《指数对数运算》练习题40道及答案
指数函数与对数运算测试题(附答案)

指数函数与对数运算测试题 班级 姓名 得分1、21-⎡⎤⎢⎥⎣⎦等于( )A 、2B 、1C 、D 、122、设全集为R ,且{|0}A x =≤,22{|1010}x xB x -==,则()R A B= ð( )A 、{2}B 、{—1}C 、{x|x ≤2}D 、∅3、函数()f x = )A 、(,0]-∞B 、[0,)+∞C 、(,0)-∞D 、(,)-∞+∞4、已知对不同的a 值,函数1()2(01)x f x a a a -=+>≠,且的图象恒过定点P ,则P 点的坐标是( ) A 、()0,3 B 、()0,2 C 、()1,3 D 、()1,25、函数1()2y = )A 、1[1,]2- B 、(,1]-∞- C 、[2,)+∞ D 、1[,2]26、已知lg 2,lg 3a b ==,则lg 12lg 15等于( )A 、21a b a b+++ B 、21a b a b+++ C 、21a b a b+-+ D 、21a b a b+-+7、已知2lg(2)lg lg x y x y -=+,则xy的值为 ( ) A 、1 B 、4 C 、1或4 D 、4或—18、函数xy a =(a >1)的图象是( b )9、若221333111(),(),()522a b c ===,则a ,b ,c 的大小关系是 ( )A 、a>b>cB 、c>b>aC 、a>c>bD 、b>a>c10、已知函数()f x 的定义域是(0,1),那么(2)xf 的定义域是( ) A.(0,1) B.(21,1) C.(-∞,0) D.(0,+∞)11、若集合A ={y | y=2x , x ∈R } , B = {y | y=x 2 , x ∈R } , 则( )A B B.A A 、2a B C 、二、填空题(4⨯5‘)1、点(2,1)与(1,2)在函数()2ax b f x +=的图象上,则()f x 的解析式为 22x -+2、求函数11(),[0,2]3x y x -=∈的值域是 [1/3,3]3、已知()f x 是奇函数,且当x>0时,()10x f x =,则x<0时,()f x = 10x --4、若集合{}{},,lg()0,,x xy xy x y =,则228log ()x y += 1/3三、解答题(7⨯10‘)1、计算(1)122(11)]-+- ; (2)4912log 3log 2log ⋅-。
指数对数运算练习题 道 附答案

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。
专题25:指数、对数的运算专项练习(解析版)

专题25:指数、对数的运算专项练习(解析版)一、解答题 1.化简下列各式. (1211113322a b ---;(2)111222m m mm--+++;(3)10.5233277(0.027)21259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭.【答案】(1)1a;(2)1122m m -+;(3)0.09. 【分析】(1)利用指数幂的运算性质即可求解; (2)根据完全平方关系即可求解; (3)利用指数幂的运算性质即可求解. 【详解】(1)原式21111()11111532322132623615661ab a baba aa b⨯-----+--⋅====; (2)2112211122111122222m m m m m m m m m m -----⎛⎫+ ⎪++⎝⎭==+++ (3)10.5233277(0.027)21259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭255=0.0933++-2.计算:(1)2(lg 2)lg 2lg 5lg 5+⨯+;(2)210231(27)3(2)2-⎛⎫--⨯+- ⎪⎝⎭.【答案】(1)1;(2)0. 【分析】(1)根据对数的运算性质计算可得结果; (2)根据指数幂的运算性质可得结果. 【详解】(1)2(lg 2)lg 2lg 5lg 5+⨯+lg 2(lg 2lg5)+lg5=+lg 2lg(25)+lg5=⨯⨯ lg 2+lg5= lg10=1=.(2)()()21023127322-⎛⎫--⨯+- ⎪⎝⎭2133141()2=--⨯+ 3434=--+ 0=.3.(1)化简:3232324b b a a a b -⎛⎫⎛⎫⎛⎫÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)计算:56512log 5log 24log 4lg 20lg50⎛⎫⨯+-- ⎪⎝⎭.【答案】(1)432b a-;(2)1-.【分析】(1)根据指数幂的运算法则,直接计算,即可得出结果; (2)根据对数的运算法则,直接计算,即可得出结果. 【详解】(1)原式323663816b b b a a a ⎛⎫=÷⨯- ⎪⎝⎭ 363623168b a b a b a ⎛⎫=⨯⨯- ⎪⎝⎭432b a=-;(2)原式65512log 5log 24log (lg 20lg 50)4⎛⎫=⨯+-+ ⎪⎝⎭652log 5log 6lg1000=⨯-23=-1=-.4.求下列各式x 的取值范围. (1)(1)log (2)x x -+; (2)(3)log (3)x x ++.【答案】(1){x |x > 1且x ≠2};(2){x |x >﹣3且x ≠﹣2}. 【分析】(1)根据对数的定义进行求解即可; (2)根据对数的定义进行求解即可 【详解】(1)由题意可得:201011x x x +>⎧⎪->⎨⎪-≠⎩,解得x > 1且x ≠2;∴x 的取值范围是{x |x > 1且x ≠2}; (2)由题意可知:3031x x +>⎧⎨+≠⎩,解得x >﹣3且x ≠﹣2;∴x 的取值范围是{x |x >﹣3且x ≠﹣2}.5.(1)求值:2130228(6.25)()(1.5)27π-⎛⎫----+ ⎪⎝⎭;(2)解不等式:1263177xx-⎛⎫< ⎪⎝⎭.【答案】(1)32;(2){}x x >4. 【分析】(1)利用分数指数幂的运算性质求解即可; (2)由指数函数的单调性解不等式【详解】解:(1)原式12223258314272-⎛⎫⎛⎫⎛⎫=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22522312332⎛⎫⎛⎫=--+= ⎪ ⎪⎝⎭⎝⎭; (2)原不等式可化为:361277x x -<,由函数7xy =在R 上单调递增可得3612x x <-,解得4x >;故原不等式的解集为{}x x >4. 6.计算下列各式的值:(1)0113410.064167-⎛⎫-+ ⎪⎝⎭;(2)2ln 2145log 2lg 4lg82e +++. 【答案】(1)52-;(2)92.【分析】(1)根据指数幂的运算法则,直接计算,即可得出结果; (2)根据对数的运算性质,逐步计算,即可得出结果. 【详解】 (1)()011114334431550.064160.422147221⎛⎫-⨯⨯- ⎪⎝⎭⎛⎫-+ ⎪⎝⎭=-+=-+-=-;(2)22ln 22ln 41245log 2lg 4lg log 22lg 2lg 5lg882e e -+++=++-+ 177794lg 2lg53lg 24lg 2lg5lg10122222=-++-+=++=+=+=.7.计算: (1)5122log 231354-⎛⎫+ ⎪⎝⎭;(2)()()226666log 3log 2log 9log 2++⋅+ 【答案】(1)9;(2)32. 【分析】(1)由根式与指数幂的运算,以及对数运算性质,逐步计算,即可得出结果; (2)由对数运算法则,逐步计算,即可得出结果. 【详解】(1)原式24133243322929=++⨯--==; (2)原式()()2266661log 3log 22log 3log 22=++⋅+()226611log 3log 231222=++=+=. 8.计算:(1)2lg25lg2lg50(lg2)++;(2)2ln33(0.125)e-++.【答案】(1)2;(2)11. 【分析】(1)根据对数的运算法则,逐步计算,即可得出结果;(2)根据指数幂的运算法则,以及对数的运算法则,直接计算,即可得出结果. 【详解】(1)原式()()22lg5lg 2lg100lg 2lg 2=+⨯-+()()22lg5lg 22lg 2lg 2=+⨯-+()2lg5lg2=⨯+2lg10=2=.(2)原式()1223235=3log 50.5-⎡⎤++⎣⎦()252=3log 50.512-++ ()21=342--++2=342++=11.9.求值:(1)()92log 4lg 2lg 20lg53+⨯+;(2)()60.25π38-+.【答案】(1)3;(2)107. 【分析】(1)利用对数的运算以及换底公式求解即可;(2)利用指数的运算法则求解即可. 【详解】(1)()92log 4lg 2lg 2lg5lg53+⋅++()lg2lg2lg5lg52=+++lg 2lg52=++3=.(2)()60.25π38-+136644122=+⨯-⨯321322=+⨯-11082=+-107=.10.计算:(1)1111010.253342727(0.081)[3()][81()]100.02788------⨯⨯+-⨯;(2)已知x +y =12,xy =9,且x <y ,求11221122x y x y+-.【答案】(1)0;(2). 【分析】(1)直接利用指数的运算性质求解即可;(2)由原式=.【详解】(1)原式11442112101[(0.3)]()100.33033333--=-+-⨯=--=.(2)原式====11.不用计算器,计算: (1)927log 32log 128(2)23463log 3log 4log 5log 64⋅⋅⋅⋯⋅ 【答案】(1)1514;(2)6. 【分析】根据对数的运算性质可得答案. 【详解】(1)235393727335log 2log 2log 321527log 128log 214log 23===. (2)23463log 3log 4log 5log 64⋅⋅⋅⋯⋅131415lg 64lg 646lg 26lg 21314lg 63lg 2lg 2g g g g g =⋅⋅⋅⋯⋅===. 12.计算:(1)75223log (42)log 3log 4⨯+⋅. (2)若33lg 2lg 53lg 2lg5a b +=++⋅,求333ab a b ++. 【答案】(1)2215;(2)1. 【分析】(1)根据对数的运算法则及性质计算可得;(2)根据对数的运算法则求出+a b ,再根据乘法公式计算可得; 【详解】解:(1)原式=75223log (42)log 3log 4⨯+⋅214552223log 2log 2lg10log 3log 4=+++⋅2223214log 25log 2lg102log 3log 25=+++⋅2214522155=+++=,(2)22(lg 2lg5)(lg 2lg 2lg5lg 5)3lg 2lg5a b +=+-++22lg 22lg 2lg5lg 5=++()2lg 2lg51=+=即1a b +=33223()()3a b ab a b a ab b ab ∴++=+-++=()21a b +=。
指数对数计算题50道

指数对数计算题50道指数和对数是数学中重要的概念和运算符号,它们在各个领域都有着广泛的应用。
下面列举了50道与指数和对数计算有关的题目,并提供相应的参考内容。
1. 计算2^3的值。
参考答案:2^3 = 8。
2. 计算10^(-2)的值。
参考答案:10^(-2) = 1/10^2 = 1/100 = 0.01。
3. 计算2^(1/2)的值。
参考答案:2^(1/2) = √2 ≈ 1.414。
4. 计算log(100)的值。
参考答案:log(100) = 2,因为10^2 = 100。
5. 计算log(1/1000)的值。
参考答案:log(1/1000) = log(10^(-3)) = -3,因为10^(-3) =1/1000。
6. 计算log2(8)的值。
参考答案:log2(8) = 3,因为2^3 = 8。
7. 计算log4(16)的值。
参考答案:log4(16) = 2,因为4^2 = 16。
8. 计算ln(e)的值。
参考答案:ln(e) = 1,因为e^1 = e。
9. 计算ln(1)的值。
参考答案:ln(1) = 0,因为e^0 = 1。
10. 计算log5(25)的值。
参考答案:log5(25) = 2,因为5^2 = 25。
11. 计算log(x^2)的值,其中x = 10。
参考答案:log((10^2)) = log(100) = 2。
12. 计算log(2x)的值,其中x = 5。
参考答案:log(2(5)) = log(10) = 1。
13. 计算log3(9) + log3(27)的值。
参考答案:log3(9) + log3(27) = 2 + 3 = 5,因为3^2 = 9,3^3 = 27。
14. 计算log2(4) * log2(16)的值。
参考答案:log2(4) * log2(16) = 2 * 4 = 8,因为2^2 = 4,2^4 = 16。
15. 计算10^(log10(100))的值。
指数对数计算题含答案

1.(本小题满分12分)2203227()(1()38-+--;(2)5log33332log2log32log85-+-【答案】(1)1;(2)-32.(满分12分)不用计算器计算:(注:只要有正确的转换,都要给步骤分,不能只看结果)(1)2log3)8.9(74lg25lg27log7-++++(2)252)008.0()949()827(325.032⨯+---【答案】(1)213;(2)913.(12分)化简或求值:(1)110232418(2)2(2)()5427--+⨯-;(2)2lg5++【答案】(1)21;(2)14.计算(1)7log203log lg25lg47(9.8)+++-(2)32310)641()833()1(416-+--π-【答案】(1)132(2) 165.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+--;(2)5log33332log2log32log85-+-【答案】(1)1;(2)-3.6.求值:1)21lg5(lg8lg1000)(lg lg lg 0.066++++;2211113322a b b--【答案】1)1;2)1 。
7.(12分)(1)计算2532)31(001.0lg 9log 4log 25log --+••(2) 63735a a a ÷⋅【答案】(1)-4;(2)21a 。
8.(本小题满分12分) 计算5log 3333322log 2log log 859-+-的值。
【答案】-19.(本小题满分13分)计算下列各式的值:(1)1421()0.252+⨯;(2)8log )12()31(2lg 5lg 202+-+--+- .【答案】(1)原式=414132--+⨯=-;(2)原式=-410.(本小题满分12分)计算:(1)×421-⎪⎭⎫⎝⎛-4÷()21016115-⎪⎭⎫ ⎝⎛--;(2)()22lg 50lg 2lg 25lg +•+.【答案】 (1)原式=-4;(2) 原式=211.求51lg12.5lg lg 82-+的值. 【答案】51lg12.5lg lg 82-+ 1=12.计算下列各式的值:(1)31213125.01041027.010])833(81[])87(3[)0081.0(⨯-+⨯⨯------; (2) 12lg )2(lg 5lg 2lg )2(lg 222+-+•+;【答案】(1)原式===0(2)原式===113.求7log 23log lg 25lg 47+++的值 【答案】解:原式=2)425lg(33log 433+⨯+ =210lg 3log 2413++-=4152241=++-14.计算下列各式(Ⅰ)120lg 5lg 2lg )1(2-+ (Ⅱ)025.04213463)2011(82)4916(4)22()32(--⨯-⨯-+⨯-【答案】.1001272274122474)2(32)2(.01)2lg 1)(2lg 1(2lg )1(43413443322=---+⨯=-⨯-⨯-+⨯==-+-+=原式原式解:15.(本小题满分8分)不用计算器计算:7log 203log lg25lg47(9.8)+++-。
指数对数试题及答案

(2) .
27.已知 .
(1)求函数 的定义域;
(2)判断函数 的奇偶性并证明;
(3)求使 的 的取值集合.
28.已知函 数.
(1)求出使 成立的 的取值范围;
(2)当 时,求函数 的值域.
参考答案
1.C
【解析】
试题分析:由题意,得 或 ,解得 或 ,即实数 的取值范围为 ,故选C.
考点:分段函数
试题解析:(1)∵ ,∴ ;
同理 ,∴ ,所以原式 .
(2)原式 .
考点:1、分式的化简;2、分数指数幂的运算.
26.(1) (2)
【解析】
试题分析:(1)利用指数幂的运算法则即可得出;
(2)利用对数的运算法则即可得出.
试题解析:(1)原式
(2)原式
考点:指数幂的运算,对数的运算
27.(1) (2) 为奇函数;证明见解析(3)
21.若函数 在R上是减函数,则实数 取值集合是
22.函数 的单调递减区间为
23.⑴计算: ;
⑵计算: .
24.已知定义域为 的函数 是奇函数.
(1)求 的值;
(2)判断函数 的单调性,并用定义证明;
(3)当 时, 恒成立,求实数 的取值范围使用计算器,计算下列各题:
设 ,令 ,则有 ,∴ ,∴ ,即 的取值范围为 .
考点:1、函数的奇偶性;2、函数的单调性;3、含参量问题的取值范围.
【易错点晴】本题主要考查的是函数的奇偶性、函数的单调性、含参量问题的取值范围,属于难题.对于含参量不等式问题要注意进行灵活变形,转化为 的形式,从而
25.(1)4;(2)
【解析】
试题分析:由 两边平方得 再对它两边平方得 代入所求式子中计算.(2)由公式 与 进行各项的化简.
指数对数运算练习题40道(附答案)

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。
指数对数运算练习题

指数对数运算练习题在数学中,指数和对数是重要的概念和运算。
指数运算是指数之间的基数乘积和幂的运算,而对数运算则是指数和底数之间的关系。
掌握指数和对数的运算规则和方法,对于解决各种数学问题和应用具有重要意义。
本文将为你提供一系列指数对数运算的练习题,帮助你加深对于这些概念和运算的理解和掌握。
一、指数运算题1. 计算:(2^3)^4。
2. 求解:10^x = 1000。
3. 计算:3^4 × 3^5。
4. 求解:(5^2)^3 = 5^n。
5. 计算:2^8 ÷ 2^5。
二、对数运算题1. 求解:log2(8) = x。
2. 计算:log3(81) + log3(3)。
3. 求解:log4(x) = 0.5。
4. 计算:log5(125) - log5(5)。
5. 求解:log10(y) = 2。
三、指数与对数运算综合题1. 计算:3^(log3(16))。
2. 求解:log2(2^(x-1)) = 3。
3. 计算:(4^3)^(log4(4))。
4. 求解:log5(125) = 3^x。
5. 计算:10^(log10(1000))。
以上是一些指数和对数运算的练习题,希望通过练习能够提高你对于这些运算的熟练程度。
指数运算题中,题目一中的(2^3)^4,可以使用指数的乘法法则,即a^m^n = a^(m×n),得到2^(3×4)=2^12的结果。
题目三中的3^4 × 3^5,可以使用指数的加法法则,即a^m × a^n =a^(m+n),得到3^4 × 3^5 = 3^(4+5)的结果。
对数运算题中,题目一中的log2(8),可以理解为2的几次幂等于8,即2^x = 8,解得x=3,所以log2(8) = 3。
题目二中的log3(81) + log3(3),可以利用对数的乘法法则,即loga(m) + loga(n) = loga(m×n),得到log3(81) + log3(3) = log3(81×3)的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 ,0.7 , log 6A. 0.7 C.0.7 B. 0.7 D.0.7 0.2 , 3 2 2 10.2 0.2指数对数运算练习题1. 已知 a,b = 20.3 , c = 0.30.2 ,则 a ,b ,c 三者的大小关系是()A .b>c>aB .b>a>cC .a>b>cD .c>b>a4212.已知 a = 23, b = 45, c = 253,则(A ) b < a < c(C ) b < c < a(B ) a < b < c(D ) c < a < b0.7 6 3. 三个数0.7 的大小顺序是( )0.76 < log 6 < 60.7log 6 < 60.7< 0.760.76 < 60.7 < log 6log 6 < 0.76 < 60.74.已知a = 20.2,b = 0.42, c = log 4 则()A. a > b > cB. a > c > bC. c > a > bD. b > c > a5.设 a = log 7,b = 21.1,c = 0.83.1 则()A. b < a < cB. c < a < bC. c < b < aD. a < c < b6.三个数 a = 0.32, b = log 0.3,c = 20.3之间的大小关系是()A. a < c < bB. a < b < cC. b < a < cD. b < c < a7.已知a = 21.2, b = 0.50.8, c = log 3 ,则()A. a > b > cB. c < b < aC. c > a > bD. a > c > b-18.已知a = 2 3, b = log 21, c = log 1,则()A. a > b > c3 B. a > c > b 2 3C. c > a > bD. c > b > a9.已知a = 0.20.3, b = log 3 , c = log 4 ,则( ) A. a>b>cB. a>c>bC. b>c>aD. c>b>a10.设 a = 0.60.6,b = 0.61.5,c = 1.50.6则 a ,b ,c 的大小关系是()(A ) a <b <c (B ) a <c <b (C ) b <a <c (D ) b <c <a试卷第 2页,总 8页4 3 10 3 4 11.设 a = ⎛ 3 ⎫ 0.5,b = ⎛ 4 ⎫ 0.4,c =log (log4),则( )⎪ ⎪ 3 3 ⎝ ⎭⎝ ⎭4A .c<b<aB .a<b<cC .c<a<bD .a<c<b-112. 已知 a = 2 3, b = log 21, c = log 1,则()A. a > b > c3 B. a > c > b 2 3C. c > a > bD. c > b > a13.已知a = log 3 4,b = 1 ( ) , c 5= log 1 10 ,则下列关系中正确的是( )3A. a > b > cB. b > a > cC. a > c > bD. c > a > b14.设 a = 2-0.5,b = log π,c = log 2 ,则()A. b > a > cB. b > c > aC. a > b > cD. a > c > b15. 设 y= 40. 9 , y = 80. 48 , y = 1 -1. 5,则( )1 2 3( 2) A. y 3 > y 1 > y 2 B. y 2 > y 1 > y 3 C. y 1 > y 3 > y 2D.y 1 > y 2 > y 3⎛ 1 ⎫0.216.设 a = log 1 5 , b = ⎪1, c = 23 ,则( )2 A. a < b < c⎝ 3 ⎭ B. c < b < aC. c < a < bD. b < a < c1 2 1 2 1117.设 a = ( ) 3 ,b = ( ) 3 , c = ( )3 ,则 a , b , c 的大小关系是()2 5 2A. a > b > cB. c > a > bC. a > c > bD. c > b > a⎛ π π⎫ 18.已知 a = log 0.5sin x , b = log 0.5cos x , c = log 0.5sin x cos x , x ∈ , ⎪ ,⎝ 4 2 ⎭则 a , b , c 的大小关系为( )A. b > a > cB. c > a > bC. c > b > aD. b > c > a19.设 x = 0.820.5, y =, z = sin1,则x 、y 、z 的大小关系为 ( )A. x < y < zB. y < z < xC. z < x < yD. z < y < xlg 10 lg 0.125 9e27 4 1 每天一刻钟,数学点点通20. 若log 2a < 0, ( ) 2b> 1 ,则( )A. a > 1, b > 0B. a > 1, b < 0C . 0 < a < 1, b > 0D . 0 < a < 1, b < 021. 已知log 1 a < log 1 b ,则下列不等式一定成立的是( )22⎛ 1 ⎫aA. ⎪ ⎛ 1 ⎫b< ⎪ B. 1 >1 C. ln (a - b ) > 0D. 3a -b< 1⎝ 4 ⎭ ⎝ 3 ⎭a b22. 计算- 1 1 -3(1) 0.027 3- (- ) 2 + 256 4 - 3-1 + ( 7 -1)0(2)lg 8 + lg125 - lg 2 - lg 523. 计算:1 - 1 ①- ⎛ 8 ⎫3 - (π+ e )0 + ⎛ 1 ⎫ 2; ②2 lg 5 + lg 4 + ln .⎪ ⎪⎝ ⎭ ⎝ ⎭ 2试卷第 2页,总 8页3 2⎛ 2 ⎫3 ⎪ ⎝ 3 ⎭6a • b524. 化简下列各式(其中各字母均为正数):-1⎛ 7 ⎫(1)1.5 3 × - ⎝ ⎪0+80.25× 4 2 +( 6 ⎭× )6- ; 2 -111(a 3 • b -1)2• a-2•b 3(2);4 1 a 3-8a 3b ÷ ⎛1-23 b ⎫⨯ (3) 2 2 a ⎪ 4b 3+2 3 ab +a 3 ⎝⎭25.(12 分) 化简或求值:4 1 - 1 8 1(1) (2 )0 + 2-2 ⨯(2 ) 2 - ( ) 3 ;5 4 27(2) 2(lg 2)2+ lg 2 ⋅ lg 5 +3 2 3 a(lg 2)2 - lg 2 +1每天一刻钟,数学点点通26.(12分)化简、求值:27 - 2 49-2 2(1)( ) 3 -( ) 0.5 + (0.008) 3 ⨯;8 9 25(2)计算lg 5 ⋅ lg 8000 + (lg 2 3 )21 1lg 600 - lg 36 -2 2lg 0.0127.(本小题满分10分)计算下列各式的值:2 27 2(1)()-2+(1-2)0-()3;3 8(2)2 log32 - log332 + log38 -5log5 3试卷第 2页,总 8页2 2 -1 23 7 1- 1 28.计算:(1) 2 2+ (-4)0 + 1 -(2) log 2.5 6.25 + lg 0.001+ ln+ 2log 2 329.(本题满分 12 分)计算以下式子的值:1 1-1 (1- ( )0 + 0.252 ⨯ ( )-4 ; 2(2) log 27 + lg25 + lg 4 + 7log 7 2+ log 1.30.计算(1) log 3lg 25 + lg 4 + 7log 7 2+ (-9.8)0(2) - (π - 1)0- (3 3) 3 + ( 81 -2 ) 364 (1- 5)0 e 3(-4)3 27 6 1 4 ;27 8 (1- 2)22 每天一刻钟,数学点点通⎛ 1 ⎫-10 31.计算: ⎪ ⎝⎭ - 2 c os 300 + + (2 -π) .32.(本题满分 12 分) 计算(1)5log 5 9 + 1 log 32 - log (log 8) 2 23 2-21(2)(0.027) 3 -⎪ + 2 ⎪ -(-1)-1 ⎛ 1 ⎫ ⎛ ⎝ 7 ⎭ ⎝ 7 ⎫2 09 ⎭133.(1)化简: (a 2b ) 2⋅(ab 2 )-2 ÷(a -2b )-3; (2)计算:lg 8 + lg125 - lg 2 - lg 5.34.计算:(1) π- 4 - 8⨯ 2-2- (2013 -π)0(2) + - 6 cos 45o2 lg 10 ⋅lg 0.1试卷第 2页,总 8页3 7 6 12 2 ⎛ 2 ⎫ 3 ⎪ ⎝ 3 ⎭3 1 35.(1)计算3log 3 2- 2(log 4)(log 27) - 1log 8 + 2 log .3 8 6 161(2) 若 x 2 + x - 12 = ,求 x + x -1x 2 + x -2 - 3的值.21 36.求值: (2 2)3 - ⎛ 6 1 ⎫ 2+ ln e - 4 ⎪ ⎝ ⎭37.(1)求值: 2 3 ⨯ 3 1.5 ⨯ ; (2)已知 x +1= 3 求 x 2 + 1的值 x x 238. 计算:2 - 1 0 ⎛ (1) 8 ⎫3 + ⎛ 3 ⎫ 3 ⨯⎛- 3 ⎫ - - 4⎪ ⎪ ⎪ ⎝ 27 ⎭ ⎝ 2 ⎭ ⎝ 5 ⎭ 9(2) lg 2 5 - lg 2 2 + 2 lg 2 + 3log 3 239. 下列四个命题:① ∃x ∈(0, +∞),( 1 )x > (1)x; ② ∃x ∈ (0, +∞), log 2 32 x < log3 x ;③ ∀x ∈ (0, +∞ 1 ), ( ) 2 x > log 2 x ;④ ∀x ∈ 1 1 (0, ), ( ) 3 2 x< log x .3其中正确命题的序号是 .- 2 40. log(2 -3 )- ⎛ - 27 ⎫ 3 =2+ 38 ⎪ ⎝⎭ 3 3 3 6 3 10.7参考答案1.A【来源】2013-2014 学年福建省三明一中高二下学期期中考试文科数学试卷(带解析) 【解析】试题分析: 由指数函数的单调性可知 y = 0.3x 是单调递减的所以 0.30.5 < 0.30.2即 a<c<1; y = 2x 是单调增的,所以 y = 20.3 > 20= 1,即可知 A 正确考点:指数函数比较大小. 2.A【来源】2016 年全国普通高等学校招生统一考试理科数学(新课标 3 卷精编版) 【解析】422122试题分析:因为a = 23 = 43 > 45 = b , c = 253 = 53 > 43 = a ,所以b < a < c ,故选 A . 【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决. 3.D 【来源】2013-2014 学年广西桂林十八中高二下学期开学考理科数学试卷(带解析) 【解析】试 题 分 析 : 60.7 > 60= 1 ,0 < 0.76 < 0.70= 1 , log 0.7 6 < log 0.7 1 = 0, 所 以log 6 < 0 < 0.76<1 < 60.7 . 考点:用指数,对数函数特殊值比较大小. 4.A .【来源】2014 届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析) 【解析】试题分析:因为 a > 1,0 < b < 1, c < 0 ,所以 a > b > c ,故选 A . 考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小. 5.B【来源】2014 年全国普通高等学校招生统一考试文科数学(安徽卷带解析) 【解析】试题分析:由题意,因为 a = log 3 7 ,则1 < a < 2 ; b = 21.1,则b > 2 ; c = 0.83.1,则c < 0.80 = 1,所以c < a < b考点:1.指数、对数的运算性质. 6.C【来源】2014-2015 学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析) 【解析】2 2 2 1试题分析:∵ 0 < a = 0.32< 1 , b = log 0.3 < log 1 = 0 , c = 20.3> 20= 1 ,∴ b < a < c 考点:根式与分数指数幂的互化及其化简运算. 7.D【来源】2014 届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析) 【解析】试题分析:∵ a = 21.2> 2 , 0 < 0.50.8< 1 ,1 < log 3 < 2 ,∴ a > c > b . 考点:利用函数图象及性质比较大小. 8.C【来源】2014 年全国普通高等学校招生统一考试文科数学(辽宁卷带解析) 【解析】-1试题分析: 因为 a = 2 3∈(0,1) , b = log 2< log 2 1 = 0 , c = log 1 1 > log 1 = 1 , 故3 c > a > b .考点:指数函数和对数函数的图象和性质. 9.A2 3 2 2【来源】2014 届浙江省嘉兴市高三上学期 9 月月考文科数学试卷(带解析) 【解析】试题分析:由指数函数和对数函数的图像和性质知 a > 0 , b < 0 , c < 0 ,又对数函数f ( x ) = log 0.2 x 在(0, +∞) 上是单调递减的,所以log 0.2 3 > log 0.2 4 ,所以a > b > c .考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015 年全国普通高等学校招生统一考试文科数学(山东卷带解析) 【解析】由 y = 0.6x在区间(0, +∞) 是单调减函数可知,0 < 0.61.5< 0.60.6 < 1,又1.50.6 > 1,故选C .考点:1.指数函数的性质;2.函数值比较大小. 11.C【来源】2014 届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析) 【解析】由题意得 0<a<1,b>1,而 log 34>1,c =log 34(log 34),得 c<0,故 c<a<b. 12.C【来源】2014 年全国普通高等学校招生统一考试理科数学(辽宁卷带解析) 【解析】试题分析:0 < a = 2 -13< 20= 1,b = log 1 < 0, c = log 1 = log 3 > 1, 所以c > a > b , 2 3 1 32 2故选 C.考点:1.指数对数化简;2.不等式大小比较. 13.A.134 3 >> 5 【来源】2015 届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析) 【解析】试题分析:∵ a = log 4 > log 3 = 1 ,b =1 0= 1 ,c = log 10 < log= 1 ,∴ a > b > c . 3 3( ) 1 1 33考点:指对数的性质.14.A【来源】2015 届河南省八校高三上学期第一次联考文科数学试卷(带解析) 【解析】试 题 分 析 : ∵1a = 2-0.5,b = log π,c = log 2 , 1>2-0.5= 1 > 1,2 2log 3π>1,log 4 2= 2.∴ b >a >c .故选:A .考点:不等式比较大小. 15.C【来源】2012-2013 学年广东省执信中学高一下学期期中数学试题(带解析) 【解析】试题分析: 根据题意, 结合指数函数的性质, 当底数大于 1 , 函数递增, 那么可知 y = 40. 9 = 21.8 , y = 80. 48 = 21.44 , y = 1 -1. 5 = 21.5 ,结合指数幂的运算性质可知,有123( 2) y 1 > y 3 > y 2 , 选 C.考点:指数函数的值域点评:解决的关键是以 0 和 1 为界来比较大小,属于基础题。