指数函数与对数函数专项练习(含答案)
高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析一、选择题1. 函数 y = 2^x 的反函数是()A. y = log2(x)B. y = log(x)C. y = log2(x+1)D. y = log2(x-1)答案:A解析:由指数函数与对数函数的关系,我们知道指数函数y = 2^x 的反函数是对数函数 y = log2(x)。
因此,选项A正确。
2. 函数 y = log3(x) 的定义域是()A. x > 0B. x ≥ 1C. x < 0D. x ≤ 1答案:A解析:对数函数 y = log3(x) 的定义域是 x > 0,因为对数函数要求真数大于0。
所以选项A正确。
二、填空题1. 函数 y = 3^x 在 x = 2 时的函数值是________。
答案:9解析:将 x = 2 代入函数 y = 3^x,得到 y = 3^2 = 9。
2. 函数 y = log5(x) 在 x = 25 时的函数值是________。
答案:2解析:将 x = 25 代入函数 y = log5(x),得到 y =log5(25) = 2。
三、解答题1. 已知函数 y = 2^x 和 y = log2(x),求它们的交点坐标。
解析:为了求出两个函数的交点坐标,我们可以将两个函数相等,即:2^x = log2(x)对上式两边取以2为底的对数,得到:log2(2^x) = log2(log2(x))x = log2(log2(x))这是一个关于 x 的方程,我们可以通过换元法求解。
设t = log2(x),则原方程可化为:t = log2(t)2^t = t这是一个二次方程,我们可以通过解二次方程的方法求解。
将方程两边移项,得到:2^t - t = 0设 f(t) = 2^t - t,求导得到 f'(t) = 2^t ln(2) - 1。
令 f'(t) = 0,解得 t = log2(ln(2))。
指数函数与对数运算测试题(附答案)

指数函数与对数运算测试题 班级 姓名 得分1、21-⎡⎤⎢⎥⎣⎦等于( )A 、2B 、1C 、D 、122、设全集为R ,且{|0}A x =≤,22{|1010}x xB x -==,则()R A B= ð( )A 、{2}B 、{—1}C 、{x|x ≤2}D 、∅3、函数()f x = )A 、(,0]-∞B 、[0,)+∞C 、(,0)-∞D 、(,)-∞+∞4、已知对不同的a 值,函数1()2(01)x f x a a a -=+>≠,且的图象恒过定点P ,则P 点的坐标是( ) A 、()0,3 B 、()0,2 C 、()1,3 D 、()1,25、函数1()2y = )A 、1[1,]2- B 、(,1]-∞- C 、[2,)+∞ D 、1[,2]26、已知lg 2,lg 3a b ==,则lg 12lg 15等于( )A 、21a b a b+++ B 、21a b a b+++ C 、21a b a b+-+ D 、21a b a b+-+7、已知2lg(2)lg lg x y x y -=+,则xy的值为 ( ) A 、1 B 、4 C 、1或4 D 、4或—18、函数xy a =(a >1)的图象是( b )9、若221333111(),(),()522a b c ===,则a ,b ,c 的大小关系是 ( )A 、a>b>cB 、c>b>aC 、a>c>bD 、b>a>c10、已知函数()f x 的定义域是(0,1),那么(2)xf 的定义域是( ) A.(0,1) B.(21,1) C.(-∞,0) D.(0,+∞)11、若集合A ={y | y=2x , x ∈R } , B = {y | y=x 2 , x ∈R } , 则( )A B B.A A 、2a B C 、二、填空题(4⨯5‘)1、点(2,1)与(1,2)在函数()2ax b f x +=的图象上,则()f x 的解析式为 22x -+2、求函数11(),[0,2]3x y x -=∈的值域是 [1/3,3]3、已知()f x 是奇函数,且当x>0时,()10x f x =,则x<0时,()f x = 10x --4、若集合{}{},,lg()0,,x xy xy x y =,则228log ()x y += 1/3三、解答题(7⨯10‘)1、计算(1)122(11)]-+- ; (2)4912log 3log 2log ⋅-。
(完整版)指数函数对数函数专练习题(含答案).docx

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况变化对图象的影响指数函数函数且叫做指数函数图象过定点,即当时,.非奇非偶在上是增函数在上是减函数在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小 .对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称定义函数对数函数且叫做对数函数图象定义域值域过定点奇偶性图象过定点,即当非奇非偶时,.单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,看图象,逐渐减小 .逐渐增大;在第四象限内,从顺时针方向指数函数习题一、选择题aa ≤ b,则函数 f ( x ) =1?2x 的图象大致为 ()1.定义运算 a ?b =>b a b2.函数 f ( x ) = x 2-bx + c 满足 f (1 + x ) =f (1 - x ) 且 f (0) =3,则 f ( b x ) 与 f ( c x ) 的大小关系是()xxA . f ( b ) ≤ f ( c ) x xB . f ( b ) ≥ f ( c )xxC . f ( b )> f ( c )D .大小关系随 x 的不同而不同3.函数 y = |2 x - 1| 在区间A . ( - 1,+∞ )C . ( - 1,1)( k - 1, k + 1) 内不单调,则 k 的取值范围是 ()B . ( -∞, 1)D . (0,2)4.设函数 f ( x ) =ln [( x -1)(2 -x)] 的定义域是 ,函数 ( ) = lg(x - 2x -1) 的定义域是 ,Ag xaB若 ?,则正数a 的取值范围 ()ABA . a >3B . a ≥ 3C . a > 5D . a ≥ 5.已知函数 f (x = 3- a x -3, x ≤ 7,若数列 { a n 满足 a n = f (n )(n ∈ * ,且 {a n }是递5 ) a x - 6, x >7. } N) 增数列,则实数a 的取值范围是 ()A . [ 9, 3)B . ( 9, 3) 44C . (2,3)D . (1,3)2x16.已知 a >0 且 a ≠ 1,f ( x ) = x - a ,当 x ∈ ( - 1,1) 时,均有 f ( x )< 2,则实数 a 的取值范围 是( )1 1 A . (0 , 2] ∪ [2 ,+∞ ) B . [ 4, 1) ∪ (1,4]11C . [ 2, 1) ∪ (1,2]D . (0 , 4) ∪ [4 ,+∞ )二、填空题xa7.函数 y = a ( a >0,且 a ≠ 1) 在 [1,2] 上的最大值比最小值大 2,则 a 的值是 ________.8.若曲线 | y | = 2 x + 1 与直线 y =b 没有公共点,则b 的取值范围是 ________.| x|的定义域为9. (2011 ·滨州模拟 ) 定义:区间 [x 1,x 2 ]( x 1<x 2) 的长度为 x 2- x 1. 已知函数 y = 2 [a , b] ,值域为 [1,2] ,则区间 [a , b] 的长度的最大值与最小值的差为 ________.三、解答题10.求函数y=2x2 3x 4 的定义域、值域和单调区间.11.(2011 ·银川模拟 ) 若函数y=a2x+ 2a x-1( a>0 且a≠ 1) 在x∈ [- 1,1]上的最大值为14,求a 的值.12.已知函数f (x) = 3x,(a+ 2) = 18, (x) =λ·3ax-4x的定义域为 [0,1] .f g(1)求 a 的值;(2) 若函数g( x) 在区间 [0,1] 上是单调递减函数,求实数λ的取值范围.1. 解析:由? = a a≤ b x2x x≤0,b a>b x>0 .1答案: A2. 解析:∵f (1 +x) =f (1 -x) ,∴f ( x) 的对称轴为直线x=1,由此得 b=2.又 f (0)=3,∴c=3.∴f ( x)在(-∞,1)上递减,在(1,+∞)上递增.x≥2x≥ 1,∴ (3 x) ≥(2 x) .若 x≥0,则3f f若 x<0,则3x<2x<1,∴f (3x)> f (2x).∴f (3x)≥ f (2x).答案: A3.解析:由于函数 y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间 ( k- 1,k+ 1) 内不单调,所以有答案: Ck-1<0<k+1,解得-1<k<1.4.解析:由题意得: A=(1,2)x x>1x x>1在(1,2)上恒成立,即,a- 2且 a>2,由 A? B知 a- 2x x上恒成立,令x x xln a-2xln2>0 ,所以函数a-2 - 1>0 在 (1,2)u( x)=a- 2- 1,则u′( x) =au ( x ) 在 (1,2) 上单调递增,则 u ( x )> u (1) = a - 3,即 a ≥ 3.答案: B*f ( n ) 为增函数,5. 解析: 数列 { a } 满足 a = f ( n )( n ∈ N ) ,则函数nna >18- 6- ) × 7- 3,所以 3- a >0注意 a>(3,解得 2<a <3.aa8-6> 3- a × 7-3答案: C1 2x1 21 x x21的图象,6. 解析: f ( x )<? x -a < ? x - <a ,考查函数 y = a与 y =x - 2222当 a >1 时,必有 a-1≥1,即 1<a ≤ 2,21 1当 0<a <1 时,必有 a ≥ ,即 ≤a <1,2 2 1 综上, 2≤ a <1 或 1<a ≤ 2. 答案: C7. 解析: 当 a >1 时, y x在 [1,2] 上单调递增,故 2a3x= a a - a = ,得 a = . 当 0<a <1 时, y = a2 22a在 [1,2] 上单调递减,故 a -a = 2,得 a = 2. 故 a =2或 2.1131 3答案: 2或28. 解析: 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.x+1 与直线 y = b 的图象如图所示,由图象可得:如果x+ 1 与直线 y = b曲线 | y | = 2 | y | = 2没有公共点,则 b 应满足的条件是 b ∈ [- 1,1] .答案: [- 1,1]9. 解析: 如图满足条件的区间 [a , b] ,当 a =- 1, b = 0 或 a = 0, b = 1 时区间长度最小,最小值为 1,当 a =- 1,b = 1 时区间长度最大,最大值为2,故其差为 1.答案: 110. 解: 要使函数有意义,则只需- x 2-3x + 4≥ 0,即 x 2+ 3x -4≤ 0,解得- 4≤ x ≤ 1.∴函数的定义域为 { x | -4≤ x ≤ 1} .223225 令 t =- x - 3x + 4,则 t =- x - 3x + 4=- ( x + ) +4,2253∴当-4≤ x ≤ 1 时, t max = 4 ,此时 x =- 2, t min = 0,此时 x =- 4 或 x =1.∴0≤t ≤ 25 . ∴0≤ -x 2- 3x + 4≤ 5 .4 2∴函数 y = ( 1)x 23 x4的值域为 [ 2 , 1] .8223 225由 t =- x - 3x + 4=- ( x + )+4( - 4≤ x ≤ 1) 可知,23当- 4≤ x ≤- 2时, t 是增函数,3当- 2≤ x ≤1 时, t 是减函数.根据复合函数的单调性知:y = ( 1 )x 23 x 4在 [ - 4,- 3 3] 上是减函数,在 [ - ,1] 上是增函数.22 233∴函数的单调增区间是 [ - 2, 1] ,单调减区间是 [ - 4,- 2] . 11. 解: 令x22tt >0y= t+ 2t1= ( t+ 1)2,其对称轴为t =- 1.该二次函数a = ,∴ ,则--在[ - 1,+ ∞ ) 上是增函数.x12①若 a >1,∵x ∈ [ - 1,1] ,∴t = a ∈ [ a , a ] ,故当 t = a ,即 x =1 时, y max =a + 2a - 1=14,解得 a = 3( a =- 5 舍去 ) .②若 0<a <1,∵x ∈ [ - 1,1] ,∴ = x∈1 1=-时,a [ a , ] ,故当 t = ,即 1t a ax12y max = (a + 1) - 2= 14.11∴a =3或- 5( 舍去 ) .1综上可得 a = 3 或 3.12. 解: 法一: (1) 由已知得 a2 aa =log 32.3 += 18? 3 = 2?(2) 此时 g ( x ) = λ·2x - 4 x ,设 0≤ x 1<x 2≤ 1,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以 g ( x ) - g ( x ) = (2 x - 2x )( λ- 2x - 2x )>0 恒成立,即 λ<2x + 2x 恒成立.1 2 1 2 2 1 2 1由于 2x 2+ 2x 1>2 + 2 = 2,所以实数 λ的取值范围是λ≤ 2.法二: (1) 同法一.(2) 此时 g ( x ) = λ·2x - 4x ,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以有 g ′( x ) = λln2 ·2x - ln4 ·4x = ln2 [- 2 ·(2x )2+ λ·2x] ≤0 成立.x2 设 2 = u ∈ [1,2] ,上式成立等价于-2u+ λu ≤0 恒成立.因为 u ∈ [1,2] ,只需 λ≤2u 恒成立,所以实数 λ的取值范围是λ≤ 2.对数与对数函数同步练习一、选择题1、已知 3a2 ,那么 log3 8 2log 3 6 用 a 表示是()A 、 a 2B 、 5a2C 、 3a (1 a)2D 、 3a a 22、 2log a (M 2N ) log a Mlog a N ,则M的值为()A 、1NB 、4C 、1D 、 4 或 1413 、 已 知 x 2 y 2 1, x0, y 0 , 且 log a (1 x) m,log a n,则 log a y 等 于1 x()A 、 m nB 、 m nC 、 1m nD 、 1m n224、如果方程 lg 2 x (lg5lg 7)lgx lg5 glg 7 0 的两根是 ,,则 g的值是()A 、 lg5 glg 7B 、 lg35C 、 35D 、13515、已知 log 7[log 3 (log 2 x)] 0,那么 x2等于( )A 、1B 、13 C 、1D 、1322 2336、函数 ylg2 1 的图像关于()1 xA 、 x 轴对称B 、 y 轴对称C 、原点对称D 、直线 yx 对称7、函数 ylog (2 x 1) 3x2 的定义域是()A 、 2,1 U 1,B 、 1,1 U 1,32C 、 2,D 、 1,328、函数 ylog 1 (x 2 6x17) 的值域是()2A 、 RB 、 8,C 、, 3D 、 3,9、若 log m 9 log n 9 0 ,那么 m, n 满足的条件是( )A 、 m n 1B 、 n m 1C 、 0 n m 1D 、 0 m n 110、 log a 2 1,则 a 的取值范围是()3A 、 0, 2U 1,B 、 2,C 、 2,1D 、 0, 2U 2,3333 311、下列函数中,在 0,2 上为增函数的是()A 、 ylog 1 ( x1)B 、 y log 2 x 2 12C 、 ylog 2 1D 、 ylog 1 ( x 2 4x 5)x212、已知 g( x) log a x+1 ( a 0且a 1) 在 10, 上有 g( x)0 ,则 f ( x)a x 1 是( )A 、在 ,0上是增加的 B 、在 ,0 上是减少的C 、在, 1 上是增加的D 、在,0 上是减少的二、填空题13、若 log a 2 m,log a 3 n, a 2 m n 。
人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。
人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷含答案解析(11)

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷(共22题)一、选择题(共10题)1.设全集为R,函数f(x)=0√2−x的定义域为M,则∁RM=( )A.{x∣ x≥2}B.{x∣ x<2且x≠−1}C.{x∣ x≥2或x=−1}D.{x∣ x>2或x=−1}2.设α∈{−1,1,12,3},则使幂函数y=xα的定义域为R且为奇函数的所有α值为( ) A.1,3B.−1,1C.−1,3D.−1,1,33.若函数y=x2+bx+c(x∈[0,+∞))是单调函数,则实数b的取值范围是( )A.b≥0B.b≤0C.b>0D.b<04.如果函数f(x)=12(m−2)x2+(n−8)x+1(m≥0,n≥0)在区间[12,2]上单调递减,则mn的最大值为( )A.16B.18C.25D.8125.已知定义在(0,+∞)上的函数f(x)为增函数,且f(x)⋅f(f(x)+1x)=1,则f(1)等于( )A.1+√52B.1−√52C.1+√52或1−√52D.√56.定义在R上的函数f(x)满足:f(x−2)的对称轴为x=2,f(x+1)=4f(x)(f(x)≠0),且f(x)在区间(1,2)上单调递增,已知α,β是钝角三角形中的两锐角,则f(sinα)和f(cosβ)的大小关系是( )A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.以上情况均有可能7.已知函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,下列说法一定正确的是( )A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数8.已知函数y=f(x)的定义域为[−6,1],则函数g(x)=f(2x+1)x+2的定义域是( ) A.(−∞,−2)∪(−2,3]B.[−11,3]C.[−72,−2]D.[−72,−2)∪(−2,0]9.已知R上的奇函数f(x)在区间(−∞,0)上单调递增,且f(−2)=0,则不等式f(x)≤0的解集为( )A.[−2,2]B.(−∞,−2]∪[0,2]C.(−∞,−2]∪[2,+∞)D.[−2,0]∪[2,+∞)10.已知函数f(x)=−x2+4x+a(x∈[0,1]),若f(x)有最小值−2,则f(x)的最大值为( )A.−1B.0C.1D.2二、填空题(共6题)11.在平面直角坐标系xOy中,对于点A(a,b),若函数y=f(x)满足:∀x∈[a−1,a+1],都有y∈[b−1,b+1],则称这个函数是点A的“界函数”.已知点B(m,n)在函数y=−12x2的图象上,若函数y=−12x2是点B的“界函数”,则m的取值范围是.12.已知f(x)=x3+3x,x∈R,且f(a−2)+f(a2)<0,则实数a的取值范围是.13.设函数f(x)={1,x>00,x=0−1,x<0,g(x)=x2⋅f(x−1),则函数g(x)的递减区间是.14.若函数f(x)在区间[a,b]上单调,且f(x)的图象连续不间断,则函数f(x)的最值必在处取得.15.已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,若f(a+1)≤f(4),则实数a的取值范围是.16.若函数y=a∣x−b∣+2在区间(0,+∞)上是增函数,则实数a,b满足的条件为.三、解答题(共6题)17.如图,用长为1的铁丝弯成下部为矩形,上部为半圆形框架,若半圆的半径为x,求此框架围成的面积y与x的函数式y=f(x),并写出它的定义域.18.中国茶文化博大精深.小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提岀的物体在常温环境下温度变化的冷却模型;如果物体的初始温度是θ1,环境温度是θ0,则经过时间t(单位:分)后物体温度θ将满足:θ=θ0+(θ1−θ0)⋅e−kt,其中k为正的常数.小明与同学一起通过多次测量求平均值的方法得到200ml初始温度为98∘C的水在19∘C室温中温度下降到相应温度所需时间如下表所示:从98∘C到90∘C所用时间1分58秒从98∘C到85∘C所用时间3分24秒从98∘C到80∘C所用时间4分57秒(参考数据:ln79=4.369,ln71=4.263,ln66=4.190,ln61=4.111,ln56=4.025)(1) 请依照牛顿冷却模型写出冷却时间t(单位:分)关于冷却后水温θ(单位:∘C)的函数关系,并选取一组数据求出相应的k值.(精确到0.01)(2) “碧螺春”用75∘C左右的水冲泡可使茶汤清澈明亮,口感最佳.在(1)的条件下,200ml水煮沸后在19∘C室温下为获得最佳口感大约冷却分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.A.5B.7C.1019.解答下列问题:(1) 函数的积的定义:一般地,已知两个函数y=f(x)(x∈D1),y=g(x)(x∈D2),设D=D1∩D2,并且D不是空集,那么当x∈D时,y=f(x)与y=g(x)都有意义.于是把函数叫做函数y=f(x)与y=g(x)的积.(2) 如何研究和函数与积函数.20.函数f(x)=(m2−m−1)x m2+m−3是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.21.对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”,设函数f(x)的定义域为(0,+∞),且f(1)=3.(1) 若(a,b)是f(x)的一个“P数对”,且f(2)=6,f(4)=9,求常数a,b的值;(2) 若(1,1)是f(x)的一个“P数对”,且f(x)在[1,2]上单调递增,求函数f(x)在[1,8]上的最大值与最小值;(3) 若(−2,0)是f(x)的一个“P数对”,且当x∈[1,2)时,f(x)=k−∣2x−3∣,求k的值及f(x)在区间[1,2n)(n∈N+)上的最大值与最小值.22.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到(15−0.1x)万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1) 每套丛书售价定为100元时,书商所获得的总利润是多少万元?(2) 每套丛书售价定为多少元时,单套丛书的利润最大?答案一、选择题(共10题)1. 【答案】C【解析】由题意得{x+1≠0,2−x>0,解得x<2且x≠−1,所以M={x∣ x<2且x≠−1},故∁RM={x∣ x≥2或x=−1}.【知识点】函数的定义域的概念与求法2. 【答案】A【解析】当α=−1,1,3时幂函数为奇函数,当α=−1时定义域不是R,所以α=1,3.【知识点】幂函数及其性质3. 【答案】A【解析】因为y在[0,+∞)上为单调函数,所以x=−b2≤0,即b≥0.【知识点】函数的单调性4. 【答案】B【解析】m≠2时,抛物线的对称轴为x=−n−8m−2.据题意,当m>2时,−n−8m−2≥2即2m+n≤12.因为√2m⋅n≤2m+n2≤6,所以mn≤18.由2m=n且2m+n=12得m=3,n=6.当m<2时,抛物线开口向下,据题意得,−n−8m−2≤12即m+2n≤18.因为√2n⋅m≤2n+m2≤9,所以mn≤812.由2n=m且m+2n=18得m=9>2,故应舍去.要使得mn取得最大值,应有m+2n=18(m<2,n>8).所以mn=(18−2n)n<(18−2×8)×8=16,所以最大值为18.【知识点】函数的单调性、函数的最大(小)值5. 【答案】B【解析】令x=1,得f(1)f(f(1)+1)=1,令t=f(1),则tf(t+1)=1,所以 f (t +1)=1t .令 x =t +1,则 f (t +1)f (f (t +1)+1t+1)=1t ⋅f (1t +1t+1)=1, 所以 f (1t +1t+1)=t =f (1).因为函数 f (x ) 为定义在 (0,+∞) 上的增函数, 所以 1t +1t+1=1,变形可得 t 2−t −1=0, 解得 t =1+√52或 t =1−√52.所以 f (1)=1+√52或 f (1)=1−√52.令 x =2,得 f (2)f (f (2)+12)=1, 令 s =f (2),则 sf (s +12)=1, 所以 f (s +12)=1s , 令 x =s +12,则 f (s +12)⋅f (f (s +12)+1s+12)=1sf (1s+22s+1)=1,则 f (1s +22s+1)=s =f (2). 所以 1s +22s+1=2,所以 4s 2−2s −1=0, 解得 s =1−√54或 s =1+√54,所以 f (2)=1−√54或 f (2)=1+√54.因为 f (1)<f (2), 所以 f (1)=1−√52.【知识点】函数的解析式的概念与求法、函数的单调性6. 【答案】A【知识点】抽象函数、函数的单调性7. 【答案】C【解析】方法一:对任意的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,取x1=x2=0得f(0)=−1,取x1=x,x2=−x得,f(0)=f(x)+f(−x)+1,所以f(x)+1=−f(−x)=−[f(−x)+1],所以f(x)+1为奇函数.方法二:由已知f(x1+x2)=f(x1)+f(x2)+1,设x1=x2=0,则f(0)=2f(0)+1,解得:f(0)=−1,又设x1=x,x2=−x,则x1+x2=x−x=0,所以f(0)=f(x)+f(−x)+1,所以f(x)+f(−x)+1+1=0,所以[f(x)+1]+[f(−x)+1]=0,由奇函数定义可知,f(x)+1为奇函数.【知识点】抽象函数、函数的奇偶性8. 【答案】D【解析】因为f(x)的定义域为[−6,1],所以−6≤x≤1,,因为g(x)=f(2x+1)x+2所以−6≤2x+1≤1且x≠−2,≤x≤0且x≠−2,所以−72,−2)∪(−2,0].所以x∈[−72【知识点】函数的定义域的概念与求法9. 【答案】B【解析】因为函数在(−∞,0)上单调递增,且f(−2)=0,所以当x∈(−∞,−2]时,f(x)≤0;当x∈(−2,0)时,f(x)>0.又函数是奇函数,奇函数的图象关于原点对称,f(0)=0,且f(2)=0,所以当x∈(0,2]时,f(x)≤0;当x∈(2,+∞)时,f(x)>0.所以f(x)≤0的解集是(−∞,−2]∪[0,2].故选B.【知识点】函数的奇偶性、函数的单调性10. 【答案】C【解析】函数f(x)=−x2+4x+a的图象开口向下,对称轴为直线x=2,于是函数f(x)在区间[0,1]上单调递增,从而f(0)=−2,即a=−2,于是最大值为f(1)=−1+4−2=1.【知识点】函数的最大(小)值二、填空题(共6题)11. 【答案】[−12,1 2 ]【解析】B(m,n)在y=−12x2上,所以n=−12m2,所以∀x∈[m−1,m+1],都有y∈[−12m2−1,12m2+1],即都有y max≤12m2+1,y min≥12m2−1,所以下面讨论13x∈[m−1,m+1]时,y的最值,① m≤−1时,m+1≤0,所以单调减,所以y max=−12(m+1)2,y min=−12(m−1)2,所以{−12(m+1)2≤12m2+1,−12(m−1)2≥12m2−1,无解.② −1<m≤0时,0<m+1≤1,−2<m−1≤−1,所以y max=0,y min=−12(m−1)2(取不到),所以{0≤12m2+1,−12(m−1)2≥12m2−1,所以−12≤m≤0.③ 0<m≤1时,1<m+1≤2,−1<m−1≤0,所以y max=0,y min=−12(m+1)2,所以 {0≤12m 2+1,−12(m +1)2≥12m 2−1,所以 0<m ≤12.④ m >1 时,m −1>0,所以 y max =−12(m −1)2 (取不到),y min =−12(m +1)2,所以 {−12(m −1)2≤12m 2+1,−12(m +1)2≥12m 2−1,无解.综上:−12≤m ≤12.【知识点】函数的最大(小)值12. 【答案】 (−2,1)【知识点】函数的奇偶性、函数的单调性13. 【答案】 [0,1)【解析】由题意知 g (x )={x 2,x >10,x =1−x 2,x <1,函数图象如图所示,其递减区间是 [0,1).【知识点】函数的单调性14. 【答案】端点【知识点】函数的最大(小)值15. 【答案】 [−5,3]【解析】函数 y =f (x ) 是定义在 R 上的偶函数,且在 [0,+∞) 上是增函数, 可得 f (x )=f (∣x ∣),则f(a+1)≤f(4),即为f(∣a+1∣)≤f(4),可得∣a+1∣≤4,即−4≤a+1≤4,解得−5≤a≤3,则实数a的取值范围是[−5,3].【知识点】函数的奇偶性、函数的单调性16. 【答案】a>0,b≤0【知识点】函数的单调性三、解答题(共6题)17. 【答案】AB=2x,CD⏜=πx,于是AD=1−2x−πx2,因此y=2x⋅1−2x−πx2+πx22,即y=−π+42x2+x,由{2x>0,1−2x−πx2>0,得0<x<1π+2,函数的定义域为(0,1π+2)【知识点】函数的解析式的概念与求法、函数的模型及其实际应用18. 【答案】(1) 由θ−θ0+(θ1−θ0)⋅e−kt得e−kt=θ−θ0θ1−θ0,即−kt=lnθ−θ0θ1−θ0,t=1klnθ1−θ0θ−θ0,在环境温度为θ0=19∘C,选取从θ=98∘C下降到θ=90∘C所用时间约为2分钟这组数据有2=1k ln7971,即k=ln79−ln712≈0.05;选取从θ=98∘C降到θ=85∘C期时间的为3.4分钟这组数据有3.4=1k ln7966,即k=ln79−ln663.4≈0.05;选取从们θ=98∘C得到θ=80∘C所期时的为5分钟这组数据有5=1k ln7961,即k=ln79−ln615≈0.05;故 k ≈0.05.(2) B200 ml 水煮沸后在 19∘C 室温下大约冷却 7 分钟左右冲泡口感最佳,故选B .理由如下:由(1)得 t =20ln 79θ−79,当 θ=75∘C 时,有 t =20×(ln79−ln56)≈6.88.所以 200 ml 水煮沸后在 19∘C 室温下大约冷却 7 分钟冲泡“碧螺春”口感最佳.【知识点】函数模型的综合应用19. 【答案】(1) y =f (x )⋅g (x )(x ∈D )(2) 首先要确定和函数与积函数的定义域,然后化简整理和(积)函数的解析式,结合解析式研究函数的性质.【知识点】函数的相关概念20. 【答案】根据幂函数的定义得 m 2−m −1=1,解得 m =2 或 m =−1.当 m =2 时,f (x )=x 3 在 (0,+∞) 上是增函数;当 m =−1 时,f (x )=x −3 在 (0,+∞) 上是减函数,不符合要求.故 f (x )=x 3.【知识点】幂函数及其性质21. 【答案】(1) 由题意知 {af (1)+b =f (2),af (2)+b =f (4).即 {3a +b =6,6a +b =9.解得 {a =1,b =3.(2) 因为 (1,1) 是 f (x ) 的一个“P 数对”,所以 f (2x )=f (x )+1,所以 f (2)=f (1)+1=4,f (4)=f (2)+1=5,f (8)=f (4)+1=6.因为 f (x ) 在 [1,2] 上单调递增,所以当 x ∈[1,2] 时,f (x )max =f (2)=4,f (x )min =f (1)=3,所以当 x ∈[1,2] 时,3≤f (x )≤4;当 x ∈[2,4] 时,x 2∈[1,2],3≤f (x 2)≤4,所以 4≤f (x )=f (x 2)+1≤5;当 x ∈[4,8] 时,x 2∈[2,4],4≤f (x 2)≤5, 所以 5≤f (x )=f (x 2)+1≤6.综上,当 x ∈[1,8] 时,3≤f (x )≤6.故 f (x ) 在 [1,8] 上的最大值为 6,最小值为 3.(3) 当 x ∈[1,2) 时,f (x )=k−∣2x −3∣,令 x =1,可得 f (1)=k −1=3,解得 k =4, 所以 x ∈[1,2) 时,f (x )=4−∣2x −3∣,故 f (x ) 在 [1,2) 上的取值范围是 [3,4].又 (−2,0) 是 f (x ) 的一个“P 数对”,所以 f (2x )=−2f (x ) 恒成立,当 x ∈[2k−1,2k )(k ∈N +) 时,x 2k−1∈[1,2),f (x )=−2f (x 2)=4f (x 4)=⋯=(−2)k−1⋅f (x 2k−1),故 k 为奇数时,f (x ) 在 [2k−1,2k ) 上的取值范围是 [3×2k−1,2k+1];当 k 为偶数时,f (x ) 在 [2k−1,2k ) 上的取值范围是 [−2k+1,−3×2k−1].所以当 n =1 时,f (x ) 在 [1,2n ) 上的最大值为 4,最小值为 3;当 n 为不小于 3 的奇数时,f (x ) 在 [1,2n ) 上的最大值为 2n+1,最小值为 −2n ;当 n 为不小于 2 的偶数时,f (x ) 在 [1,2n ) 上的最大值为 2n ,最小值为 −2n+1.【知识点】函数的最大(小)值、抽象函数22. 【答案】(1) 每套丛书售价定为 100 元时,销售量为 15−0.1×100=5 (万套),所以每套丛书的供货价格为 30+105=32 (元),故书商所获得的总利润为 5×(100−32)=340 (万元).(2) 每套丛书售价定为 x 元时,由 {15−0.1x >0,x >0,得 0<x <150 . 设单套丛书的利润为 P 元,则 P =x −(30+1015−0.1x )=x −100150−x −30,因为 0<x <150,所以 150−x >0,所以 P =−[(150−x )+100150−x ]+120, 又 (150−x )+100150−x ≥2√(150−x )⋅100150−x =2×10=20, 当且仅当 150−x =100150−x ,即 x =140 时等号成立,所以 P max =−20+120=100 .故每套丛书售价定为 140 元时,单套丛书的利润最大,为 100 元.【知识点】函数的模型及其实际应用、函数的最大(小)值、均值不等式的应用。
指数函数对数函数专练习题含答案(1)

指数函数对数函数专练习题含答案(1)指数函数和对数函数是高中数学中的重要内容,在函数中成为了必学的一部分。
这两种函数在数学中应用非常广泛,除了在数学中,还常常运用于其他学科和实际生活中。
下面是介绍和练习这两种函数的一些题目及其答案。
一、指数函数:1. 求 f(x) = 2^(x+1) - 2^x 的零点。
答:f(x) = 2^(x+1) - 2^x = 2^(x+1) - 2^(x+1-1) = 2^(x+1) -2^x= 2^x * (2 - 1) = 2^x所以,f(x) = 0 时, x = 0。
2. 求解 3^x - 4^x + 3 = 0,其中 x 取值范围为 R。
答:将 4^x 用 2^x 表示,得到 3^x - (2^x)^2 + 3 = 0这是一个二次方程,需要使用求根公式解出 xD = b^2 - 4ac = 16 - 4*3*3 = 16 - 36 = -20由于 D < 0,因此无实数解。
3. 求解 2^(2x+1) - 2^(2x-2) = 12,其中 x 取值范围为 R。
答:将方程两边都取对数,得到(2x+1)log2 - (2x-2)log2 = log2(12)化简得到 2xlog2 + log2 - 4log2 + 3log2 = log2(12) 即 2xlog2 - log2 = log2(12) - 3log2即 2x = log2(4) + log2(3) - 3即 x = 1/2*log2(3) - 7/4二、对数函数:1. 解方程 log(a-1)x = logax + 1,其中 a>1。
答:由于 a>1,因此 a-1 > 0两边同时取指数,得到 x = a^2 / (a-1)2. 如果 a > 1,b > 1,且 a^logb = b,那么 loga b 是多少?答:将等式两边取对数,得到 loga (b^(logb a)) = loga a 即 (logb a) * loga b = 1即 loga b = 1 / logb a当 a^logb = b 时, loga b = 1 / logb a = 1 / (loga b / loga e)再次化简得到 loga b = logb a3. 求解方程 2log(x+1) + log(x-1) = log(x+2),其中 x > 1。
高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
指数函数与对数函数测试题与答案

指数函数与对数函数测试题与答案没有明显的格式错误和删除的段落。
1.已知 f(10) = x,则 f(5) =。
A。
10B。
5C。
lg10D。
lg52.对于 a。
0.a ≠ 1,下列说法中,正确的是?①若 M = N,则 logaM = logaN;②若 logaM = logaN,则 M = N;③若 logaM = logaN,则 M = N;④若 M = N,则 logaM = logaN。
3.设集合 S = {y | y = 3.x ∈ R},T = {y | y = x - 1.x ∈ R},则S ∩ T 是?A。
∅B。
TC。
SD。
有限集4.函数y = 2 + log2x (x ≥ 1) 的值域为?A。
(2.+∞)B。
(-∞。
2)C。
[2.+∞)D。
[3.+∞)5.设 y1 = 4.y2 = 80.90.48.y3 = (1/2)-1.5,则?A。
y3.y1.y2B。
y2.y1.y3C。
y1.y3.y2D。
y1.y2.y36.在 b = log(a-2)(5-a) 中,实数 a 的取值范围是?A。
a。
5 或 a < 2B。
2 < a < 3 或 3 < a < 5C。
2 < a < 5D。
3 < a < 47.计算 (lg2) + (lg5) + 2lg2·lg5 等于?A。
0B。
1C。
2D。
38.已知 a = log32,那么 log38 - 2log36 用 a 表示是?A。
5a-2B。
a-2C。
3a-(1+a)D。
3a-a-19.若 10^(2x) / 2^(2x) = 25,则 10-x 等于?A。
1/5B。
1/2C。
-1/2D。
-1/510.若函数 y = (a-5a+5)·a 是指数函数,则有?A。
a = 1 或 a = 4B。
a = 1C。
a = 4D。
a。
0,且a ≠ 111.当 a。
1 时,在同一坐标系中,函数 y = a 与 y = loga 的图象是图中的?图略)12.已知x ≠ 1,则与 log3x + log4x + log5x 相等的式子是?A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数与对数函数专项练习1 设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是[ ] (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a2 函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是[ ]3.设525bm ==,且112a b +=,则m =[ ](A )10 (B )10 (C )20 (D )100 4.设a=3log 2,b=In2,c=125-,则[ ]A. a<b<cB. b<c<aC. c<a<b D . c<b<a 5 .已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是[ ] (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 6.函数()()2log 31x f x =+的值域为[ ]A.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣ 7.下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f (x +y )=f (x )f (y )”的是 [ ](A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 8. 函数y=log2x 的图象大致是[ ]PS(A) (B) (C) (D)8.设554a log 4b log c log ===25,(3),,则[ ] (A)a<c<b (B) b<c<a (C) a<b<c (D) b<a<c 9.已知函数 1()log (1),f x x =+若()1,f α= α=[ ](A)0(B)1(C)2(D)310.函数y =的值域是[ ](A )[0,+∞) (B) [0,4] (C) [0,4) (D) (0,4) 11.若372log πlog 6log 0.8a b c ===,,,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>12.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<<13.若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y < 14.已知01a <<,log log a a x =1log 52a y =,log log a a z =,则( )A .x y z >>B .z y x >>C .y x z >>D .z x y >>15.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a16.已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101b a -<<<- D .1101a b --<<<18. 已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.19.已知m x f x +-=132)(是奇函数,求常数m 的值;20.已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.指数函数与对数函数专项练习参考答案1)A【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
2. Dba|>1而ax2+ bx=0的两根之和为 -ba,由图知0<-ba<1得-1<ba【解析】对于A、B两图,|<0,矛盾,对于C 、D 两图,0<|b a |<1,在C 图中两根之和-b a <-1,即ba >1矛盾,选D 。
3. D 解析:选A.211log 2log 5log 102,10,m m m m a b +=+==∴=又0,m m >∴4. C 【解析】 a=3log 2=21log 3, b=In2=21log e ,而22log 3log 1e >>,所以a<b,c=125-222log 4log 3>=>,所以c<a,综上c<a<b.5. A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
6. C 【解析】因为x yx y a a a +=所以f (x +y )=f (x )f (y )。
7. C8. D 【解析】因为55a log 4log 5=1,=<2255(log 3)(log 5)=1,b =<544c log log 41=>=,所以c 最大,排除A 、B ;又因为a 、b (0,1)∈,所以a b >,故选D 。
9.解析:α+1=2,故α=1,选B ,本题主要考察了对数函数概念及其运算性质,属容易题 10. C【解析】[)40,0164160,4x x >∴≤-<.11. A 【解析】利用中间值0和1来比较: 372log π>1log 61log 0.80a b c =<=<=<,0, 12 A 【解析】由322log 21log 3log 5<<< , 故选A. 13.C 函数4()log f x x =为增函数 14. Clog a x=log a y=log a z =由01a <<知其为减函数, y x z ∴>>15. 【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 【答案】C 16【解析】本小题主要考查正确利用对数函数的图象来比较大小。
由图易得1,a >101;a -∴<<取特殊点01log 0,a x y b =⇒-<=<11log log log 10,aa ab a⇒-=<<=101a b -∴<<<.选A. 17.【解析】(1)当0x <时,()0f x =;当0x ≥时,1()22x x f x =-……2分 由条件可知1222x x -=,即222210x x --= 解得21x= ……6分20log (12)x x >=+∵∴ ……8分(2)当[1,2]t ∈时,22112(2)(2)022t t tt t m -+-≥ ……10分 即24(21)(21)ttm -≥--,2210t ->∵,2(21)tm ≥-+∴ ……13分[1,2]t ∈∵,2(21)[17,5]t -+∈--∴故m 的取值范围是[5,)-+∞ ……16分18.解: )1(122>-+=a a ay x x, 换元为)1(122a t at t y <<-+=,对称轴为1-=t .当1>a ,a t =,即x =1时取最大值,略 解得 a =3 (a = -5舍去)19.常数m =120解:(1)易得f(x)的定义域为{x |x ∈R }.(2)∵f(-x)=11+---x x a a =xxa a +-11=-f(x)且定义域为R ,∴f(x)是奇函数.(3)f(x)=12)1(+-+x x a a =1-12+xa . 1°当a>1时,∵a x+1为增函数,且a x+1>0.∴12+x a 为减函数,从而f(x)=1-12+x a =11+-x x a a 为增函数.2°当0<a<1时,类似地可得f(x)=11+-x x a a 为减函数.-----精心整理,希望对您有所帮助!。