相似三角形的判定方法

合集下载

多种方法判定直角三角形相似

多种方法判定直角三角形相似

多种方法判定直角三角形相似
除了上述提到的判定方法,直角三角形相似的判定方法还有以下几种:
1.斜边和一条直角边对应成比例的两个直角三角形相似。

2.如果直角三角形的斜边上的高相等,那么这两个直角三角形相似。

3.如果直角三角形的两条直角边与另一个直角三角形相应的两条直角边分别
平行,那么这两个直角三角形相似。

4.直角三角形的两个锐角分别为α和β,如果α=β,那么这两个三角形相似。

5.如果两个直角三角形的两个角分别为α和β,且α+β=90°,那么这两个三角
形相似。

这些判定方法都是基于三角形相似的定义和性质推导出来的,可以根据具体情况选择合适的方法来判断两个直角三角形是否相似。

初二数学相似三角形判定方法

初二数学相似三角形判定方法

初二数学相似三角形判定方法相似三角形是初中数学学习中非常重要的概念,掌握相似三角形的判定方法对于解决三角形的性质和应用问题至关重要。

在本文中,将介绍三种常用的相似三角形判定方法。

一、AA判定法AA判定法是指如果两个三角形的对应角相等,则这两个三角形是相似的。

例如,如果在两个三角形ABC和DEF中,∠A = ∠D,∠B = ∠E,那么可以得出这两个三角形是相似的。

二、SAS判定法SAS判定法是指如果两个三角形的对应边的比例相等,并且夹角也相等,则这两个三角形是相似的。

例如,在两个三角形ABC和DEF中,如果边AB与边DE的比例和边AC与边DF的比例相等,并且∠B = ∠E,则可以得出这两个三角形是相似的。

三、直角三角形的判定法当两个三角形中有一个直角,且两个直角三角形的斜边相等时,这两个直角三角形是相似的。

例如,在两个直角三角形ABC和DEF中,如果∠C = 90°,∠F = 90°,且边AC = DE,则可以得出这两个直角三角形是相似的。

相似三角形的判定方法可以帮助我们更好地理解三角形的性质和应用。

了解相似三角形的特点,对于解决各种与三角形相关的问题非常有帮助。

在应用中,我们可以利用相似三角形的性质来求解未知长度、求解角度等。

需要注意的是,相似三角形判定方法只能用于判定两个三角形是否相似,并不能用于确定相似比例或者其他性质。

确定相似比例需要更多的条件或者其他的方法。

总结:本文介绍了三个常用的相似三角形判定方法,分别是AA判定法、SAS判定法和直角三角形的判定法。

了解这些方法可以在解决三角形问题时提供帮助,并且为后续的学习打下基础。

通过掌握相似三角形的判定方法,我们可以更准确地判断两个三角形是否相似,并能够应用相似三角形的性质解决实际问题。

在以后的学习中,可以进一步学习相似三角形的性质,如相似比例、面积比例等。

相似三角形作为初中数学的重要内容,在数学学习中扮演着重要的角色。

希望本文对初二学生理解相似三角形的判定方法有所帮助,为日后的学习打下扎实的基础。

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;知识点二、相似三角形的判定判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。

(2)顶角或底角对应相等的两个等腰三角形相似。

例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出AD AEBD CE=吗?请说明理由。

(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =例题精讲AEDBCABCD吗?说说你的理由.例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。

2分之3倍根号3 随练: 一、选择题1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )CADCBEF G F E DCBA。

相似三角形的判定复习

相似三角形的判定复习

综合训练
名师名题37页第12题
1.在平行四边形ABCD中,过点A作AE⊥BC, 垂足为E,连接DE,F为线段DE上一点,且 ∠AFE= ∠ B. 求证:(1)△ADF∽ △DEC (2)若AB=8,AD=6 3 ,AF= 4 3 ,求AE的长。
⌒ 2.如图,AB是⊙O 的直径,点E是AD上的一点,
C
B
基础训练
1.下列说法正确的是( A.相似形是全等形. B.全等形是相似形. C.不全等的图形不是相似形. D.不相似的图形可能是全等形. )
基础训练
2、在Rt △ABC 和Rt △A’B’C’中, ∠C=∠C’ =90°,下列条件中不能判定 这两个三角形相 似的是( ) A、 ∠A=55°,∠A’=35° B、 AC=9,BC=12,A’C’=6 ,B’C’=8 C 、 AC=3,BC=4,A’C’ =6, A’B’ =8 D、 AB=10,AC=8, A’B’ =15,B’C’=9
基础训练
3.在△ABC 中,D是AB的中点,且DE∥BC,
DE 求 的值。 BC
基础训练
4、如图,在△ABC中,AC>AB, D在AC边上 (点D不与A、C重合),连接BD.若再增加个 条件就能使△ABD∽△ACB,则这个条件可以 是 .
基础训练
5.如图,△ABC 中,AB=9,AC=6,点E在AB上, 且AE=3,点F在AC上,连接EF,若△AEF与 △ABC 相似,则AF= .
△ABC∽△A'B'C'
A
方法5:两角对应相等,两三角形相似。 ∠A= ∠A' ∠B= ∠B' △ABC∽△A'B'C'
B
C
直角三角形相似的判定: 斜边和一对直角边对应成比 例,两直角三角形相似。

《怎样判定三角形相似》 知识清单

《怎样判定三角形相似》 知识清单

《怎样判定三角形相似》知识清单三角形相似是初中数学中的重要知识点,在解决几何问题中经常会用到。

下面我们来详细了解一下怎样判定三角形相似。

一、定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似。

二、判定方法1、两角分别相等的两个三角形相似这是判定三角形相似最常用的方法之一。

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',那么三角形 ABC 相似于三角形 A'B'C'。

2、两边成比例且夹角相等的两个三角形相似当两个三角形的两组对应边的比相等,并且它们的夹角相等时,这两个三角形相似。

比如,在三角形 ABC 和三角形 A'B'C'中,如果 AB / A'B' = AC / A'C',且∠A =∠A',那么三角形 ABC 相似于三角形 A'B'C'。

3、三边成比例的两个三角形相似如果两个三角形的三条边对应成比例,那么这两个三角形相似。

假设在三角形 ABC 和三角形 A'B'C'中,AB / A'B' = BC / B'C' =AC / A'C',则三角形 ABC 相似于三角形 A'B'C'。

三、常见的相似三角形模型1、“A”字型在图形中,如果有一条直线平行于三角形的一边,与另外两边或其延长线相交,所构成的三角形与原三角形相似。

例如,在三角形 ABC 中,DE 平行于 BC,交 AB、AC 于 D、E 两点,那么三角形 ADE 相似于三角形 ABC。

2、“8”字型在图形中,如果两个三角形的对顶角相等,且两组对边分别交叉成比例,那么这两个三角形相似。

《怎样判定三角形相似》 知识清单

《怎样判定三角形相似》 知识清单

《怎样判定三角形相似》知识清单在数学的几何世界中,三角形相似是一个重要的概念。

判断三角形相似有着特定的方法和规律,下面我们就来详细探讨一下。

一、定义法如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似。

这是三角形相似最基本的定义,也是我们判断相似的根本依据。

二、平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似这是一个常见且实用的判定方法。

例如,在三角形 ABC 中,DE 平行于 BC 且与 AB、AC 分别相交于 D、E 两点,那么三角形 ADE 就与三角形 ABC 相似。

三、三边成比例的两个三角形相似假设三角形 ABC 和三角形 DEF 中,AB/DE = BC/EF = AC/DF,那么三角形 ABC 相似于三角形 DEF。

四、两边成比例且夹角相等的两个三角形相似比如在三角形 MNP 和三角形 QRS 中,MN/QR = NP/RS,且∠M=∠Q,那么这两个三角形相似。

这里需要特别注意的是,必须是夹角相等,如果不是夹角相等,就不能判定相似。

五、两角分别相等的两个三角形相似若在三角形 XYZ 和三角形 UVW 中,∠X =∠U,∠Y =∠V,那么三角形 XYZ 相似于三角形 UVW。

这个判定方法应用较为广泛,因为角的大小相对边的长度更容易测量和判断。

六、直角三角形相似的判定1、斜边和一条直角边成比例的两个直角三角形相似对于直角三角形 ABC 和直角三角形 DEF,如果斜边 AC/斜边 DF=直角边 BC/直角边 EF,那么这两个直角三角形相似。

2、如果两个直角三角形的两组直角边成比例,那么这两个直角三角形相似例如,在直角三角形 GHI 和直角三角形 JKL 中,直角边 GH/JK =直角边 HI/KL,那么这两个直角三角形相似。

在实际应用中,我们需要根据具体的条件选择合适的判定方法。

有时候可能需要综合运用多种方法来确定三角形是否相似。

为了更好地理解和掌握三角形相似的判定,我们可以通过一些具体的例子来加深印象。

相似三角形的判定方法

相似三角形的判定方法

(一)类似三角形之杨若古兰创作1、定义:对应角相等,对应边成比例的两个三角形,叫做类似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做类似三角形,即定义中的两个条件,缺一不成;②类似三角形的特征:外形一样,但大小纷歧定相等;③类似三角形的定义,可得类似三角形的基赋性质:对应角相等,对应边成比例.2、类似三角形对应边的比叫做类似比.①全等三角形必定是类似三角形,其类似比k=1.所以全等三角形是类似三角形的特例.其区别在于全等请求对应边相等,而类似请求对应边成比例.②类似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即类似比为k,则△A′B′C′∽△ABC的类似比,当它们全等时,才有k=k′=1.③类似比是一个主要概念,后继进修时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助类似三角形可观察得出.3、如果两个边数不异的多边形的对应角相等,对应边成比例,那么这两个多边形叫做类似多边形.4、类似三角形的豫备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形类似.①定理的基本图形有三种情况,如图其符号说话:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用类似三角形定义推导出来的三角形类似的判定定理.它不单本人有着广泛的利用,同时也是证实类似三角形三个判定定理的基础,故把它称为“豫备定理”;③有了豫备定理后,在解题时不单要想到“见平行,想比例”,还要想到“见平行,想类似”.(二)类似三角形的判定1、类似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形类似.可简单说成:两角对应相等,两三角形类似.例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC ,求证:△ABC ∽△DEF. 判定定理2的夹角相等,那么这两个三角形类似.简单说成:两边对应成比例且夹角相等,两三角形类似. 例1、△ABC 中,点D 在AB 上,如果AC 2=AD •AB ,那么△ACD 与△ABC 类似吗?说说你的理由.例2、如图,点C 、D 在线段AB 上,△PCD 是等边三角形.(1)当AC 、CD 、DB 满足如何的关系时,△ACP ∽△PDB ?(2)当△ACP ∽△PDB 时,求∠APB 的度数.判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形类似.简单说成:三边对应成比例,两三角形类似.强调:①有平行线时,用豫备定理;②已有一对对应角相等(包含隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形类似的判定:A B CDE F 第4斜边和一条直角边对应成比例,两直角三角形类似.例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.例2、如图,AB⊥BD,CD⊥BD,P为BD上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P点在BD上由B点向D点活动时,PB的长满足什么条件,可以使图中的两个三角形类似?请说明理由.例3、如图AD⊥AB于D,CE⊥AB于E交AB于F,则图中类似三角形的对数有对.例4、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的耽误线交于一点N.求证:(1)△AME∽△NMD(2)ND2=NC·NB①因为直角三角形有一个角为直角,是以,在判定两个直角三角形类似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,普通不必判定定理3判定两个直角三角形类似;②如图是一个十分主要的类似三角形的基本图形,图中的三角形,可称为“母子类似三角形”,其利用较为广泛.(直角三角形被斜边上的高分成的两个直三角形的与原三角形类似)③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.④弥补射影定理.特殊情况:第一:顶角(或底角)相等的两个等腰三角形类似.第二:腰和底对应成比例的两个等腰三角形类似.第三:有一个锐角相等的两个直角三角形类似.第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形类似.第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形类似.三角形类似的判定方法与全等的判定方法的联系列表如下:二、重点难点疑点突破1、寻觅类似三角形对应元素的方法与技巧准确寻觅类似三角形的对应元素是分析与解决类似三角构成绩的一项基本功.通常有以下几种方法:(1)类似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;类似三角形中最大的角(或最小的角)必定是对应角;类似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)类似三角形中,一对最长的边(或最短的边)必定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.(3)对应字母要写在对应的地位上,可直接得出对应边,对应角.2、罕见的类似三角形的基本图形:进修三角形类似的判定,要与三角形全等的判定比拟较,把证实三角形全等的思想方法迁移到类似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对类似三角形的判定思路要善于总结,构成一整套完好的判定方法.如:(1)“平行线型”类似三角形,基本图形见前图.“见平行,想类似”是解这类题的基本思路;(2)“订交线型”类似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“扭转型”类似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△ADE绕点A扭转某一角度而构成的.从基本图形入手能较顺利地找到解决成绩的思路和方法,能帮忙我们尽快地找到添加的辅助线.以上“平行线型”是罕见的,这类类似三角形的对应元素有较明显的顺序,“订交线型”识图较困难,解题时要留意从复杂图形平分解或添加辅助线构造出基本图形.练习:1、如图,以下每个图形中,存不存在类似的三角形,如果存在,把它们用字母暗示出来,并简要说明识此外根据.2、如图27-2-1-12,在大小为4×4的正方形方格中,△ABC的顶点A,B,C在单位正方形的顶点上,请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(类似比不为1),且点A1,B1,C1都在单位正方形的顶点上.图27-2-1-121、寻觅类似三角形的个数例1、(吉林)将两块完好不异的等腰直角三角形摆成如图的模样,假设图形中所有点、线都在同一平面内,回答以下成绩:(1)图中共有多少个三角形?把它们逐个写出来;(2)图中有类似(不包含全等)三角形吗?如果有,就把它们逐个写出来.如图,△ABC中,点D、E分别在边AB、AC上,连接并耽误DE交BC的耽误线于点F,连接DC、BE,若∠BDE +∠BCE=180°.⑴写出图中3对类似三角形(留意:不得添加字母和线)⑵请在你所找出的类似三角形中拔取1对,说明它们类似的理由.1、如图,在正方形网格上有6-⑥中与①类似的是.2、画符合请求的类似三角形例1、(上海)在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(类似比不为1),且点A1、B1、C1都在单位正方形的顶点上.3、类似三角形的判定例1、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有类似三角形,并证实.例2、如图,在△ABC中,DF经过△ABC的重心G,且DF∥AB,FEDBACDE∥AC,连接EF,如果BC=5,AC=2AB.求证:△DEF∽△ABC4、直角三角形中类似的判定例1、如图,△ABC中,∠BAC=90°,AD⊥BC于D,DE为AC的中线,耽误线交AB的耽误于F,求证:AB·AF=AC·DF.例2、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB 于D,E是AC上一点,CF⊥BE于 F.求证:EB·DF=AE·DB5、类似三角形的综合应用例1、如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC耽误线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.例2、如图,AD是△ABC的角平分线,BE⊥AD于E,CF ⊥AD于F.求证:.例3、如图,在正方形ABCD中,M、N分别是AB、BC上的点,BM=BN,BP⊥MC于点P.求证: PN⊥PD.6、类似三角形中辅助线的添加(1)、作垂线3. 如图从ABCD顶点C向AB和AD的耽误线引垂线CE和CF,垂足分别为E、F(2)、作耽误线中,CD为斜边AB上的高,E为例1、如图,CD的中点,AE的耽误线交BC于F,证:(3)、作中线AB⊥AC,AE⊥BC于E,D在AC例1、边上,若BD=DC=EC=1,求AC.练习:AC=BC,P是AB上一点,Q是1PC上一点(不是中点),MN过Q且MN⊥CP,交AC、BC于M、N2、由?3.(2009年湖北武汉)如图1(1(22值;(3值.B B A AC ED DE C OF 图1 图2 F。

相似三角形的定义和判定方法

相似三角形的定义和判定方法

相似三角形的定义和判定方法相似三角形是指两个三角形的对应角度相等,且对应边的比值相等的情况下成为相似三角形。

相似三角形的判定方法包括角-角-角(AAA)相似定理、边-边-边(SSS)相似定理和边-角-边(SAS)相似定理。

下面将依次介绍相似三角形的定义和判定方法。

1. 相似三角形的定义相似三角形的定义是指两个三角形的对应角度相等,且对应的边长成比例。

具体而言,对于三角形ABC和DEF来说,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,则称三角形ABC与三角形DEF相似。

2. 角-角-角(AAA)相似定理角-角-角(AAA)相似定理是指如果两个三角形的对应角度相等,则这两个三角形是相似的。

根据该定理,如果∠A=∠D,∠B=∠E,∠C=∠F,则可以判定三角形ABC与三角形DEF是相似的。

3. 边-边-边(SSS)相似定理边-边-边(SSS)相似定理是指如果两个三角形的对应边长成比例,则这两个三角形是相似的。

根据该定理,如果AB/DE=BC/EF=AC/DF,则可以判定三角形ABC与三角形DEF是相似的。

4. 边-角-边(SAS)相似定理边-角-边(SAS)相似定理是指如果两个三角形的两条边分别成比例,且夹角相等,则这两个三角形是相似的。

根据该定理,如果AB/DE=AC/DF,且∠A=∠D,则可以判定三角形ABC与三角形DEF是相似的。

总结:相似三角形是指两个三角形的对应角度相等,且对应边的比值相等的情况下成为相似三角形。

相似三角形的判定方法包括角-角-角(AAA)相似定理、边-边-边(SSS)相似定理和边-角-边(SAS)相似定理。

通过这些判定方法,我们可以确定两个三角形是否相似,并且进一步分析它们的性质和关系。

相似三角形在几何学中具有重要的应用,可以用于解决各种问题,如比例求解、测距等。

以上是关于相似三角形的定义和判定方法的介绍。

相似三角形的几何性质和应用领域涉及广泛,深入理解和掌握相似三角形的定义和判定方法可以为几何学的研究和实际问题的解决提供有力的工具和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△

A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE;

(双A型)

②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到 “见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

例2、如图,E、F分别是△ABC的边BC上的点,DE∥AB,DF∥AC , 求证:△ABC∽△DEF.

A

B C D

E F 第

判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。 简单说成:两边对应成比例且夹角相等,两三角形相似. 例1、△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗说说你的理由.

例2、如图,点C、D在线段AB上,△PCD是等边三角形。 (1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB (2)当△ACP∽△PDB时,求∠APB的度数。 判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。 简单说成:三边对应成比例,两三角形相似.

强调: ①有平行线时,用预备定理; ②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或

不相似,请说明理由。,求出相似比;如果它们相似吗?如果相似,和如图在正方形网格上有222111ACBACB判定定理2; ③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等. 2、直角三角形相似的判定: 斜边和一条直角边对应成比例,两直角三角形相似. 例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.

例2、如图,AB⊥BD,CD⊥BD,P为BD上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P点在BD上由B点向D点运动时,PB的长满足什么条件,可以使图中的两个三角形相似请说明理由.

例3、如图AD⊥AB于D,CE⊥AB于E交AB于F,则图中相似三角形的对数有 对。

EDF

A

BC 例4、已知:AD是Rt△ABC中∠A的平分线,∠C=90°, EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。 求证:(1)△AME∽△NMD (2)ND2=NC·NB

①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似; ②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.(直角三角形被斜边上的高分成的两个直三角形的与原三角形相似) ③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD. ④补充射影定理。

特殊情况: 第一:顶角(或底角)相等的两个等腰三角形相似。 第二:腰和底对应成比例的两个等腰三角形相似。 第三:有一个锐角相等的两个直角三角形相似。 第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。 第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形相似。 三角形相似的判定方法与全等的判定方法的联系列表如下: 类型 斜三角形 直角三角形 全等三角形的判定 SAS SSS AAS(ASA) HL

相似三角形 的判定 两边对应成比例夹角相等 三边对应成比例

两角对应相等 一条直角边与斜边对应成比例

二、重点难点疑点突破 1、寻找相似三角形对应元素的方法与技巧 正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法: (1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边; (2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角. (3)对应字母要写在对应的位置上,可直接得出对应边,对应角。 2、常见的相似三角形的基本图形: 学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:

(1)“平行线型”相似三角形,基本图形

ABC

DEABC

D

DABC

A

BCDED

A

BC

E见前图.“见平行,想相似”是解这类题的基本思路; (2)“相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路; (3)“旋转型”相似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△ADE绕点A旋转某一角度而形成的.

从基本图形入手能较顺利地找到解决问题的思路和方法,能帮助我们尽快地找到添加的辅助线.以上“平行线型”是常见的,这类相似三角形的对应元素有较明显的顺序,“相交线型”识图较困难,解题时要注意从复杂图形中分解或添加辅助线构造出基本图形. 练习:1、如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据。 2、如图27-2-1-12,在大小为4×4的正方形方格中,△ABC的顶点A,B,C在单位正方形的顶点上,请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(相似比不为1),且点A1,B1,C1都在单位正方形的顶点上.

图27-2-1-12 1、寻找相似三角形的个数 例1、(吉林)将两块完全相同的等腰直角三角形摆成如图的样子,假设图形中所有点、线都在同一平面内,回答下列问题: (1)图中共有多少个三角形把它们一一写出来; (2)图中有相似(不包括全等)三角形吗如果有,就把它们一一写出来.

如图,△ABC中,点D、E分别在边AB、AC上,连接并延长DE交BC的延长线于点F,连接DC、BE,若∠BDE+∠BCE=180°。⑴写出图中3对相似三角形(注意:不得添加字母和线)⑵请在你所找出的相似三角形中选取1对,说明它们相似的理由。

FEDB

A

C

相关文档
最新文档