指数与对数运算单元测试题(经典全面,一套涵盖)

合集下载

精编《指数函数和对数函数》单元测试考试题(含答案)

精编《指数函数和对数函数》单元测试考试题(含答案)

2019年高中数学单元测试试题 指数函数和对数函数(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.已知0log log ,10<<<<n m a a a ,则( )A(A)1<n <m (B) 1<m <n (C)m <n <1 (D) n <m <1(2006浙江理)2.若函数()121x f x =+,则该函数在(),-∞+∞上是( ) A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值 (2005上海理) 3.为了得到函数321x y -=-的图象,只需把函数2x y =上所有点( )A .向右平移3个单位长度,再向下平移1个单位长度B .向左平移3个单位长度,再向下平移1个单位长度C .向右平移3个单位长度,再向上平移1个单位长度D .向左平移3个单位长度,再向上平移1个单位长度(2005北京文)4.函数]1,0[)1(log )(在++=x a x f a x上的最大值和最小值之和为a ,则a 的值为( )A .41 B .21 C .2 D .4(2004湖北理)5.函数1(0,1)x y a a a a=->≠的图象可能是( )6.对数式2log (5)a a b --=中,实数a 的取值范围是 ( ) A .(,5)-∞ B .(2,5) C .(2,3)(3,5) D .(2,)+∞7.已知212(1)3log log log 0(01)a a ax x x a +==><<,则123,,x x x 的大小关系为 .18.若函数()log (4)xa f x a =-在区间[1,2]-上单调递减,则实数a 的取值范围是----( )A.2a >B.12a <<C.114a <<或12a << D.以上都不对 9.若正实数,ab 满足baa b =,且1a <,则有( )(A )a b > (B )a b < (C )a b = (D )不能确定、a b 的大小关系 10.在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( )(07天津)A .在区间[]1,2--上是增函数,区间[]4,3上是增函数B .在区间[]1,2--上是增函数,区间[]4,3上是减函数C .在区间[]1,2--上是减函数,区间[]4,3上是增函数D .在区间[]1,2--上是减函数,区间[]4,3上是减函数 B .第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题11.比较下列各组值的大小;(1)3.022,3.0; (2)5252529.1,8.3,1.4-.12.若函数x ya m =+的图象过第一、三、四象限,则a m 、应满足 .13.设{}12,1,,1,2,32α∈--,则使y x =α为奇函数且在(0,)+∞上单调递减的α值为 ▲ .14.幂函数mmx x f 42)(-=的图象关于y 轴对称,且在()0,+∞上递减,则整数m = ▲ .15.若118m m-+=,则1122__________m m-+= 1122__________m m--=16.已知log 162x =,则x 等于 ( ) A .±4 B .4 C .256 D .217.给出函数1() (4)()2(1) (4)xx f x f x x ⎧⎪=⎨⎪+<⎩≥,则2(log 3)f =_______________-18. 在平面直角坐标系xOy中,设直线2m y +和圆222x y n +=相切,其中m ,*0||1n m n ∈<-≤N ,,若函数1()x f x m n +=- 的零点0(,1),x k k k ∈+∈Z ,则k = .19.函数212xy =-的定义域是 ,值域是 20.已知,52,98==ba则=125log 9 (用b a ,表示)21.已知)1,0()(≠>=-a a a x f x ,当)1,0(∈a 时,)(x f 为 (填写增函数或者减函数);当)1,0(∈a 且∈x 时,)(x f >1.22.已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是 . 23.函数21log (32)x y x -=-的定义域是24.某种商品在近30天内每件的销售价P (元)与时间t (天)的函数关系近似满足),3025(,100),241(,20{N t t t N t t t P ∈≤≤+-∈≤≤+=,商品的日销售量Q (件)与时间t (天)的函数关系近似满足),301(40N t t t Q ∈≤≤+-=,求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中第几天?25.]9,1[,log 1)(3∈+=x x x f ,则22)]([)(x f x f y +=的最大值是26.已知函数4)(x ax x f -=,]1,21[∈x ,B A ,是其图象上不同的两点.若直线AB 的斜率k 总满足421≤≤k ,则实数a 的值是 。

指数函数与对数运算测试题(附答案)

指数函数与对数运算测试题(附答案)

指数函数与对数运算测试题 班级 姓名 得分1、21-⎡⎤⎢⎥⎣⎦等于( )A 、2B 、1C 、D 、122、设全集为R ,且{|0}A x =≤,22{|1010}x xB x -==,则()R A B= ð( )A 、{2}B 、{—1}C 、{x|x ≤2}D 、∅3、函数()f x = )A 、(,0]-∞B 、[0,)+∞C 、(,0)-∞D 、(,)-∞+∞4、已知对不同的a 值,函数1()2(01)x f x a a a -=+>≠,且的图象恒过定点P ,则P 点的坐标是( ) A 、()0,3 B 、()0,2 C 、()1,3 D 、()1,25、函数1()2y = )A 、1[1,]2- B 、(,1]-∞- C 、[2,)+∞ D 、1[,2]26、已知lg 2,lg 3a b ==,则lg 12lg 15等于( )A 、21a b a b+++ B 、21a b a b+++ C 、21a b a b+-+ D 、21a b a b+-+7、已知2lg(2)lg lg x y x y -=+,则xy的值为 ( ) A 、1 B 、4 C 、1或4 D 、4或—18、函数xy a =(a >1)的图象是( b )9、若221333111(),(),()522a b c ===,则a ,b ,c 的大小关系是 ( )A 、a>b>cB 、c>b>aC 、a>c>bD 、b>a>c10、已知函数()f x 的定义域是(0,1),那么(2)xf 的定义域是( ) A.(0,1) B.(21,1) C.(-∞,0) D.(0,+∞)11、若集合A ={y | y=2x , x ∈R } , B = {y | y=x 2 , x ∈R } , 则( )A B B.A A 、2a B C 、二、填空题(4⨯5‘)1、点(2,1)与(1,2)在函数()2ax b f x +=的图象上,则()f x 的解析式为 22x -+2、求函数11(),[0,2]3x y x -=∈的值域是 [1/3,3]3、已知()f x 是奇函数,且当x>0时,()10x f x =,则x<0时,()f x = 10x --4、若集合{}{},,lg()0,,x xy xy x y =,则228log ()x y += 1/3三、解答题(7⨯10‘)1、计算(1)122(11)]-+- ; (2)4912log 3log 2log ⋅-。

(完整版)指数函数与对数函数练习题(40题)

(完整版)指数函数与对数函数练习题(40题)

(完整版)指数函数与对数函数练习题(40题)指数函数与对数函数试题训练1、若01x y <<<,则( )A .33yx< B .log 3log 3x y < C .44log log x y < D .11()()44x y <2、函数y =( )A 。

(3,+∞) B.[3, +∞) C 。

(4, +∞) D.[4, +∞)3.82log 9log 3的值是 A23, B 1 C 32D 24.化简55log 8log 2可得 A 5log 4 B 53log 2 C 5log 6 D 35.已知8log 3p =,3log 5q =,则lg 5= A35p q+ B 13pq p q ++ C 313pq pq + D22p q +6.已知1()102x f x -=-,则1(8)f -=A 2B 4C 8D 127.设log x a a =(a 为大于1的整数),则x 的值为A lg 10a aB 2lg10a aC lg 10a aD1lg10a a8.已知c a b 212121log log log <<,则( )A .c a b 222>>B .c b a 222>>C .a b c 222>>D .b a c 222>>9.函数21log y x=的图像大致是10.已知01a <<,则函数x y a =和2(1)y a x =-在同一坐标系中的图象只可能是图中的11.若372log πlog 6log 0.8a b c ===,,,则( ) (A )a 〉b 〉c (B)b 〉a >c (C )c 〉a 〉b(D )b>c 〉a 12.设3log 5a =,则5log 27=CA B C D(完整版)指数函数与对数函数练习题(40题)A 3aB 3aC 3a -D 3a13.方程212233210x x +--⋅+=的解是A {2-,3}-B {2,3}-C {2,3}D {2-,3}14.若110x <<,则2(lg )x 、2lg x 、lg(lg )x 的大小关系是A 22(lg )lg lg(lg )x x x <<B 22lg (lg )lg(lg )x x x <<C 22(lg )lg(lg )lg x x x <<D 22lg(lg )(lg )lg x x x << 15.若log 4log 40(m n m <<、n 均为不等于1的正数),则A 1n m <<B 1m n <<C 1n m <<D 1m n <<16.若log (3)log (3)0m n ππ-<-<,m 、n 为不等于1的正数,则A 1n m <<B 1m n <<C 1n m << D1m n <<17.如图,指数函数x y a =,x y b =,x y c =,x y d =在同一坐标系中,则a ,b ,c ,d 的大小顺序是A a b c d <<<B aC b a d c <<<D b a c d <<<18. 如图,设a ,b ,c ,d 都是不等于1坐标系中,函数log a y x =,log b y x =,log y =log d y x =的图象如图,则a ,b ,c ,d 关系是A a b c d >>>BC a b d c >>>D b a d c >>>19。

(完整版)指数函数对数函数专练习题(含答案)

(完整版)指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎨⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x≥2x≥1,∴f (3x)≥f (2x).若x <0,则3x<2x<1,∴f (3x)>f (2x).∴f (3x)≥f (2x).答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x-2x>1且a >2,由A ⊆B 知a x-2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎨⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x)<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+的值域为[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x-4x,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一. (2)此时g (x )=λ·2x-4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x-ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x=u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

精选新版《指数函数和对数函数》单元测试完整题(含参考答案)

精选新版《指数函数和对数函数》单元测试完整题(含参考答案)

2019年高中数学单元测试试题 指数函数和对数函数(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.(2012湖北理)函数2()cos f x x x =在区间[0,4]上的零点个数为 ( )A .4B .5C .6D .72.函数f(x)=23xx +的零点所在的一个区间是()(A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2)(2010天津理2)3.直角梯形ABCD 中,P 从B 点出发,由B →C →D →A 沿边缘运动,设P 点运动的距离是x,△ABP 的面积为f(x),图象如图,则△ABC 的面积为( )A BCDA,10 B,16 C,18 D,324.已知f(x)=x 3+1,则xf x f x )2()32(lim-+∞→=( )A,4 B,12 C,36 D,39 (邯郸一模)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题5.函数lg(3)y x =-的定义域为__________________________ 6.已知1249a =(a>0) ,则23log a = . (重庆卷13) 7.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 (填上对应的数字).8.函数()x f y =是R 上的奇函数,满足()()x f x f -=+33,当x ∈(0,3)时()x x f 2=,则当x ∈(6-,3-)时,()x f =9.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (12)=0,则不等式f (log 2x )<0的解集为 ▲ .10.定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 .11.已知A C A S 则},2,4{},4,3,2{S ===12.已知lg a 和lg b 是关于x 的方程20x x m -+=的两根,而关于x 的方程2(lg )(1lg )0x a x a --+=有两个相等的实数根,求实数,a b 和m 的值.【例2】1,1000,6100a b m ===-13.3243)1()25(-+--x x 有意义,则x 的取值范围是14.函数)0(121)(≠+-=x a x f x是奇函数,则a = . 15.函数|1|2ax y+=的图象关于直线1x =对称,则a = .16.若2log 2,log 3,m na a m n a+=== 。

最新精选单元测试《指数函数和对数函数》测试题(含参考答案)

最新精选单元测试《指数函数和对数函数》测试题(含参考答案)

2019年高中数学单元测试试题 指数函数和对数函数(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.(2012湖北理)函数2()cos f x x x =在区间[0,4]上的零点个数为 ( )A .4B .5C .6D .72.若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是( ) (A))1,41[(B) )1,43[(C)),49(+∞(D))49,1( (2005天津理) 3.设a=3log 2,b=ln2,c=125-,则( )A .a<b<cB .b<c<aC .c<a<bD .c<b<a(2003)4.设2lg ,(lg ),a e b e c ===(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >> (2009全国卷Ⅱ文)5.设f(x)=|log 3x|,若f(x)>f(27),则x 的取值范围是( ) A,(0,72)∪(1,27) B,(27,+∞) C,(0, 72)∪(27,+∞) D,( 72,27)(湖南示范)6.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是()(07江西)A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 1A .第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题7.函数2()ln(1)f x x x=+-的零点所在的区间是(n ,n +1),则正整数n =______.8. 已知幂函数()f x k x α=⋅的图象过点1,2⎛ ⎝⎭,则k α+= ▲ .9.已知函数221(0)()2(0)x x f x xx ⎧+≤=⎨->⎩,则不等式()2f x x -≤的解集是 △ .10. 函数()321f x ax a =-+在[1,1]-上存在一个零点,则实数a . 15a ≥或1a ≤- 11.函数2log 22-=x x y 的最小值是 ,此时x 的值为 。

指数函数与对数函数经典练习题

指数函数与对数函数经典练习题

同步测控优化训练B 卷(指数函数与对数函数)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.设f :x →y =2x 是A →B 的映射,已知集合B ={0,1,2,3,4},则A 满足( )A.A ={1,2,4,8,16}B.A ={0,1,2,log 23}C.A ⊆{0,1,2,log 23}D.不存在满足条件集合考查映射概念、指数、对数运算.【解析】 A 中每个元素在集合中都有象,令2x =0,方程无解.分别令2x =1,2,3,4,解得x =0,1,log 23,2.【答案】 C2.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则( )A.Q =PB.Q PC.P ∩Q ={2,4}D.P ∩Q ={(2,4)}考查集合间关系及函数值域.【解析】 P =[0,+∞),Q =(0,+∞).【答案】 B3.已知函数f (x )=log a (2-ax )在[0,1]上为减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)考查对数函数定义域及单调性.【解析】 由y =log a (2-ax )单调性及2-ax >0对任意x ∈[0,1]恒成立,可求得1<a <2.【答案】 B4.已知函数f (x )=⎩⎨⎧≤>)0(3)0( log 2x x x x 时f [f (41)]的值是( ) A.9 B.91 C.-9 D.-91 考查对分段函数对应法则的理解.【解析】 f (41)=log 241=-2, f (-2)=3-2=91 【答案】 B5.若函数f (x )=log 2(x -1)+log 2(x +2)的反函数为g (x ),则g (2)等于( )A.1B.-3C.2D.2或-3考查对数函数及互为反函数间的函数关系.【解析】 依题意⎩⎨⎧=+->2)2)(1(log 12x x x ⇒x =2 【答案】 C6.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一坐标系内的图象可能是( )【解析】 ∵f (3)=a 3>0,∴g (3)=log a 3<0,∴0<a <1【答案】 C7.若函数y =log 21(2-log 2x )的值域是(-∞,0),则其定义域是( )A.x <2B.0<x <2C.0<x <4D.2<x <4考查对数函数定义域、值域.【解】 令2-log 2x =u ,由题意知u >1,⇒log 2x <1,故0<x <2.【答案】 B8.若定义运算a *b =⎩⎨⎧>≥)( )( a b a b a b ,则函数f (x )=3x *3-x 的值域是( )A.(0,]1B.[1,+)∞C.(0,+∞)D.(-∞,+∞)考查函数值域及灵活运用能力.【解析】 若3x ≥3-x ,即x ≥0,则f (x )=3-x若3x <3-x ,即x <0,则f (x )=3x故值域为(0,1]【答案】 A9.若x 0是方程2x =x1的解,则x 0∈( ) A.(0.1,0.2) B.(0.3,0.4)C.(0.5,0.7)D.(0.9,1) 考查指数函数图象性质及估算能力.【解析】 画出y =2x ,y =x 1图象. ∵20.1<20.2<1,而1.01>2.01=5 排除A ,同理排除B 20.5=2≈1.414,20.7>20.5, 而5.01=2,7.01≈1.42821>20.9>20.5≈1.414,而9.01≈1.11 【答案】 C10.)A.v =log 2tB.v =log 21t C.v =212-t D.v =2t -2 考查构建数学模型的能力,具开放性.【解析】 五组数据,取近似值1.99≈2;4.04≈4;5.1≈5,18.01≈18,代入验证可知v =212-t 最接近. 【答案】 C第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分)11.方程log 3(1-2·3x )=2x +1的解x =______.考查对数与指数运算.【解析】 32x +1=1-2·3x ,即3(3x )2+2·3x -1=0解得3x =31,故x =-1 【答案】 -1 12.函数f (x )=a x (a >0且a ≠1)在区间[1,2]上的最大值比最小值大2a ,则a 的值为______. 考查指数函数的单调性及解决问题的能力.【解析】 当a >1时,f (x )为增函数,a 2-a =2a ,得a =23 当0<a <1时,f (x )=a x 在[1,2]上为减函数,有a -a 2=2a ⇒a =21, 故a =21或23 【答案】 21或23 13.设函数f (x )=]⎩⎨⎧+∞∈-∞∈-),1( log 1,( 281x x x x ,则满足f (x )=41的值为______. 考查分段函数对应法则理解及对数运算.【解析】 若x ∈(-∞,1),有2-x =41,∴x =2,但2∉(-∞,]1; 若x ∈(1,+∞),有log 81x =41 ∴x =3符合题意【答案】 314.国家规定的个人稿酬纳税方法是:不超过800元的不纳税,超过800元而不超过4000元的按超过800元的14%纳税;超过4000元按全部稿酬的11%纳税,某人出版了一本书,共纳税420元,他的稿费为______元.考查函数应用及解决实际问题的能力.【解析】 若其稿费为4000,则应纳税3200×14%=448>420故稿费应小于4000元,设为x 元则(x -800)14%=420,解得x =3800(元)【答案】 3800三、解答题(本大题共5小题,共54分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)已知函数f (x )=21+lg xx +-11. (1)求此函数的定义域,并判断函数单调性.(2)解关于x 的不等式f [x (x -21)]<21. 【解】 (1)f (x )=21+lg x x +-11=21+lg(-1+x+12) 要使f (x )有意义,即xx +-11>0,∴f (x )的定义域为-1<x <1 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(-1+112x +)-lg(-1+212x +) ∵-1<x 1<x 2<1,∴0<x 1+1<x 2+1∴-1+112x +>-1+212x + ∴f (x 1)>f (x 2),即f (x )在(-1,1)上为减函数(2)∵f (0)=21,∴f [x (x -21)]<21=f (0) 由(1)知f (x )在(-1,1)上为奇函数 ∴⎪⎪⎩⎪⎪⎨⎧>-<-<-0)21(1)21(1x x x x ,解得:41712104171+<<<<-x x 或 即不等式解集为(4171-,0)∪(21,4171+) 16.(本小题满分10分)已知y =log 4(2x +3-x 2).(1)求定义域;(2)求f (x )的单调区间;(3)求y 的最大值,并求取最大值时x 值.考查对数函数、二次函数的单调性、最值.【解】 (1)由2x +3-x 2>0,解得-1<x <3∴f (x )定义域为{x |-1<x <3}(2)令u =2x +3-x 2,则u >0,y =log 4u由于u =2x +3-x 2=-(x -1)2+4再考虑定义域可知,其增区间是(-1,1),减区间是[1,)3又y =log 4u 为(0,+∞)增函数, 故该函数单调递增区间为1,1],减区间为[1,3)(3)∵u =2x +3-x 2=-(x -1)2+4≤4∴y =log 4u ≤log 44=1故当x =1时,u 取最大值4时,y 取最大值1.17.(本小题满分12分)已知函数f (x )=2x -x 2(x ≥0),问是否存在这样的正数a 、b ,当x ∈[a ,b ]时g (x )=f (x ),且g (x )值域[b 1,a1]?若存在,求出所有a 、b 之值,若不存在,请说明理由. 考查函数知识综合运用,分类讨论思想.【解】 分三种情况讨论:①当0<a <b ≤1时,那么a1>1,而当x ≥0时,f (x )的最大值为1,故此时不可能使g (x )=f (x ) ②当0<a <1<b 时,则g (x )最大值为g (1)=f (1)=1,即a1=1,得a =1与0<a <1<b 矛盾 ③当1≤a <b 时,∵x ≥1,f (x )为减函数,则g (x )=f (x )=2x -x 2,于是有⎪⎪⎩⎪⎪⎨⎧+-==+-==a a a g ab b b g b 2)(12)(122 即⎪⎩⎪⎨⎧=---=---0)1)(1(0)1)(1(22a a a b b b ∵1≤a <b ,∴a =1,b =251+ 18.(本小题满分12分)若p ∈R ,且当|log 2p |<2时,不等式px +1>2x -p 恒成立,试求x 的取值范围. 考查对数基本概念及分类讨论思想.【解】 由|log 2p |<2得-2<log 2p <2,则41<p <4 由不等式px +1>2x -p ,得p (x +1)>2x -1①当x >-1时,112+-x x <p ,即⎪⎩⎪⎨⎧<-≤+-xx x 141112,解得-1<x ≤75 ②当x <-1时,112+-x x >p ,即⎪⎩⎪⎨⎧-<≥+-14112x x x ,解得-25≤x <-1 ∴x 的取值范围为(-1,⎥⎦⎤75∪[-25,-)1 19.(本小题满分12分)某医药研究所开发一种新药,如果成人按规定的剂量使用,据监测,服药后每毫升血液中的含药量y 与时间t 之间近似满足如图曲线(1)写出服药后y 与t 之间的函数关系式;(2)据测定,每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中第一次服药为7:00,问一天中怎样安排服药时间、次数,效果最佳?考查函数应用及分析解决问题的能力.【解】 (1)依题意,得y =⎪⎪⎩⎪⎪⎨⎧≤≤+-≤≤)821(53254)210(12t t t t (2)设第二次服药时,在第一次服药后t 1小时 则-54t 1+532=4,t 1=3 因而第二次服药应在10:00设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为两次服药后含药量之和,即有-54t 2+532-54(t 2-3)+532=4 解得:t 2=7(小时)设第四次服药在第一次服药后t 3小时(t 3>8),则此时第一次服的药已吸收完,此时血液中含药量应为第二、三次之和 -54(t 3-3)+532+[-54(t 3-7)+532]=4解得t3=10.5小时故第四次服药应在17:30.。

最新版精选《指数函数和对数函数》单元测试完整题(含参考答案)

最新版精选《指数函数和对数函数》单元测试完整题(含参考答案)

2019年高中数学单元测试试题 指数函数和对数函数(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题 1.若ln 2ln 3ln 5,,235a b c ===,则( ) A .a<b<c B .c<b<a C .c<a<b D .b<a<c(2005全国3文)2.对一切实数x ,若二次函数2()()f x ax bx c a b =++<的值恒为非负数,则a b cM b a++=-的最小值是 ( )(A) 3 (B)2 (C)12 (D)133.有下列命题:○1log (0,1)a N b a a =>≠与(0,1)ba N a a =>≠是同一个关系式的两种不同表达形式; ○2对数的底数是任意正数; ○3若(0,1)ba N a a =>≠,则log a Na N =一定成立;○4在同底的条件下,log a N b =与ba N =可以互相转化. 其中,是真命题的是 () A .○1○2 B .○2○4 C .○1○2○3 D .○1○3○44.设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( )(07全国Ⅰ) AB .2C .D .4 A5.对于函数①()()12lg +-=x x f ,②()()22-=x x f ,③()()2cos +=x x f .判断如下三个命题的真假:命题甲:()2+x f 是偶函数;命题乙:()()2,∞-在区间x f 上是减函数,在区间()+∞,2上是增函数;命题丙:()()x f x f -+2在()+∞∞-,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是()(07北京) A .①③ B .①② C . ③D . ② D6.设a >1,且)2(log ),1(log )1(log 2a p a n a m a a a =-=+=,则p n m ,,的大小关系为A . n >m >pB . m >p >nC . m >n >pD . p >m >n (07安徽) B .第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题7.定义:区间1212[,]()x x x x <的长度为21x x -,已知函数0.5|log (2)|y x =+定义域为[,]a b ,值域为[0,3],则区间[,]a b 的长度的最大值为 ▲ .8.已知函数()(1).1f x a a =≠- (1)若a >0,则()f x 的定义域是 ; 3,a⎛⎤-∞ ⎥⎝⎦(2) 若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是 . ()(],01,3-∞⋃(湖南卷14)9.某同学在研究函数 f (x ) = x1 + | x | (x R ∈) 时,分别给出下面几个结论: ①等式()()0f x f x -+=在x R ∈时恒成立; ②函数 f (x ) 的值域为 (-1,1);③若x 1≠x 2,则一定有f (x 1)≠f (x 2);④函数()()g x f x x =-在R 上有三个零点.其中正确结论的序号有 ▲ .(请将你认为正确的结论的序号都填上)10.设0x 是方程ln 4x x +=的解,且0x ∈(),1k k +,则 k=11.设奇函数f (x )在[—1,1]上是增函数,且f (—1)= 一1.若函数,f (x )≤t 2一2 a t +l 对所有的x ∈[一1.1]都成立,则当a ∈[1,1]时,t 的取值范围是12.设方程=+-∈=+k k k x x x x 则整数若的根为),21,21(,4200___ .13. 若关于x 的不等式2293x x x kx ++-≥在[1,5]上恒成立,则实数k 的范围为 .14.设()24xf x x =--, 0x 是函数()f x 的一个正数零点, 且0(,1)x a a ∈+, 其中a N ∈, 则a =15.已知函数f (x )=log 2(x 2-a x +3a ),对于任意x ≥2,当△x >0时,恒有f (x +△x )>f (x ), 则实数a 的取值范围是 ▲ .16.求满足下列条件的实数x 的范围:(1)28x>;(2)1327x <;(3)1()2x >4)50.2x< 17.xy 3=的值域为______________________ ;18.函数x a y =和)1,0(log ≠>=a a x y a 的图象关于 对称.19.已知函数)0,10(log )(>≠>-+=b a a bx bx x f a 且. (1)求)(x f 的定义域;(2)讨论)(x f 的奇偶性;(3)讨论)(x f 的单调性.20.已知函数2()2f x x x a =++,2()962f bx x x =-+,其中x R ∈,,a b 为常数,则方程()0f ax b +=的解集为 . ∅ (湖北卷13)21. 函数)2ln()(2x x x f -=的单调递增区间是________▲_______.22.方程3log 3=+x x 的解在区间)1,(+n n 内,*n N ∈,则n = ▲ . 23.幂函数y =f (x )的图象经过点(-2,-18),则满足f (x )=27的x 的值是__________24.函数y = e x + e −x (e 是自然对数的底数)的值域是 ▲ . 关键字:指数;对勾函数;求值域25.已知5()lg ,f x x =则(2)f =26.函数x a y =在]1,0[上的最大值与最小值的和为3,则a 的值为 . 27.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与对数运算单元测试题(经典全面,一
套涵盖)
本文档为指数与对数运算的单元测试题,旨在全面覆盖该主题的经典问题。

下面是一套经过精心设计的测试题,希望对您的研究和理解有所帮助。

第一部分:指数运算
1. 计算 $2^4$ 的值。

2. 将 $8^{\frac{1}{3}}$ 表达为根式。

3. 解方程 $5^x = 125$,并给出结果。

第二部分:对数运算
4. 计算 $\log_{10} 100$ 的值。

5. 将 $\log_2 16$ 表达为指数形式。

6. 解方程 $\log_3 x = 2$,并给出结果。

第三部分:指数与对数运算的性质
7. 对于任意正数 a 和 b,证明 $\log_a b = \frac{\log_c a}{\log_c b}$。

8. 证明 $a^{\log_a b} = b$。

9. 对于任意正数 a、b 和 c,证明 $a^{\log_b c} = c^{\log_b a}$。

第四部分:指数和对数问题的应用
10. 某种细菌每20分钟翻倍,开始时有100个细菌。

经过多少
分钟后,细菌数量将达到1000个?
11. 若投资本金元,年利率为5%,按复利计算,多少年后本金
将增长到元?
12. 若某物品每年贬值20%,初始价值为元,多少年后其价值
将降至5000元以下?
以上是本套指数与对数运算单元测试题的全部内容。

请按照题
目要求逐个回答,并给出详细解答和计算过程。

祝您顺利完成测试!。

相关文档
最新文档