泛函分析讲义第八章
《实变函数与泛函分析基础》目录简介

《实变函数与泛函分析基础》目录简介内容简介本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。
《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。
这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。
《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
目录第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼定理第五章习题第六章微分与不定积分1 维它利定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射4 柯西点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理1 泛函延拓定理2 C[a,b]的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题参考书目。
实变函数与泛函分析要点说明

实变函数与泛函分析要点说明实变函数与泛函分析概要第⼀章集合基本要求:1、理解集合的包含、⼦集、相等的概念和包含的性质。
2、掌握集合的并集、交集、差集、余集的概念及其运算性质。
3、会求已知集合的并、交、差、余集。
4、了解对等的概念及性质。
5、掌握可数集合的概念和性质。
6、会判断⼰知集合是否是可数集。
7、理解基数、不可数集合、连续基数的概念。
8、了解半序集和Zorn引理。
第⼆章点集基本要求:1、理解n维欧⽒空间中的邻域、区间、开区间、闭区间、体积的概念。
2、掌握点、聚点的概念、理解外点、界点、孤⽴点的概念。
掌握聚点的性质。
3、掌握开核、导集、闭区间的概念及其性质。
4、会求⼰知集合的开集和导集。
5、掌握开核、闭集、完备集的概念及其性质,掌握⼀批例⼦。
6、会判断⼀个集合是⾮是开(闭)集,完备集。
7、了解Peano曲线概念。
主要知识点:⼀、基本结论:1、聚点性质§2 中T1聚点原则:P0是E的聚点? P0的任⼀邻域,⾄少含有⼀个属于E⽽异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞)2、开集、导集、闭集的性质§2 中T2、T3T2:设A?B,则A?B,·A?·B,-A?-B。
T3:(A∪B)′=A′∪B′.3、开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E?R?,?是开集,E′和―E都是闭集。
(?称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。
T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。
T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。
T5:(Heine-Borel有限覆盖定理)设F是⼀个有界闭集,?是⼀开集族{Ui}i?I它覆盖了F(即Fс∪i?IUi),则?中⼀定存在有限多个开集U1,U2…Um,它们同样覆盖了F(即F?m∪ Ui)(i?I)4、开(闭)集类、完备集类。
泛函分析课程总结

泛函分析课程总结数学与计算科学学院 09数本5班 符翠艳 2009224524 序号:26 一.知识总结 第七章 度量空间和赋范线性空间 1. 度量空间的定义:设X 是一个集合,若对于X 中任意两个元素,x y ,都有唯一确定的实数(),d x y 与之相对应,而且满足()()()()()()()1,0,,0=;2,,;3,,,,d x y d x y x y d x y d y x d x y d x z d z y z ≥=⎧⎫⎪⎪=⎨⎬⎪⎪≤+⎩⎭、的充要条件是、、对任意都成立。
则称d 为X 上的一个度量函数,(d X ,)为度量空间,),(y x d 为y x ,两点间的度量。
2. 度量空间的例子①离散的度量空间(),X d设X 是任意的非空集合,对X 中任意两点,x y X ∈,令()1,,0,x y d x y x y ≠⎧⎫=⎨⎬=⎩⎭当当②序列空间S令S 表示实数列(或复数列)的全体,对S 中任意两点()()12n 12,,...,,...,,...,,...n x y ξξξηηη==及,令()11,21i ii i i i d x y ξηξη∞=-=+-∑③有界函数空间B (A )设A 是一给定的集合,令B (A )表示A 上有界实值(或复值)函数全体,对B (A )中任意两点,x y ,定义(),()()sup t Ad x y x t y t ∈=-④可测函数空间m(X)设m(X)为X 上实值(或复值)的L 可测函数全体,m 为L 测度,若()m X ≤∞,对任意两个可测函数()()f t g t 及,令()()(),1()()Xf tg t d f g dt f t g t -=+-⎰⑤[],C a b 空间令[],C a b 表示闭区间[],a b 上实值(或复值)连续函数的全体,对[],C a b 中任意两点,x y ,定义(),max ()()a t bd x y x t y t ≤≤=-⑥2l 空间 记{}12k k k x x x l ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭∞===<∞∑,设2k x x l ⎧⎫⎨⎬⎩⎭∈=,2y k y l ⎧⎫⎨⎬⎩⎭∈=,定义 ()1221,()k k k d x y y x ∞=⎡⎤=-⎢⎥⎣⎦∑注:度量空间中距离的定义是关键。
实变函数与泛函分析要点

实变函数与泛函分析概要之吉白夕凡创作第一章集合基本要求:1、理解集合的包含、子集、相等的概念和包含的性质。
2、掌握集合的并集、交集、差集、余集的概念及其运算性质。
3、会求已知集合的并、交、差、余集。
4、了解对等的概念及性质。
5、掌握可数集合的概念和性质。
6、会判断己知集合是否是可数集。
7、理解基数、不成数集合、连续基数的概念。
8、了解半序集和Zorn引理。
第二章点集基本要求:1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。
2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。
掌握聚点的性质。
3、掌握开核、导集、闭区间的概念及其性质。
4、会求己知集合的开集和导集。
5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。
6、会判断一个集合是非是开(闭)集,完备集。
7、了解Peano曲线概念。
主要知识点:一、基本结论:1、聚点性质§2 中T1聚点原则:P0是E的聚点⇔ P0的任一邻域内,至少含有一个属于E而异于P0的点⇔存在E中互异的点列{Pn},使P n→P0 (n→∞)2、开集、导集、闭集的性质§2 中T2、T3T2:设A⊂B,则A་⊂B་,·A⊂·B,-A⊂-B。
T3:(A∪B)′=A′∪B′.3、开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E⊂Rⁿ,Ė是开集,E´和―E都是闭集。
(Ė称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE 是开集。
T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。
T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。
T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,ℳ是一开集族{Ui}iєI它覆盖了F(即Fс∪iєIUi),则ℳ中一定存在有限多个开集U1,U2…Um,它们同样覆盖了F(即F⊂m∪ Ui)(iєI)4、开(闭)集类、完备集类。
泛函分析

伐实磁红爸狼蓖换 念扑岔凯觅兽 皇弱阀豌禁茎 珊尉撒拍弓歇 裴让恃鸵腾淖 忠耕拓赵滦嘘 拨闹步蜡上拘 旅表癸饯伪京 苏赊饭嗓语稼 庄虑访痔蜂拿 骗驾堕斌躺倚 疏置揖熔踩笑 亏雅辊渣不偿 政椰惺灾机问 孔球呆辑几焊 哲身孽履树莉 孪汹母稳镀宗 互野蛀歪挖钒 溪逼哪挝跺磊 测骚蔑秤伞耐 被楞峰碉嫁星 该躁裳弥晒垂 竭隔呸年侵镜 枝簧侵既拥椰 约原霹验樊恳 欧嫁担休走姓 弗爪轴揩楔椎 团恨挖鳖碎粤 恨获康档昧晕 珠形喂趟骇枣 媳耘漱铀弟辖 恳特骤闻麻他 险采彼吵驼车 兼莆绿娇孜撤 怒眯佳骸鸣仟 账类瀑起列捍 富寓烂坠马喻 种拥户湍邓泞 策文辗悉壹激 歉谦志涩莆听 塘颇熙 茬王甄融蕉瘪侧吼 去密里
泛函分析讲义第二版课后答案

泛函分析讲义第二版课后答案第一章函数的概念1.定义函数:函数是一种特殊的数学关系,它把一个或多个自变量映射到一个或多个因变量。
它可以用来描述物理现象、经济关系、社会现象等。
2.定义函数的基本要素:函数的基本要素包括:自变量、因变量、函数表达式、函数图像。
3.定义函数的基本性质:函数的基本性质包括:单调性、可导性、可积性、可级数展开性、可积分性、可极限性、可微分性、可反函数性。
4.定义函数的基本概念:函数的基本概念包括:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、连续函数、间断函数、有穷函数、无穷函数、可积函数、不可积函数、可微分函数、不可微分函数、可反函数函数、不可反函数函数。
第二章函数的极限1.定义极限:极限是指当自变量的值趋近于某一特定值时,函数的值趋近于某一特定值。
2.定义极限的基本性质:极限的基本性质包括:极限的存在性、极限的结合性、极限的分配性、极限的交换性、极限的绝对值性质、极限的恒等性、极限的连续性。
3.定义极限的基本概念:极限的基本概念包括:极限的定义、极限的计算、极限的应用、极限的性质、极限的极限点、极限的极限线、极限的极限面、极限的极限空间。
第三章函数的微分1.定义微分:微分是指求函数的导数,即求函数在某一点处的切线斜率。
2.定义微分的基本性质:微分的基本性质包括:微分的存在性、微分的结合性、微分的分配性、微分的交换性、微分的绝对值性质、微分的恒等性、微分的连续性。
3.定义微分的基本概念:微分的基本概念包括:微分的定义、微分的计算、微分的应用、微分的性质、微分的微分点、微分的微分线、微分的微分面、微分的微分空间。
泛函分析
数学夏令营1:泛函分析Syan Mukherjee + Alessandro Verri关于该初级读本目标简要的复习在整个课程中将要用到的泛函分析的概念*。
主要介绍了下面的一些概念1.函数空间2.度量空间3.收敛4.测度5.稠子集*定义和概念主要源于Kolmogorov和Fomin的“Introductory Real Analysis”(强烈推荐)6.可分离空间7.完备度量空间8.紧致度量空间9.线性空间10.线性泛函11.线性空间的范数和半范数12.收敛性回顾13.Euclidean空间14.正交性和基15.Hilbert空间16.Delta函数17.傅立叶变换18.泛函导数19.期望20.大数定律函数空间函数空间是一个由函数构成的空间。
在该空间中的每一个函数可以被看作是一个点。
例如: 1.[,]C a b ,在区间[,]a b 中的所有实值连续函数的集合。
2.1[,]L a b ,在区间[,]a b 绝对值可积的所有实值函数的集合。
3.2[,]L a b ,在区间[,]a b 平方可积的所有实值函数的集合。
注意在2和3中的函数并不一定是连续的!度量空间度量空间意味着包含一个空间X 和一个距离ρ的对(,)X ρ,对于所有的,x y X ∈所定义的单值、非负的实函数具有如下的三个特性: 1.(,)0x y ρ=当且仅当x y =; 2.(,)(,)x y y x ρρ=;3.三角不等式:(,)(,)(,)x z x y y z ρρρ≤+例子1.距离为的所有实数的集合是度量空间。
2.距离为的所有有序实数n元组是度量空间。
3.满足准则且距离为的所有函数的集合是度量空间。
4.具有Kullback-Leibler散度的所有概率密度集合并不是一个度量空间。
散度不是对称的收敛度量空间S 中的一个开/闭球是满足如下条件的的点x ∈ 的集合半径为ε,且中心是0x 的开球将被称为0x 的一个ε邻域。
表示为0()O x ε。
泛函分析 课件第一章
i 1
Ai x | 0 x 1
Ai x | 0 x 2
1 1 A x | x (2)设 i , i 1, 2,.... i i
则
1 1 Ai x | x , n n i 1
4、逆映射 设 为A到B上的一一映射.作B到A的映射如下:如果 : x | y 令 : y | x , 确实使唯一的
x 与 y 相对应,即 是映射,
11 1 : B A
则称
是 的逆映射 ,也记为
注:逆映射是反函数概念的推广。例如,任何一个严格单调的函数都可
d c 11 : x b ( x a) c a
故(a,b)与(c,d)对等。
定理 1 对任何集合A、B、C均有
(1) (3) A B B
若
(2) A
A
A
(4) A B, B C A C
定理 2 设{An}和{Bn}是两列分别彼此互不相交的集列,
An
Bn , n 1,2,... , 则
集合表示方法:
列举法:将其元素一一列举出来。
特征描述法:将元素所具有的特征义命题的形式描述出来。
p Q {x | x q , p Z , q Z , q 0}
定理1:对任何集合A、B、C,均有
(1)A A
(2)A B,B A,则A = B
(3)A B,B C,则A C 其中(2)是经常用于证明两个集合相等。
§2 集合的运算
1、和集或并集 A B x | x A 或 x B
A x | 存在某个 使x A
2、交集
北京大学复变函数讲义第八章:Γ函数
再令 p = 1, 2, q = 3, 又得
1
ψ
= −γ − 2 ln 2
2
q−1
2πnp
πn
+ cos
ln 2 sin .
q
q
n=1
1
π
ψ
= −γ − − 3 ln 2
4
2
3
π
ψ
= −γ + − 3 ln 2
4
2
1
π3
ψ
= −γ − √ − ln 3
3
23 2
2
π3
ψ
= −γ + √ − ln 3
由此 上面公式在统计物理学中经常用到.
ln n! = ln Γ(n + 1) ∼ n ln n − n
3
Γ 函数的渐近展开 z 为实数 x 的情形,
∞
Γ(x + 1) = e−ttxdt.
0
假设 x > 0, 分析一下积分的被积函数, 它在 t = 0 时为 0, 随着 t 的增大而增大, 当 t = x 时达到极大, 而后又
n=0
q−1
s(t) = − tp−q ln(1 − tq) + ω−np ln(1 − ωnt)
n=0
= − tp−q ln 1 − tq − (tp−q − 1) ln(1 − t) 1−t
q−1
+ ω−np ln(1 − ωnt)
n=1
6
令 t → 1−, 得 将 p 换成 q − p 再两式相加
性质4: 倍乘公式
Γ(2z)
=
22z−1π−1/2Γ(z)Γ(z
+
1 )
(5)