第1讲集合与常用逻辑用语(学生)

合集下载

高考数学集合与常用逻辑用语

高考数学集合与常用逻辑用语

第一单元集合与常用逻辑用语第1讲集合课前双基巩固1.元素与集合(1)集合元素的性质:、、无序性.(2)集合与元素的关系:①属于,记为;②不属于,记为.(3)集合的表示方法: 列举法、和.(4)常见数集及其符号表示:2.集合间的基本关系A B或B A 3.集合的基本运算}}常用结论(1)非常规性表示常用数集:如{x|x=2(n-1),n∈Z}为偶数集,{x|x=4n±1,n∈Z}为奇数集等.(2)①一个集合的真子集必是其子集,一个集合的子集不一定是其真子集;②任何一个集合是它本身的子集;③对于集合A,B,C,若A⊆B,B⊆C,则A⊆C(真子集也满足);④若A⊆B,则有A=⌀和A≠⌀两种可能.(3)集合子集的个数:集合A中有n个元素,则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.(4)①并集的性质:A∪⌀=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A;②交集的性质:A∩⌀=⌀;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B;③补集的性质:A∪(∁U A)=U;A∩(∁U A)=⌀;∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).题组一常识题1.[教材改编]已知集合A={-1,0,1,2},B={-1,1,2,5},则集合A∩B所含元素之和为.2.[教材改编]已知集合A={a,b},若A∪B={a,b,c},则满足条件的集合B有个.3.[教材改编]设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B= .4.[教材改编]已知集合A={-1,1},B={a,a2+2}.若A∩B={1},则实数a的值为.题组二常错题◆索引:忽视集合元素的性质致错;对集合的表示方法理解不到位致错;忘记空集的情况导致出错;集合运算中端点取值致错;对子集的概念理解不到位致错.5.已知集合A={1,3,},B={1,m},若B⊆A,则m= .6.已知集合A={x|y=log2(x+1)},集合B=y y=,x>0,则A∩B= .7.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是.8.设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},若A B,则a的取值范围为.9.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为.课堂考点探究探究点一集合的含义与表示1 (1)设集合A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B中的元素有 ()A.5个B.4个C.3个D.无数个(2)设集合A={-4,2a-1,a2},B={9,a-5,1-a},且A,B中有唯一的公共元素9,则实数a的值为.[总结反思] (1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合,然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的意义.(2)依据元素与集合的关系确定参数时,往往要对集合中含参数的元素取值情况进行分类讨论,并要注意检验集合中的元素是否满足互异性.式题(1)设集合A={-1,0,2},集合B={-x|x∈A且2-x∉A},则B=()A.{1}B.{-2}C.{-1,-2}D.{-1,0}(2)已知集合A={x|x=3k-1,k∈Z},则下列表示正确的是()A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A探究点二集合间的基本关系2 (1)[2017·江西八校联考]集合M=x x=+1,n∈Z,N=y y=m+,m∈Z,则两集合M,N 的关系为()A.M∩N=⌀B.M=NC.M⊆ND.N⊆M(2)[2017·大庆三模]已知集合A={y|0≤y<a,y∈N},B={x|x2-2x-3≤0,x∈N},若A⫋B,则满足条件的正整数a所构成集合的子集的个数为()A.2B.4C.8D.16[总结反思] (1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A的子集的个数,需先确定集合A中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题.式题(1)[2017·长沙一中月考]已知集合A={x|x2-2x≤0},B={x|x≤a},若A⊆B,则实数a的取值范围是()A.a≥2B.a>2C.a<0D.a≤0(2)[2017·临川一中模拟]若集合A∪B=B∩C,则对于集合A,B,C的关系,下列表示正确的是()A.A⊆B⊆CB.C⊆B⊆AC.B⊆C⊆AD.B⊆A⊆C探究点三集合的基本运算考向1集合的运算3 (1)[2017·保定二模]设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=()A.{3,0}B.{3,0,2}C.{3,0,1}D.{3,0,1,2}(2)已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},则集合A∩B= ()A.{1,2}B.{x=1,y=2}C.{(1,2)}D.{x=1,x=2}(3)[2017·河西五市二模]已知全集U=R,集合A={x|y=lg(x-1)},B={y|y=},则A∩(∁B)=()UA.[1,2]B.[1,2)C.(1,2]D.(1,2)[总结反思] 解决集合的基本运算问题一般应注意以下几点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决运算问题的前提.(2)对集合化简.有些集合是可以化简的,如果先化简再研究其关系并进行运算,可使问题变得简单明了,易于解决.(3)注意数形结合思想的应用.集合运算常用的数形结合形式有数轴和Venn图.考向2利用集合运算求参数4 (1)[2017·邯郸二模]已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)[2017·泰安二模]设全集U=R,集合A={x|x>1},集合B={x|x>p},若(∁U A)∩B=⌀,则p应该满足的条件是()A.p>1B.p≥1C.p<1D.p≤1[总结反思] 根据集合运算结果求参数,主要有以下两种形式:(1)用列举法表示的集合,直接依据交、并、补的定义求解,重点注意公共元素;(2)由描述法表示的集合,一般先要对集合化简,再依据数轴确定集合的运算情况,特别要注意端点值的情况.考向3集合语言的运用5 设P和Q是两个集合,定义集合P-Q={x|x∈P且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1≤x<2}D.{x|0≤x<2}[总结反思] 解决集合新定义问题,应做到:(1)准确转化.解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.(2)方法选取.对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.强化演练1.【考向1】[2017·资阳二模]设全集U=R,集合A={x|(x+1)(x-3)<0},B={x|x-1≥0},则图1-1-1中阴影部分所表示的集合为()图1-1-1A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}2.【考向1】[2017·汕头三模]已知集合A={x∈N|x<3},B={x|x=a-b,a∈A,b∈A},则A∩B=()A.{1,2}B.{-2,-1,0,1,2}C.{1}D.{0,1,2}3.【考向2】[2017·天津静海一中二模]设集合A={-1,1,2},B={a+1,a2-2},若A∩B={-1,2},则a 的值为()A.-2或-1B.0或1C.-2或1D.0或-24.【考向2】[2017·厦门一中模拟]已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a 的取值范围是()A.a≤1B.a<1C.a≥2D.a>25.【考向3】若数集A={a1,a2,…,a n}(1≤a1<a2<…<a n,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),a i a j 与两数中至少有一个属于A,则称集合A为“权集”.则()A.{1,3,4}为“权集”B.{1,2,3,6}为“权集”C.“权集”中元素可以有0D.“权集”中一定有元素1第2讲命题及其关系、充分条件与必要条件课前双击巩固1.命题(1)命题概念:在数学中把用语言、符号或式子表达的,能够判断的陈述句叫作命题.其中的语句叫作真命题,的语句叫作假命题.(2)四种命题及其相互关系图1-2-1注:若两个命题互为逆否命题,则它们有相同的真假性.2.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的条件;(2)如果q⇒p,则p是q的条件;(3)如果既有p⇒q又有q⇒p,记作p⇔q,则p是q的条件.常用结论1.充要条件的两个结论(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件;(2)若p是q的充分不必要条件,则q是p的充分不必要条件.2.充分、必要条件与集合的关系使p成立的对象构成的集合为A,使q成立的对象构成的集合为BB⊆AA BB A题组一常识题1.[教材改编]对于下列语句:①垂直于同一直线的两条直线必平行吗?②作△ABC∽△A'B'C';③x2+2x-3<0;④四边形的内角和是360°.其中是命题的是.(填序号)2.[教材改编]下面有4个命题:①集合N中最小的数是1;②若-a不属于N,则a属于N;③若a ∈N,b∈N,则a+b的最小值为2;④x2+1=2x的解可表示为.其中真命题的个数为.3.[教材改编]命题“若整数a不能被2整除,则a是奇数”的逆否命题是.4.[教材改编]已知集合M={x|1<x<a},N={x|1<x<3},则“a=3”是“M⊆N”的条件. 题组二常错题◆索引:命题的条件与结论不明确;含有大前提的命题的否命题易出现否定大前提的情况;真、假命题的推理考虑不全面;对充分必要条件判断错误.5.命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是.6.已知命题“∀a,b∈R,若ab>0,则a>0”,则它的否命题是.7.若命题“ax2-2ax-3≤0成立”是真命题,则实数a的取值范围是.8.已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q的条件.课堂考点探究探究点一四种命题及其相互关系1 (1)已知命题α:如果x<3,那么x<5,命题β:如果x≥3,那么x≥5,命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③(2) 给出以下五个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数;⑤若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递减.其中为真命题的是.(写出所有真命题的序号)[总结反思] (1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)当一个命题不易直接判断真假时,根据“互为逆否的命题同真同假”的结论,可转化为判断与其等价的命题的真假.式题(1)命题“若a,b,c成等比数列,则b2=ac”的逆否命题是()A.若a,b,c成等比数列,则b2≠acB.若a,b,c不成等比数列,则b2≠acC.若b2=ac,则a,b,c成等比数列D.若b2≠ac,则a,b,c不成等比数列(2)[2017·枣庄二模]已知命题“若x>1,则2x<3x”,则在它的逆命题、否命题、逆否命题中,真命题的个数是()A.0B.1C.2D.3探究点二充分﹑必要条件的判断2 (1)[2017·北京卷]设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)[2017·天津卷]设θ∈R,则“θ-<”是“sin θ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[总结反思] 充要条件的三种判断方法:(1)定义法.根据p⇒q,q⇒p进行判断.(2)集合法.根据p,q成立时对应的集合之间的包含关系进行判断.(3)等价转化法.根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断,这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件.式题(1)对任意的实数x,若[x]表示不超过x的最大整数,则“-1<x-y<1”是“[x]=[y]”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)[2017·衡水一模]设p:<1,q:log2x<0,则p是q的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件探究点三充分、必要条件的应用3 (1)[2017·湖北新联考四联]若“x>2m2-3”是“-1<x<4”的必要不充分条件,则实数m的取值范围是()A.[-1,1]B.[-1,0]C.[1,2]D.[-1,2](2)已知条件p:≤-1,条件q:x2+x<a2-a,且q的一个充分不必要条件是p,则a的取值范-围是()A.--B.C.[-1,2]D.-∪[2,+∞)[总结反思] (1)求解充分、必要条件的应用问题时,一般是把充分、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意对区间端点值进行检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现错误.式题(1)[2017·武汉三模]下面四个条件中,使a>b成立的必要而不充分条件是() A.a-1>b B.a+1>bC.|a|>|b|D.a3>b3(2)“直线x-y-k=0与圆(x-1)2+y2=2有两个不同的交点”的一个充分不必要条件可以是()A.-1≤k<3B.-1≤k≤3C.0<k<3D.k<-1或k>3第3讲简单的逻辑联结词、全称量词与存在量词课前双击巩固1.简单的逻辑联结词命题中的、、叫作逻辑联结词,用符号分别表示为、、.2.全称量词与存在量词(1)短语“对所有的”“对任意一个”在逻辑中通常叫作,用符号“”表示.(2)短语“存在一个”“至少有一个”在逻辑中通常叫作,用符号“”表示.(3)含有一个量词的命题的否定:全称命题p:∀x∈M,p(x),它的否定是.特称命题q:∃x0∈M,q(x0),它的否定是.常用结论1.否命题是把原命题的条件与结论都否定,命题的否定只需否定命题的结论.2.用“并集”的概念来理解“或”,用“交集”的概念来理解“且”,用“补集”的概念来理解“非”.3.记忆口诀:(1)“p或q”,有真则真;(2)“p且q”,有假则假;(3)“非p”,真假相反.4.命题p∧q的否定是p∨q;命题p∨q的否定是p∧q.题组一常识题1.[教材改编]给出下列命题:①函数y=ln x是减函数;②2是方程x+2=0的根又是方程x-2=0的根;③28是5的倍数或是7的倍数.其中是“p或q”形式的命题的是.(填序号)2.[教材改编]p∨q是真命题,q是真命题,则p是(填“真”或“假”)命题.3.已知命题p:∃x0∈R,+x0-1<0,则命题p是.4.[教材改编]命题“有的四边形是平行四边形”的否定是.题组二常错题◆索引:全称命题或特称命题的否定出错;不会利用真值表判断命题的真假;复合命题的否定中出现逻辑联结词错误;考查命题真假时忽视对参数的讨论.5.[教材改编]命题“所有奇数的立方都是奇数”的否定是.6.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数.则下列命题中为真命题的是.(填序号)①p∨q;②p∧q;③p∧q;④p∨q.7.已知命题:若ab=0,则a=0或b=0,则其否命题为.8.已知命题“∀x∈R,ax2+4x+1>0”是假命题,则实数a的取值范围是.课堂考点探究探究点一含逻辑联结词的命题及真假1 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.p∨qB.p∨qC.p∧qD.p∨q(2)给出下列两个命题:命题p:若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为.命题q:若函数f(x)=x+,则f(x)在区间1,上的最小值为4.那么,下列命题为真命题的是()A.p∧qB.pC.p∧qD.p∧q[总结反思] 判断含有逻辑联结词的命题真假的一般步骤:(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据“或”:一真即真,“且”:一假即假,“非”:真假相反,作出判断即可.式题(1)[2017·惠州调研]设命题p:若定义域为R的函数f(x)不是偶函数,则∀x∈R,f(-x)≠f(x),命题q:f(x)=x|x|在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误..的是() A.p为假B.q为真C.p∨q为真D.p∧q为假(2)已知命题p:若x>y,则-x<-y,命题q:若x<y,则x>y2.给出命题:①p∧q;②p∨q;③p∧q;④p ∨q.其中为真命题的是()A.①③B.①④C.②③D.②④探究点二全称命题与特称命题2 (1)[2017·陕西师大附中二模]若命题p:对任意的x∈R,都有x3-x2+1<0,则p为()A.不存在x0∈R,使得-+1<0B.存在x0∈R,使得-+1<0C.对任意的x∈R,都有x3-x2+1≥0D.存在x0∈R,使得-+1≥0(2)下列命题中为假命题的是()A.∃α,β∈R,sin(α+β)=sin α+sin βB.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数C.∃x0∈R,+a+bx0+c=0(a,b,c∈R且为常数)D.∀a>0,函数f(x)=(ln x)2+ln x-a有零点[总结反思] 全称命题与特称命题的真假判断及其否定:∀x∈M,p(x)式题[2017·山东师大附中二模]已知f(x)=e x-x,g(x)=ln x+x+1,命题p:∀x∈R,f(x)>0,命题q:∃x0∈(0,+∞),g(x0)=0,则下列说法正确的是()A.p是真命题,p:∃x0∈R,f(x0)<0B.p是假命题,p:∃x0∈R,f(x0)≤0C.q是真命题,q:∀x∈(0,+∞),g(x)≠0D.q是假命题,q:∀x∈(0,+∞),g(x)≠0探究点三根据命题的真假求参数的取值范围3 (1)[2017·南充一模]设p:∃x0∈1,,g(x0)=log2(t+2x0-2)有意义,若p为假命题,则t 的取值范围为.(2)[2017·湖南十三校二联]已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点; 命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是. [总结反思] 根据命题真假求参数的方法步骤:(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)求出每个命题是真命题时参数的取值范围;(3)根据每个命题的真假情况,求出参数的取值范围.式题(1)[2018·衡水中学模拟]已知命题p:∃x0∈R,+ax0+a<0,若p是真命题,则实数a 的取值范围为()A.[0,4]B.(0,4)C.(-∞,0)∪(4,+∞)D.(-∞,0]∪[4,+∞)(2)[2017·太原二模]若命题“∀x∈(0,+∞),x+≥m”是假命题,则实数m的取值范围是.。

《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)

《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)

设集合 A={1,3,5,7},B={x|2≤x≤5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
解析:选 B.因为 A={1,3,5,7},B={x|2≤x≤5},所以 A∩B ={3,5}.
栏目 导引
第一章 集合与常用逻辑用语
已知集合 M={x|-1<x<3},N={x|-2<x<1},则 M∩N= ________. 解析:在数轴上表示出集合,如图所示,
并集与交集 掌握并集与交集的相关 逻辑推理、数学运算、
的性质
性质,并会应用
数学抽象
第一章 集合与常用逻辑用语
问题导学 预习教材 P10-P12,并思考以下问题: 1.两个集合的并集与交集的含义是什么? 2.如何用 Venn 图表示集合的并集和交集? 3.并集和交集有哪些性质?
栏目 导引
1.并集
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
2.已知集合 A={x|-3≤x<4},B={x|-2≤x≤5},则 A∩B=
() A.{x|-3≤x≤5} C.{x|-2≤x≤5}
B.{x|-2≤x<4} D.{x|-3≤x<4}
解析:选 B.因为集合 A={x|-3≤x<4},集合 B={x|-2≤x≤5}, 所以 A∩B={x|-2≤x<4}.
1.若集合 A={x|-2<x<1},B={x|0<x<2},则集合 A∩B=( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 解析:选 D.如图,

集合与常用逻辑用语集合课件理

集合与常用逻辑用语集合课件理

逻辑用语与集合运算的关系
逻辑用语和集合运算之间存在密切的关系。在数理逻辑中,逻辑运算符(如“和 ”、“或”、“非”等)可以用来对集合进行运算,从而引出集合论中的一些运 算和概念。
例如,“A和B的并集”可以看作是集合{A,B}的一个子集,因此可以用集合论中 的并集概念来研究逻辑运算符“和”。
05
集合与常用逻辑用语的学 习方法与技巧
常用符号
常用大写英文字母A、B、C等表示 集合,用小写英文字母a、b、c等表 示集合的元素。
描述法
用朴素的语言描述集合,例如{x|x是 1到100的整数}。
列举法
将集合的元素逐一列出,例如{1, 2, 3, ..., 100}。
集合的运算
并集
交集
将两个或多个集合的所有元素合并在一起, 形成一个新的集合。
含有有限个元素的集合称 为有限集。
无限集
含有无限个元素的集合称 为无限集。
02
常用逻辑用语
命题及其关系
命题
一个完整的、可以判断真 假的陈述句。
命题的否定
对命题的真实性进行否定 。
命题的否命题
对命题的否定进行否定, 与原命题等价。
命题及其关系
命题的逆否命题:将原命题的 条件和结论进行互换,并同时 对它们进行否定。
学习逻辑联结词
掌握“或”、“且”、“非”等逻辑联结 词的含义及使用方法。
学习充分条件与必要条件
理解充分条件与必要条件的定义及判定方 法。
学习量词
理解全称量词和存在量词的含义及使用方 法。
如何将集合与逻辑用语结合学习
理解命题的集合表 示
学习如何使用集合表示命题,了 解命题与集合之间的对应关系。
学习集合的逻辑运 算

高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案含解析第一册

高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案含解析第一册

1.1 集合1.1。

1集合及其表示方法内容标准学科素养1。

通过实例了解集合的含义,体会元素与集合的“属于”关系.数学抽象数学建模2.能用自然语言、图形语言、集合语言描述不同的具体问题。

授课提示:对应学生用书第1页[教材提炼]知识点一元素与集合的概念1.集合:有一些能够确定的、不同的对象汇聚在一起,就说由这些对象构成一个集合.通常用英文大写字母A,B,C…表示.2.元素:组成集合的每个对象都是这个集合的元素,通常用英文小写字母a,b,c…表示.3.空集:不含任何元素的集合称为空集,记作∅。

知识点二元素与集合的关系1.属于:如果a是集合A的元素,就记作a∈A,读作a属于A。

2.不属于:如果a不是集合A中的元素,就记作a∉A,读作a 不属于集合A。

3.无序性:集合中的元素,可以任意排列,与次序无关.知识点三集合元素的特点1.确定性:集合的元素必须是确定的.2.互异性:对于一个给定的集合,集合中的元素一定是不同的.知识点四集合的分类1.有限集:含有有限个元素的集合.2.无限集:含有无限个元素的集合.知识点五几种常见的数集号N*知识点六集合的表示方法1.列举法把集合的所有元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,这种表示集合的方法称为列举法.2.描述法(1)特征性质:一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.(2)描述法:用特征性质p(x)来表示集合的方法,称为特征性质描述法,简称描述法.知识点七区间及其表示1.如果a<b,则有下表:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a 〈x<b}开区间(a,b){x|a≤x 〈b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.实数集R可以用区间表示为(-∞,+∞),“∞"读作“无穷大”.如:符号[a,+∞)(a,+∞)(-∞,a](-∞,a)定义{x|x≥a}{x|x〉a}{x|x≤a}{x|x〈a}[自主检测]1.下列给出的对象中,能组成集合的是()A.与定点A,B等距离的点B.高中学生中的游泳能手C.无限接近10的数D.非常长的河流答案:A2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案:D3.下列结论中,不正确的是()A.若a∈N,则错误!∉NB.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈QD.若a∈R,则错误!∈R答案:A4.分别用描述法、列举法表示大于0小于6的自然数组成的集合.解析:描述法:{x∈N|0<x<6},列举法:{1,2,3,4,5}.授课提示:对应学生用书第2页探究一集合的概念[例1]下列对象中可以构成集合的是()A.大苹果B.小橘子C.中学生D.著名的数学家[解析]选项正误原因A×大苹果到底以多重算大,标准不明确B×小橘子到底以多重算小,标准不明确C√中学生标准明确,故可构成集合Dד著名”的标准不明确[答案]C判断一个“全体"是否能构成一个集合,其关键是对标准的“确定性”的把握,即根据这个“标准”,可以明确判定一个对象是或者不是给定集合的元素.给出下列元素①学习成绩较好的同学;②方程x2-1=0的解;③漂亮的花儿;④大气中直径较大的颗粒物.其中能组成集合的是()A.②B.①③C.②④D.①②④答案:A探究二元素与集合的关系[例2]集合A中的元素x满足错误!∈N,x∈N,则集合A 中的元素为________.[解析]由错误!∈N,x∈N知x≥0,错误!>0,且x≠3,故0≤x<3.又x∈N,故x=0,1,2。

高中数学(新人教A版)必修第一册:第1章章末 集合与常用逻辑用语【精品课件】

高中数学(新人教A版)必修第一册:第1章章末 集合与常用逻辑用语【精品课件】

达标检测
1.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有
A.2个
√B.4个
C.6个
D.8个
2.命题p:“对任意一个实数x,均有x2≥0”,则 命题 的否定p为( C ) (A)存在x0∈R,使得x02 ≤0 (B)对任意x∈R,均有x2≤0 (C)存在x0∈R,使得 x02 <0 (D)对任意x∈R,均有x2<0
解题技巧: 1.若已知集合是用描述法给出的,则读懂集合的代表元 素及其属性是解题的关键. 2.若已知集合是用列举法给出的,则整体把握元素的共 同特征是解题的关键. 3.对集合中的元素要进行验证,保证集合内的元素不重 复.
【跟踪训练1】 设集合A={x∈Z|0<x<4},B={x|(x4)(x-5)=0},M={x|x=a+b,a∈A,b∈B},则集合M中元素 的个数为( )
解:CU B x x 1或x>2 可画数轴如下:
1
12
1
数形结合的思想 x 1 1 2数轴法 x
A B=x 1 x 2 A B=x x>-1
A (CU B) x x 2 A (CU B) x x 1或x 1
点评 (I),画数轴上方的线时,同一集合画同一高度,
不同的集合画不同的高度。
3 2

a≥32
解题技巧:
1.若所给集合是有限集,则首先把集合中的元素一一列举 出来,然后结合交集、并集、补集的定义来求解.另外,针对 此类问题,在解答过程中也常常借助Venn图来求解.这样处 理起来比较直观、形象,且解答时不易出错.
分析: 画出韦恩图,形 象地表示出各数 量关系的联系
方法归纳:解决这一类问题一般借用数形结合,借 助于Venn 图,把抽象的数学语言与直观 的图形结合起来

高中数学知识点总结(第一章 集合与常用逻辑用语)

高中数学知识点总结(第一章 集合与常用逻辑用语)

第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。

新教材2023年高中数学 第1章 集合与常用逻辑用语 1


必备知识 ·探新知
知识点 1 子集、真子集的概念 1.子集的概念
定义
一般地,对于两个集合A,B,如果集合A中__任__意__一__个___元素 都是集合B中的元素,就称集合A为集合B的子集
记法与读法 记作_A_⊆__B___(或_B_⊇__A___),读作“A包含于B”(或“B包含A”)
图示 结论
故集合A={-4,-1,4},由0个元素构成的子集为:∅. 由1个元素构成的子集为:{-4},{-1},{4}. 由2个元素构成的子集为:{-4,-1},{-4,4},{-1,4}. 由3个元素构成的子集为:{-4,-1,4}. 因此集合A的子集为:∅,{-4},{-1},{4},{-4,-1},{-4, 4},{-1,4},{-4,-1,4}. 真子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{- 1,4}.
因此,B 中元素必定是 A 中的元素,即 B⊆A,故选 B.
(2)在A中,M和N表示不同的点; 在B中,M是空集,N是单元素集; 在C中,M是数集,N是点集; 在D中,M={y|y=x2+1,x∈R}={y|y≥1}, N={t|t=(y-1)2+1,y∈R}={t|t≥1}. 因此,M=N.故选D.
[正解] 因为 B⊆A,所以当 B≠∅,即 a≠0 时,B=x|x=-1a,因 此有-1a∈A,所以 a=±1;
③P={x|x2-x=0},Q=x|x=1+2-1n.
[分析] (1)将集合 A、B 中的表达式分别提取14,再分析得到式子的 形式,可得 A、B 的关系;
(2)结合每个集合中元素的形式和元素的取值进行判断; (3)根据数集的意义、不等式表示的范围等方法进行判断.
[解析] (1)对集合 B,x=2k+14=14(2k+1),因为 k 为整数,所以集合 B 表示的数是14的奇数倍;对集合 A,x=4k+12=14(k+2),因为 k+2 是整 数,所以集合 A 表示的数是14的整数倍.

高中数学必修一第一章集合与常用逻辑用语重难点归纳(带答案)

高中数学必修一第一章集合与常用逻辑用语重难点归纳单选题1、若集合A ={x ∣|x |≤1,x ∈Z },则A 的子集个数为( )A .3B .4C .7D .8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A ={x ∥x ∣≤1,x ∈Z } ={−1,0,1},则A 的子集个数为23=8个,故选:D.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=()A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B ={−2,−1,1},则A ∩(∁U B )={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、已知集合A={x|x+2x−4<0},B={0,1,2,3,4,5},则(∁R A)∩B=()A.{5}B.{4,5}C.{2,3,4}D.{0,1,2,3}答案:B分析:首先化简集合A,再根据补集的运算得到∁R A,再根据交集的运算即可得出答案.因为A={x|x+2x−4<0}=(−2,4),所以∁R A={x|x≤−2或x≥4}.所以(∁R A)∩B={4,5}故选:B.5、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可. 解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.6、设集合A={x|x2=1},B={x|ax=1}.若A∩B=B,则实数a的值为()A.1B.−1C.1或−1D.0或1或−1答案:D分析:对a进行分类讨论,结合B⊆A求得a的值.由题可得A={x|x2=1}={1,−1},B⊆A,当a=0时,B=∅,满足B⊆A;当a≠0时,B={1a },则1a=1或1a=−1,即a=±1.综上所述,a=0或a=±1.故选:D.7、下列命题中正确的是()①∅与{0}表示同一个集合②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}③方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2}④集合{x∣4<x<5}可以用列举法表示A.只有①和④B.只有②和③C.只有②D.以上都对答案:C分析:由集合的表示方法判断①,④;由集合中元素的特点判断②,③.解:对于①,由于“0”是元素,而“{0}”表示含0元素的集合,而 ϕ 不含任何元素,所以①不正确;对于②,根据集合中元素的无序性,知②正确;对于③,根据集合元素的互异性,知③错误;对于④,由于该集合为无限集、且无明显的规律性,所以不能用列举法表示,所以④不正确.综上可得只有②正确.故选:C.8、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.小提示:本题考查了积事件的概率公式,属于基础题.多选题9、设集合M={x|a<x<3+a},N={x|x<2或x>4},则下列结论中正确的是()A.若a<−1,则M⊆N B.若a>4,则M⊆NC.若M∪N=R,则1<a<2D.若M∩N≠∅,则1<a<2答案:ABC解析:根据集合包含的定义即可判断AB;根据交集并集结果求出参数范围可判断CD.对于A,若a<−1,则3+a<2,则M⊆N,故A正确;对于B,若a>4,则显然任意x∈M,则x>4,则x∈N,故M⊆N,故B正确;对于C,若M∪N=R,则{a<23+a>4,解得1<a<2,故C正确;对于D,若M∩N=∅,则{a≥23+a≤4,不等式无解,则若M∩N≠∅,a∈R,故D错误.故选:ABC.10、定义:若集合A非空,且是集合B的真子集,就称集合A是集合B的孙子集.下列集合是集合B={1,2,3}的孙子集的是()A.∅B.{1}C.{1,2}D.{1,2,3}答案:BC分析:根据孙子集的定义,结合各选项集合与集合B的关系,即可确定正确选项.A:∅为集合B的真子集,当不是非空集,不合要求;B:{1}为集合B的真子集,且为非空集,符合要求;C:{1,2}为集合B的真子集,且为非空集,符合要求;D:{1,2,3}为集合B的子集,但不是真子集,不合要求.故选:BC11、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.B∩A=B D.A=B=C解析:根据集合A,B,C中角的范围,对选项逐一分析,由此得出正确选项.对于A选项,A∩C除了锐角,还包括其它角,比如−330∘,所以A选项错误.对于B选项,锐角是小于90∘的角,故B选项正确.对于C选项,锐角是第一象限角,故C选项正确.对于D选项,A,B,C中角的范围不一样,所以D选项错误.故选:BC小提示:本小题主要考查角的范围比较,考查集合交集、并集和集合相等的概念,属于基础题.填空题12、已知集合A={x|ax2﹣3x+1=0,a∈R},若集合A中至多只有一个元素,则a的取值范围是 _____.,+∞).答案:{0}∪[94分析:分类讨论方程解的个数,从而确定a的取值范围.当a=0时,方程可化为﹣3x+1=0,,故成立;解得x=13当a≠0时,Δ=9﹣4a≤0,;解得a≥94综上所述,a的取值范围是{0}∪[9,+∞).4,+∞).所以答案是:{0}∪[9413、已知命题“存在x∈R,使ax2−x+2≤0”是假命题,则实数a的取值范围是___________.答案:a>18分析:转化为命题“∀x∈R,使得ax2−x+2>0”是真命题,根据二次函数知识列式可解得结果.因为命题“存在x∈R,使ax2−x+2≤0”是假命题,所以命题“∀x∈R,使得ax2−x+2>0”是真命题,当a=0时,得x<2,故命题“∀x∈R,使得ax2−x+2>0”是假命题,不合题意;当a≠0时,得{a>0Δ=1−8a<0,解得a>18.所以答案是:a>18小提示:关键点点睛:转化为命题“∀x∈R,使得ax2−x+2>0”是真命题求解是解题关键.14、已知集合A={x|x≥4或x<−5},B={x|a+1≤x≤a+3},若B⊆A,则实数a的取值范围_________.答案:{a|a<−8或a≥3}分析:根据B⊆A,利用数轴,列出不等式组,即可求出实数a的取值范围.用数轴表示两集合的位置关系,如上图所示,或要使B⊆A,只需a+3<−5或a+1≥4,解得a<−8或a≥3.所以实数a的取值范围{a|a<−8或a≥3}.所以答案是:{a|a<−8或a≥3}解答题15、用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.答案:(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}分析:(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)}。

集合与常用逻辑用语ppt课件


A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
【解析】 化简集合B,利用交集的定义求解.
由题意知B={x|-2<x<1},所以A∩B={-1,0}.故
选A.
【答案】 A
高考总复习·文科数学(RJ)
.
12
第一章 集合与常用逻辑用语
3.(2015·天津)已知全集U = {1,2,3,4,5,6,7,8},
.
15
第一章 集合与常用逻辑用语
题型一 集合的基本概念 【例 1】 (1)(2016·桂林高一检测)由实数 x,-x,|x|, x2,
-3 x3所组成的集合中最多含( A.2 个元素 C.4 个元素
) B.3 个元素 D.5 个元素
高考总复习·文科数学(RJ)
.
16
第一章 集合与常用逻辑用语
(2)(2015·广 东 ) 若 集 合 E = {(p , q , r , s)|0≤p<s≤4 ,
,B={2,3,4},则A∩(∁UB)=( ) A.{1,2,5,6} B.{1}
C.{2}
D.{1,2,3,4}
高考总复习·文科数学(RJ)
.
31
第一章 集合与常用逻辑用语
【解析】 (1)先化简集合A,再利用集合的交集的定义 或利用数轴求解.
由已知可得集合A={x|1<x<3},又因为B={x|2<x<4}, 所以A∩B=(2,3),故选C.
【思维点拨】 求解本题首先应分类讨论,根据 x 的取值与集合中 元素的互异性判断集合中的元素的个数. 【解析】 (1) x2=|x|,-3 x3=-x,当 x=0 时,它们均为 0; 当 x>0 时,它们分别为 x,-x,x,x,-x;当 x<0 时,它们分别 为 x,-x,-x,-x,-x.通过以上分析,它们最多表示两个不 同的数,故集合中元素最多有 2 个.故选 A.

专题一一讲集合与常用逻辑用语PPT课件


下一页
末页
质量铸就品牌 品质赢得未来
第一讲 集合与常用逻辑用语 结束
[解析] (1)∵A={x|x>2或x<0},B={x|- 5<x< 5}, ∴A∩B ={x|- 5<x<0或2<x< 5},A∪B=R.
(2)依题意,P∩Q=Q,Q⊆P,于是22aa+ +11<>33a,-5, 3a-5≤22,
第一讲 集合与常用逻辑用语 结束
(2)给出下列命题:
①∀x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,则x>1; ③“若a>b>0且c<0,则ac>bc”的逆否命题;
④若p且q为假命题,则p,q均为假命题.
其中真命题是
A.①②③
B.①②④
C.①③④
D.②③④
()
数学
首页
上一页
{x|- 5<x< 5},则
()
A.A∩B=∅
B.A∪B=R
C.B⊆A
D.A⊆B
(2)(2013·江西省七校联考)若集合P={x|3<x≤22},非空集
合Q={x|2a+1≤x<3a-5},则能使Q⊆(P∩Q)成立的a的取值范
围为
()
A.(1,9)
B.[1,9]
C.[6,9)
D.(6,9]
数学
首页
上一页
假;綈p和p为一真一假两个互为对立的命题.
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第一讲 集合与常用逻辑用语 结束
(3)“或”命题和“且”命题的否定:命题p∨q的否定是 綈p∧綈q;命题p∧q的否定是綈p∨綈q.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 1 函数与导数、不等式
第1讲 集合与常用逻辑用语
一.瞄准高考
1.集合的基本概念
(1)集合中元素的特性:确定性、互异性、无序性.
(2)集合的表示方法:列举法、描述法、图示法.
(3)子集、真子集、空集、集合相等的概念.
2.集合的基本运算
(1)交集:A∩B={x|x∈A,且x∈B}.
(2)并集:A∪B={x|x∈A,或x∈B}.
(3)补集:∁UA={x|x∈U,且x∉A}.
3.四种命题及其关系
两个命题互为逆否命题,它们有相同的真假性;
两个命题为互逆命题或互否命题,它们的真假性
没有关系;
一个命题的逆命题与它的否命题同真同假.
4.充要条件
用集合的关系理解充分、必要条件:设命题p对应集合A,命题q对应集合B,则
p⇒q等价于A⊆B,p⇔q等价于A=B.
5.简单的逻辑联结词
逻辑联结词有“且”,“或”,“非”等.用逻辑联结词“且”,“或”把命题p和命题q
联结起来,就得到一个新命题,记作“p∧q” ,“p∨q”;对一个命题p全盘否定,就得到一个
新命题,记作“┐p”.
6.全称量词与存在量词
(1)全称命题p:∀x∈M,p(x), 它的否定┐p:∃x0∈M,┐p(x0).
(2)存在性命题p:∃x0∈M,p(x0), 它的否定┐p:∀x∈M,┐p(x).
二.解析高考

题型一 集合的运算
例1 设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.
(1)当a=-4时,分别求A∩B和A∪B; (2)若(∁RA)∩B=B,求实数a的取值范围.
题型二 命题与逻辑联结词
例2 给出下列命题:
①命题:∃x∈R,x2-3x≤0的否定是:∀x∈R,x2-3x>0;
②命题“若一个数是负数,则它的平方是正数”的否定是“若一个数不是负数,则它的
平方不是正数”;
③若ac2④若命题p∧q与┐p∨q均为假命题,则命题p真,命题q假;
⑤命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是“若f(x)不是奇函数,则f(-x)
不是奇函数”.
请判断以上命题的真假.

题型三 充分必要条件
例3 已知p:x2-8x-20≤0,q:x2-2x+1-m2≤0 (m>0),且┐p是┐q的必要不充分条件,
求实数m的取值范围.

【变式】已知命题p:2x2-9x+a<0,命题q: x2-4x+3<0,x2-6x+8<0,且┐p是┐q的充分条件,求实
数a的取值范围.

题型四 量词、含有量词的命题的否定
例4 命题“对任意的x∈R,x3-x2+1≤0”的否定是 .
【变式】 (2010·辽宁)已知a>0,函数f(x)=ax2+bx+c.若x0满足关于x的方程2ax+b=0,则
下列选项的命题中①∃x∈R,f(x)≤f(x0);②∃x∈R,f(x)≥f(x0);③∀x∈R,f(x)≤f(x0);④∀x∈R,
f(x)≥f(x0).其中为假命题的是 .

三.感悟高考
1.解答集合有关问题时,正确理解集合的意义,准确地化简集合是关键,其次要注意
元素的互异性,空集是任何集合的子集等问题,对于复杂问题,要借助数轴和韦恩图加以
解决,尤其注意转化和化归、数形结合等数学思想的运用.
2.充分、必要、充要、既非充分也非必要条件的判断必须坚持“双向”的原则,也可
转化为等价命题来判断.
3.解决有关逻辑题时,细微之处要谨慎,稍有不慎就会出错,要树立简化意识、逆否
命题意识、特例反驳意识.
四.备战高考
1. 若集合M={(x,y)|x+y=0,x∈R,y∈R)},N={(x,y)|x2+y2=1,x∈R,y∈R},则M∩N
= .
2. 集合A={0,2,a2},B={1,a},若A∩B={1},则a的值为 .

3. “m<14”是“一元二次方程x2+x+m=0”有实数解的 条件.
4. 已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”.若命题“┐p且q”
是真命题,则实数a的取值范围为 .

5. 已知集合S={x|x-2x<0},T={x|x2-(2a+1)x+a2+a≥0}(a∈R),若S∪T=R,则实数a的取
值范围是 .
6. 已知全集U={-2,-1,0,1,2},集合A={-1,0,1},B={-2,-1,0},则A∩(∁UB)=______.
7. 设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁UA)∩B=,则m的值
是________________.
8. 设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0
无实根,则使p∨q为真,p∧q为假的实数m的取值范围是_________________________.
9. 已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等
式x2+2ax+2a≤0,若命题“p或q”是假命题,求a的取值范围.
10. 已知函数y=lg(-x2+x+2)的定义域为A,指数函数y=ax(a>0且a≠1)(x∈A)的值域
为B.
(1)若a=2,求A∪B;

(2)若A∩B={12,2},求a的值

相关文档
最新文档