电站,为广大太阳能光伏安装者提供安全的组件和安装服务。截止目前无一起安全事故。) ①理论发电量 1)1MW屋顶光伏电站所需电池板面积 一块235MW的多晶电池板面积1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积1.6368*4255.32=6965㎡ 2)年平均太阳辐射总量计算 所列数据(2月份以2 8天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5 5 5 5.3 3 9 MJ/(m 2·a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率=5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内

光伏电站理论发电量计算及影响因素

光伏电站理论发电量计算及影响因素 一、光伏电站理论发电量计算 1、太阳电池效率η 的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 其中,At 为太阳电池总面积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把At 换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。Pin 为单位面积的入射光功率。实际测量时是在标准条件下得到的:Pin 取标准光强:AM 1.5 条件,即在25℃下,Pin= 1000W / m 2。 2、光伏系统综合效率(PR) η 总=η 1×η2×η3 光伏阵列效率η1:是光伏阵列在1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。 3、理论发电量计算 太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为 1000W/m2的光照条件下,1000Wp 太阳电池1 小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率 等效峰值日照小时数h/d=(日太阳辐照量kW.h/m2/d)/1kW/m2 (日照时数:辐射强度≥120W/m2的时间长度)

光伏电站发电量计算方法[最新]

光伏电站发电量计算方法[最新] 1MW屋顶光伏电站年发电量计算 1)1MW屋顶光伏电站所需电池板面积 一块190MW的单晶电池板面积1.58*0.808=1.27664?,1MW需要 1000000/190=5263.2块电池,电池板总面积1.6368*5263.2=8614.8? 一块230MW的多晶电池板面积1.65*0.992=1.6368?,1MW需要 1000000/230=4347.83块电池,电池板总面积1.6368*4347.83=7116.53? 2)年平均太阳辐射总量计算 上海倾角等于当地纬度斜面上的太阳总辐射月平均日辐照量H 月份 1 2 3 4 5 6 H/MJ/(m??a) 12.236 14.397 16.381 18.158 18.961 18.383 月份 7 8 9 10 11 12 H/MJ/( m??a) 15.755 15.534 16.138 14.696 11.592 10.440 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采用表中所列数据(2月份以28天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5555.339 MJ/(m??a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率 单晶发电量=5555.339*8614.8*15% =7178720.2MJ=7178720.2*0.28 KWH=2010041.7KWH =201万度 多晶发电量=5555.339*7116.53*14.5% =5732536.8MJ=5732536.8*0.28KWH=1605110.3KWH =160.5万度 4)实际发电效率

相关文档
最新文档