函数模型及其应用训练题

合集下载

函数模型及其应用

函数模型及其应用

函数模型及其应用典型例题【例1】光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈ 解:(1) (110%)().x y a x N *=-∈ (2)111,(110%),0.9,333x x y a a a ≤∴-≤∴≤ 0.91lg3log 10.4,32lg31x -≥=≈- ∴ 11x =. 【例2】1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿?解:设x 年后人口总数超过14亿. 由题意得 12(10.0125)14x ⨯+=,即 71.01256x =. 两边取常用对数,得lg1.0125lg7lg6x =-. ∴ lg7lg612.4lg1.0125x -=≈. 所以,13年后,即2008年我们人口总数超过14亿.点评:平均增长率的问题:可以用公式(1)x y N p =+表示.【例3】某商店按每件80元的价格,购进时令商品(卖不出去的商品将成为废品)1000件;市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,商店决定提高售价x 元,请将获得总利润y 元表示为x 的函数,并确定合理售价,求出最大利润.解:设比100元的售价高x 元,总利润为y 元;则 22(100)(10005)8010005500200005(50)32500y x x x x x =+--⨯=-++=--+. 显然,当50x =即售价定为150元时,利润最大;其最大利润为32500元.【例4】某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式y =f (t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间?解:(1)当0≤t ≤1时,y =4t ;当t ≥1时,1()2t a y -=,此时(1,4)M 在曲线上, ∴114(),32a a -==,这时31()2t y -=. 所以34(01)1()()(1)2t t t y f x t -≤≤⎧⎪==⎨≥⎪⎩. (2)∵ 340.251()0.25,()0.252t t f t -≥⎧⎪≥⎨≥⎪⎩即, 解得1165t t ⎧⎪≥⎨≤⎪⎩ ,∴ 1516t ≤≤. ∴ 服药一次治疗疾病有效的时间为115541616-=个小时. 点评:生活中有许多实际问题,常作为函数模型的应用背景. 我们需依据四步曲“读题理解→建模转化→求解问题→检验作答”求解,从冗长的文字语言中精炼出数学语言,选择合适的数学模型来研究.【例5】某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(024t ≤≤).从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?解:设t 小时后蓄水池中的水量为y 吨,则400601206y t t =+-.令6t =x ,则26x t =,即240010120y x x =+-210(6)40,[0,12]x x =-+∈.∴ 当6x =,即6t =时,min 40y =,所以,从供水开始到第6小时时,蓄水池水量最少,只有40吨.点评:运用二次函数的模型,常解决一些最大(小)值的问题,对生产生活等问题进行优化.【例6】某公司是一家专做产品A 的国内外销售的企业,每一批产品A 上市销售40天内全部售完. 该公司对第一批产品A 上市后的国内外市场销售情况进行了跟踪调查,调查结果如图所示,其中图一中的折线表示的是国外市场的日销售量与上市时间的关系;图二中的抛物线表示国内市场的日销售量与上市时间的关系;图三中的折线表示的是每件产品A 的销售利润与上市时间的关系(国内外市场相同).(1)分别写出国内市场的日销售量()f t 、国外市场的日销售量()g t 与第一批产品A 的上市时间t 的关系式;(2)第一批产品A 上市后,求日销售利润()Q t 的解析式.解:(1)当030t ≤≤时,设()f t kt =,由6030k =解得k =2,则()2f t t =.当3040t <≤时,设()f t at b =+,由{6030040a b a b =+=+解得{6240a b =-=,则()6240f t t =-+.所以,国内市场的日销售量{2(030)()6240(3040)t t f t t t ≤≤=-+<≤. 设()(40)g t at t =-,由6020(2040)a =-解得320a =-. 所以,国外市场的日销售量23()620g t t t =-+(040t ≤≤). (2)设每件产品A 的销售利润为()q t ,由图易得{3(020)()60(2040)t t q t t ≤≤=<≤,从而这家公司的日销售利润()Q t 的解析式为3222924(020)20()()[()()]9480(2030)914400(3040)t tt Q t q t f t g t t tt t t ⎧-+≤≤⎪⎪=+=-+<≤⎨⎪-+<≤⎪⎩. 点评:销售量由图象分段给出,设立各段图象的解析式,由待定系数法易求解. 单件利润也是分段函数. 解题的关键在于合理分段,正确得到日销售利润的分段函数式.【例7】某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件,为了以后估计每个月的产量,以这三个月的产品数据为依据. 用一个函数模拟产品的月产量y 与月份数x 的关系,模拟函数可选用二次函数2()f x px qx r =++(其中,,p q r 为常数,且0p ≠)或指数型函数()x g x a b c =⋅+(其中,,a b c 为常数),已知4月份该产品的产量为1.37万件,请问用上述哪个函数作为模拟函数较好?并说明理由.解:当选用2()f x px qx r =++的模型时,142 1.293 1.3p q r p q r p q r ++=⎧⎪++=⎨++=⎪⎩, 解得0.050.350.7p q r =-⎧⎪=⎨=⎪⎩, ∴()4 1.3f =.当选用()xg x a b c =⋅+的模型时,2311.21.3a b c a b c a b c ⋅+=⎧⎪⋅+=⎨⎪⋅+=⎩ ,解得0.80.51.4a b c =-⎧⎪=⎨=⎪⎩, ∴()4 1.35g =.根据4月份的实际产量可知,选用()0.80.5 1.4x y =-⨯+作模拟函数较好. 点评:根据所给出的几种函数模型,用待定系数法确定系数后,再根据所求得的函数解析式检验其余的一些数据,通过比较误差的大小而优选适合的函数模型.【例8】建造一容积为83m 深为2m 的长方体形无盖水池,每2m 池底和池壁造价各为120元和80元.(1)求总造价关于一边长x 的函数解析式,并指出该函数的定义域;(2)判断(1)中函数在(0,2]和[2,)+∞上的单调性;(3)如何设计水池尺寸,才能使总造价最低;解:(1)水池的总造价为:484802(22)120480320(),(0,)2y x x x xx=⨯+⨯+⨯=++∈+∞ (2)由函数单调性定义,易证得函数4480320()y x x =++在(0,2]上递减,在[2,)+∞上递增.(3) 当2x =时,总造价最低点评:通过计算得到一类函数模型,继而研究该分式函数的单调性,借助单调法讨论函数的最大(小)值,从而得到实际问题的优化解决.。

配餐作业12函数模型及其应用

配餐作业12函数模型及其应用

配餐作业(十二)函数模型及其应用一、选择题1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是() A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+100解析根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得。

故选C。

答案 C2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是() A.118元B.105元C.106元D.108元解析设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108。

故选D。

答案 D3.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案。

据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q 与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()解析 由题意可知:曲线上的点的切线斜率应该逐渐增大,选项B 中,Q 的值随t 的变化越来越快。

故选B 。

答案 B4.(2018·福建漳州检测)设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正的常数)。

公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产。

分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %。

若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析 由题意,分流前原有员工100人从事产品A 的生产,每年创造的产值为100t 万元,分流x 人后,剩余(100-x )人每年创造的产值为(100-x )(1+1.2x %)t ,则由⎩⎨⎧ 0<x <100,(100-x )(1+1.2x %)t ≥100t ,解得0<x ≤503。

函数模型及其应用

函数模型及其应用

函数模型及其应用教学目标:了解指数函数、对数函数、幂函数、简单分段函数等函数模型的意义,并能进行简单应用;2010年考试说明B.基础训练:1.已知函数b ax x f +=)(,且7)3(=f ,1)5(-=f ,则)0(f =________,)1(f =__________2.直线a x =和函数12+=x y 的图像的公共点可能________个3.若函数262+-=x mx y 的图像与x 轴只有一个公共点,则m =______4.若方程03)3(42=-+-k x x 没有实数根,则k 的取值范围____________5.用长为30cm 的铁丝围成矩形,试将矩形面积S )(2cm 表示为矩形一边长)(cm x 的函数解析式为______________6. 画出下列函数的图像。

(1)2||1x x y ++= ; (2)||2x x y -=; (3)|3|)(+=x x f典型例题:某市出租汽车收费标准如下:在3km 以内(含3km )路程按起步价7元收费,超过3km 以外的路程按2.4元/km 收费,试写出收费额关于路程的函数解析式。

某公司将进货单价为8元一个的商品按10元一个销售,每天可买出100个,若这种商品的销售价每个上涨一元,则销售量就减少10个(1)求销售价为13元时每天的销售利润;(2)如果销售利润为360元,那么销售价上涨了几元?课堂检测:1.建造一个容积为8 m 3,深为2 m 的长方形无盖水池,如果池底和池壁的造价为120元/m 2和80元/m 2 ,求造价y(元)关于地面一边长x(m)的函数解析式,并指出函数的定义域。

2.销售甲、乙两种商品所得的利润分别是P (万元)和Q (万元),它们与投入资金t (万元)的关系有经验公式P=51t ,Q=53t 。

今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x (万元),试建立总利润y (万元)关于x 的函数表达式。

2021届新高考版高考数学考点通关提升训练:第二章第八讲 函数模型及其应用

2021届新高考版高考数学考点通关提升训练:第二章第八讲 函数模型及其应用

2021届新高考版高考数学考点通关提升训练
第二章函数概念与基本初等函数Ⅰ
第八讲函数模型及其应用
1.[改编题]下列说法正确的是()
A.函数y=2x的函数值比y=x2的函数值大
B.不存在x0,使<log a x0
C.在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度
D.“指数爆炸”是对指数型函数y=a·b x+c(a≠0,b>0,b≠1)的增长速度越来越快的形象比喻
2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()
x1.992345.156.126
y1.5174.041 87.51218.01
A.y=2x - 2
B.y=(x2 - 1)
C.y=log 2x
D.y=lo x
3.下列函数中,随着x的增大,y也增大,且增长速度最快的是()
A.y=0.001e x
B.y=1 000ln x
C.y=x1 000
D.y=1 000·2x
4.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:
销售单价/元45678910
日均销售量/件400360320280240200160
请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的销售单价应为()。

函数模型及其应用习题课

函数模型及其应用习题课

函数模型及其应用习题课教学目标:1 掌握根据已知条件建立函数关系式。

2培养学生分析问题、解决问题的能力。

3 培养学生应用数学的意识。

教学过程:一.基础练习:1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x 次后得到的细胞个数y 为( )A .y=21+xB 。

y=21-xC 。

y=2xD 。

y=2x 2. 一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,它的解析式为( )A . y=20-2x (x ≤10)B y=20-2x (x <10)C y=20-2x (5 ≤x ≤10)D y=20-2x (5<x <10)3. x 克a%盐水中,加入y 克b%的盐水,浓度变为c%,则x 与y 的函数关系式为( )A .y=b c a c --xB 。

y=c b a c --xC 。

y=c b c a --xD 。

y=ac c b --x 4. 一水池有2相进水口,1个出水口,每个进水口或出水口的进出水速度如图甲、乙所示。

某天0点到家点,该水池的蓄水量如图所示。

(到少打开一个水口)进水量时间 给出以下3相论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水。

则以上3个论断中一定正确的是 。

二.例题:例1. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每亳升血液中的含药量y 与时间t 之间近似满足如图所示的曲线。

(1) 写出服药后y 与t 之间的函数关系式;(2) 据测定:每毫升血液中含药量不少于4微克时治疗疾病有效。

假若某病人一天中第一次服药为7:00,问一天中怎样安排服药的时间、次数,效果最佳。

Y (微克)x6(小时)例2.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售。

这样,仍可获得25%的纯利。

求此个体户给这批服装定的新标价与原标价之间的函数关系。

高三数学: 应用题

高三数学: 应用题

高三数学强化训练应用题(一)函数模型【例1】甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【例2】在数学探究活动中,某兴趣小组合作制作一个工艺品,设计了如图所示的一个窗户,其中矩形ABCD 的三边AB ,BC ,CD 由长为8厘米的材料弯折而成,BC 边的长为2t 厘米(04t <<);曲线AOD 是一段抛物线,在如图所示的平面直角坐标系中,其解析式为23x y =-,记窗户的高(点O 到BC 边的距离)为()f t .(1)求函数()f t 的解析式,并求要使得窗户的高最小,BC 边应设计成多少厘米?(2)要使得窗户的高与BC 长的比值达到最小,BC 边应设计成多少厘米?【例3】为减少人员聚集,某地上班族S 中的成员仅以自驾或公交方式上班.分析显示,当S 中有()%0100x x <<的成员自驾时,自驾群体的人均上班路上时间为:()30,0301800290,30100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,(单位:分钟)而公交群体中的人均上班路上时间不受x 的影响,恒为40分钟,试根据上述分析结果回家下列问题:(1)当x 取何值时,自驾群体的人均上班路上时间等于公交群体的人均上班路上时间?(2)已知上班族S 的人均上班时间计算公式为:()()()%50100%g x f x x x =⋅+-,讨论()g x 的单调性,并说明实际意义.(注:人均上班路上时间,是指单日内该群体中成员从居住地到工作地的平均用时.)1、为践行“绿水青山就是金山银山”的发展理念,聊城市环保部门近年来利用水生植物(例如浮萍、蒲草、芦苇等),对国家级湿地公园—东昌湖进行进一步净化和绿化.为了保持水生植物面积和开阔水面面积的合理比例,对水生植物的生长进行了科学管控,并于2020年对东昌湖内某一水域浮萍的生长情况作了调查,测得该水域二月底浮萍覆盖面积为245m ,四月底浮萍覆盖面积为280m ,八月底浮萍覆盖面积为2115m .若浮萍覆盖面积y (单位:2m )与月份x (2020年1月底记1x =,2021年1月底记13x =)的关系有两个函数模型(0,1)=>>x y ka k a 与2log (0)y m x n m =+>可供选择.(1)你认为选择哪个模型更符合实际?并解释理由;(2)利用你选择的函数模型,试估算从2020年1月初起至少经过多少个月该水域的浮萍覆盖面积能达到2148m ?(可能用到的数据:2log 15 3.9≈1.37≈66.72≈)2、2011年六月康菲公司由于机器故障,引起严重的石油泄漏,造成了海洋的巨大污染,某沿海渔场也受到污染.为降低污染,渔场迅速切断与海水联系,并决定在渔场中投放一种可与石油发生化学反应的药剂.已知每投放a (14a ≤≤,且a R ∈)个单位的药剂,它在水中释放的浓度y (毫克/升)随着时间x (天)变化的函数关系式近似为()y a f x =⋅,其中()()()161,04815,4102x x f x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据实验,当水中药剂的浓度不低于4(毫克/升)时,它才能起到有效治污的作用.称为有效净化;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化.(1)若一次投放4个单位的药剂,则有效治污时间可达几天?(2)若第一次投放2个单位的药剂,6天后再投放a 个单位的药剂,要使接下来的4天中能够持续有效治污,试问a 的最小值(精确到0.1取近似值1.4).3、在研究某市交通情况时发现,道路密度是指该路段上一定时间内用过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量xq v =,x 为道路密度,q 车辆密度,(0,80]x ∈,且801100135(040,3(040)854080x x v k x x k ⎧-<<⎪=⎨⎪--+≤≤>⎩.(1)当交通流量95v>时,求道路密度x 的取值范围;(2)若道路密度80x =时,测得交通流量50v =,求出车辆密度q 的最大值.(二)三角模型【例4】某高档小区有一个池塘,其形状为直角ABC ,90C ∠=︒,2AB =百米,1BC =百米,现准备养一批观赏鱼供小区居民观赏.(1)若在ABC 内部取一点P ,建造APC 连廊供居民观赏,如图①,使得点P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,求连廊AP PC +的长;(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,建造DEF 连廊供居民观赏,如图②,使得DEF 为正三角形,求DEF 连廊长的最小值.r r rr l 【例5】如图,已知某市穿城公路MON 自西向东到达市中心O 后转向东北方向,34MON π∠=,现准备修建一条直线型高架公路AB ,在MO 上设一出入口A ,在ON 上设一出入口B ,且要求市中心O 到AB 所在的直线距离为10km.(1)求A ,B 两出入口间距离的最小值;(2)在公路MO 段上距离市中心O 点30km 处有一古建筑C (视为一点),现设立一个以C 为圆心,5km 为半径的圆形保护区,问如何在古建筑C 和市中心O 之间设计出入口A ,才能使高架公路及其延长线不经过保护区?【例6】某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,32-=r l (l 为圆柱的高,r 为球的半径,2l ≥).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为c 千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y 千元.(1)写出y 关于r 的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的r 的值.1、重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O (如图).为吸引游客,准备在门前两条夹角为6π(即AOB ∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长3AB =且点A ,B 落在小路上,记弓形花园的顶点为M ,且6MAB MBA π∠=∠=,设OBA θ∠=.(1)将OA ,OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA ,OB 长度),才使得喷泉M 与山庄O 距离即值OM 最大?2、某城市为发展城市旅游经济,拟在景观河道的两侧,沿河岸直线1l 与2l 修建景观路(桥),如图所示,河道为东西方向,现要在矩形区域ABCD 内沿直线将1l 与2l 接通,已知60m AB =,80m BC =,河道两侧的景观道路修建费用为每米1万元,架设在河道上方的景观桥EF 部分的修建费用为每米2万元.(1)若景观桥长90m 时,求桥与河道所成角的大小;(2)如何设计景观桥EF 的位置,使矩形区域ABCD 内的总修建费用最低?最低总造价是多少?3、如图是一段半圆柱形水渠的直观图,其横断面是所示的半圆弧ACB ,其中C 为半圆弧中点,渠宽AB 为2米.(1)当渠中水深CD 为0.4米时(D 为水面中点),求水面的宽;(2)若把这条水渠改挖(不准填上)成横断面为等腰梯形的水渠,使渠的底面与水平地面平行,则改挖后的水渠底宽为多少米时(精确到0.01米),所挖的土最少?(三)数列模型【例7】某公司自2020年起,每年投入的设备升级资金为500万元,预计自2020年起(2020年为第1年),因为设备升级,第n年可新增的盈利()()5801,5100010.6,6n nn nan-⎧-≤⎪=⎨-≥⎪⎩(单位:万元),求:(1)第几年起,当年新增盈利超过当年设备升级资金;(2)第几年起,累计新增盈利总额超过累计设备升级资金总额.【例8】某卫材公司年初投资300万元,购置口罩生产设备,立即投入生产,预计第一年该生产设备的使用费用为36万元,以后每年增加6万元,该生产设备每年可给公司带来121万元的收入.假设第n年该设备产生的利润(利润=该年该设备给公司带来的收入-该年的使用费用)为n a.(1)写出n a的表达式;(2)在该设备运行若干整年后,该卫材公司需要升级产品生产线,决定处置该生产设备,现有以下两种处置方案:①当总利润(总利润=各年的收入之和-各年的使用费用-购置口罩生产设备的成本)最大时,以7万元变卖该生产设备;②当年平均总利润最大时,以72万元变卖该生产设备.请你为该公司选择一个合理的处置方案,并说明理由.1、诺贝尔奖每年发放一次,把奖金总金额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类做出最有贡献人.每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以便保证奖金数逐年递增.资料显示:1998年诺贝尔奖发奖后的基金总额(即1999年的初始基金总额)已达19516万美元,基金平均年利率为 6.24%r =.(1)求1999年每项诺贝尔奖发放奖金为多少万美元(精确到0.01);(2)设n a 表示()1998n +年诺贝尔奖发奖后的基金总额,其中*n N ∈,求数列{}n a 的通项公式,并因此判断“2020年每项诺贝尔奖发放奖金将高达193.46万美元”的推测是否具有可信度.2、2019年9月1日,小刘从各个渠道融资30万元,在某大学投资一个咖啡店,2020年1月1日正式开业,已知开业第一年运营成本为6万元,由于工人工资不断增加及设备维修等,以后每年成本增加2万元,若每年的销售额为30万元,用数列{}n a 表示前n 年的纯收入.(注:纯收入=前n 年的总收入-前n 年的总支出-投资额)(1)试求年平均利润最大时的年份(年份取正整数)并求出最大值.(2)若前n 年的收入达到最大值时,小刘计划用前n 年总收入的13对咖啡店进行重新装修,请问:小刘最早从哪一年对咖啡店进行重新装修(年份取整数)?并求小刘计划装修的费用.。

函数模型及其应用(1)

t 10 t 10
t 10
分层训练
• 必做题 P88 1 • 选做题 P88 2 • 作业 P84 2
2.6函数模型及其应用
2 . 6 函数 模 型 及 其 应 用
函数 是描述客观世界变化规律的基本 数学模型 是研究变量之间依赖关 , 系的 有效工具.利用函数模型可以处理 生产 生活中许多实际问题 .
学习目标
• 1 能根据实际问题的情景建立函数模型, 利用计算工具,结合对函数性质的研究, 给出问题的解答 • 2 能利用所学的数学知识分析,研究身边 的问题
例 2 物体在常温下的温度变 化可以用牛顿冷却规律 来描述 : 设物体的初始温度是 0 , 经过一定时间 后的温度是T , 则T T0 T t 1 T0 Ta , 其中Ta 表示环境温度 h称为半衰期 , . 2 现有一杯用 0 C热水冲的速溶咖啡放在 24 0 C的房间中 如果 88 , , 咖啡降温到40 0 C需要20 min, 那么降温到35 0 时, 需要多长时间 ?
自学检测
• 课本p84 练习 1
例1 某计算机集团公司生 产某 种型号计算机的固定 成本为200 万元, 生产每台计算机的可变 成本为3000元, 单位成本P万元、销售收入R万元以及利润L万元 每台计算机的售价为 5000元.分别写出总成本 万元、 C
关于总产量x 台的函数关系式.
t h
1 1 1 解 由题意40 24 88 24 , 即 h
20 h
1 故T 24 88 24 .当T 35时, 代入上式, 得 2
11 两边取对数, 1 1 35 24 88 24 , 即 . 64 2 2 用计算器求得t 25.因此, 约需要25 min, 可降到350 C.

高二数学-函数模型及其应用

高二数学~~函数模型及其应用1、植树问题∙[ 高二数学]∙题型:单选题植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为()A、(1)和(20)B、(9)和(10)C、(9)和(11)D、(10)和(11)问题症结:找不到突破口,请老师帮我理一下思路考查知识点:∙函数的应用难度:难解析过程:规律方法:本题根据已知中某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,我们设树苗集中放置的树坑编号为x,并列出此时各位同学从各自树坑前来领取树苗所走的路程总和,根据绝对值的性质,结合二次函数的性质即可得到使各位同学从各自树坑前来领取树苗所走的路程总和最小时,树苗放置的最佳坑位的编号2、应用题∙[ 高二数学]∙题型:解答题某水库堤坝因年久失修,发生了渗水现象,当发现时已有200m2的坝面渗水.经测算知渗水现象正在以每天4m2的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积2m2,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水1m2的损失为250元.现在共派去x名工人,抢修完成共用n天.(1)写出n关于x的函数关系式;(2)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出). 问题症结:找不到突破口,请老师帮我理一下思路考查知识点:∙函数的应用∙均值定理求最值难度:难解析过程:规律方法:德智答疑/shuxue本题知识点:函数模型及其应用概述所属知识点:[函数、基本初等函数(I)、函数的应用]包含次级知识点:常见的函数模型、函数的应用相关课程:高中数学必修1| 高一上学期九科联报课程| 高一全年九科联报课程| 函数的综合问题| 高一数学全年课程| 高一上学期数学(必修1、必修4)| 高一数理化全年课程| 高一上学期六科联报课程| 高一上学期数理化课程| 高一上学期语数外课程| 高一全年六科联报课程| 高一高二理科联报课程| 高一高二高三理科联报课程| 高一高二文科课程联报| 高一高二高三文科联报课程| 高一高二上学期数理化联报课程| 高一上学期数学(必修1、必修2)知识点总结本节主要包括函数的模型、函数的应用等知识点。

【高中数学】函数模型及其应用

函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+ax(a>0).(1)形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.②当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.(2)函数f(x)=xa+bx(a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab,+∞)内单调递增.2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x幂函数模型y=x n(n>0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.考点一二次函数、分段函数模型[典例]国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解](1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,则y ,0<x≤30,-10(x-30),30<x≤75,即y,0<x≤30,200-10x,30<x≤75.(2)设旅行社获利S元,则Sx-15000,0<x≤30,200x-10x2-15000,30<x≤75,即Sx-15000,0<x≤30,10(x-60)2+21000,30<x≤75.因为S=900x-15000在区间(0,30]上为增函数,故当x=30时,S取最大值12000.又S=-10(x-60)2+21000,x∈(30,75],所以当x=60时,S取得最大值21000.故当x=60时,旅行社可获得最大利润.[解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x),0<x≤A,+B(x-A),x>A.已知某家庭2018年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m 319元若四月份该家庭使用了20m 3的煤气,则其煤气费为()A .11.5元B .11元C .10.5元D .10元解析:选A根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x ),0<x ≤5,+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少?解:(1)由题意知x 的取值范围为[10,90].(2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25000+500003,所以当x =1003y min =500003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二指数函数、对数函数模型[典例]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解](1)由题图,设y 0≤t ≤1,a,t >1,当t =1时,由y =4,得k =4,由-a =4,得a =3.所以y 0≤t ≤1,-3,t >1.(2)由y ≥0.25≤t ≤1,t ≥0.253≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型.(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中.[题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:选B设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.2.声强级Y(单位:分贝)由公式Y=10lg I为声强(单位:W/m2).(1)平常人交谈时的声强约为10-6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?解:(1)当声强为10-6W/m2时,由公式Y=得Y=10lg106=60(分贝).(2)当Y=0时,由公式Y=得0.∴I10-12=1,即I=10-12W/m2,则最低声强为10-12W/m2.[课时跟踪检测]1.(2018·福州期末)某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4B.5.5C.8.5D.10解析:选C由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-+1210,故当x =172=8.5时,该商品的日均销售利润最大,故选C.2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为()A .13立方米B .14立方米C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =x ,0≤x ≤10,+5(x -10),x >10,即y x ,0≤x ≤10,x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为()A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是()A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01,=ln 0.01,∴t =10.∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析=k +b ,=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,求其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.+b =0,+2b =1,=-1,=1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位.8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s2,t ∈[0,10],t -150,t ∈(10,20],t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.。

高三数学一轮复习课时作业14:§2.9 函数模型及其应用

§2.9函数模型及其应用1.在某个物理实验中,测得变量x和变量y的几组数据,如下表:则对x,yA.y=2x B.y=x2-1C.y=2x-2 D.y=log2x2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是()A.118元B.105元C.106元D.108元4.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m3的,按每立方米m元收费;用水超过10 m3的,超过部分加倍收费.某职工某月缴水费16m元,则该职工这个月实际用水为()A.13 m3B.14 m3C.18 m3D.26 m35.(2016·北京朝阳区统一考试)设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15 B.16 C.17 D.186.(2016·武汉检测)某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元D .43.025万元7.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-⎝⎛⎭⎫x 2+8x (x >0).则当年广告费投入________万元时,该公司的年利润最大.8.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.9.(2016·宝鸡模拟)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.10.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________. 11.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?12.经市场调查,某种商品在过去50天的销售量和价格均为销售时间t (天)的函数,且销售量近似地满足f (t )=-2t +200 (1≤t ≤50,t ∈N ).前30天价格为g (t )=12t +30 (1≤t ≤30,t ∈N ),后20天价格为g (t )=45 (31≤t ≤50,t ∈N ).(1)写出该种商品的日销售额S 与时间t 的函数关系; (2)求日销售额S 的最大值.13.(2016·济南模拟)某旅游景点2016年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x (x ∈N *,且1≤x ≤6),160x(x ∈N *,且7≤x ≤12). (1)写出2016年第x 个月的旅游人数f (x )(单位:人)与x 的函数关系式; (2)试问2016年第几个月旅游消费总额最大?最大月旅游消费总额为多少万元?答案精析1.D 2.A 3.D 4.A 5.B 6.C 7.4 8.2ln 2 1 024 9.20 10.5-1211.解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位. 12.解 (1)依题意得S =⎩⎪⎨⎪⎧(-2t +200)⎝⎛⎭⎫12t +30(1≤t ≤30,t ∈N ),45(-2t +200)(31≤t ≤50,t ∈N ),即S =⎩⎪⎨⎪⎧-t 2+40t +6 000(1≤t ≤30,t ∈N ),-90t +9 000(31≤t ≤50,t ∈N ).(2)①当1≤t ≤30,t ∈N 时, S =-(t -20)2+6 400,∴当t =20时,S 取得最大值为6 400. ②当31≤t ≤50,t ∈N 时, S =-90t +9 000为递减函数, ∴当t =31时,S 取得最大值为6 210.综合知,当t =20时,日销售额S 有最大值6 400. 13.解 (1)当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N *时, f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x ) =-3x 2+40x , 验证x =1也满足此式, 所以f (x )=-3x 2+40x (x ∈N *, 且1≤x ≤12).(2)第x 个月旅游消费总额为g (x )=⎩⎪⎨⎪⎧(-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12), 即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). ①当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0, 解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0, 当5<x ≤6时,g ′(x )<0, ∴当x =5时,g (x )max =g (5) =3 125(万元).②当7≤x ≤12,且x ∈N *时, g (x )=-480x +6 400是减函数, ∴当x =7时,g (x )max =g (7)=3 040(万元).综上,2016年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数模型及其应用训练题 1.某品牌电视新品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销售y(单位:台)与投放市场的月数x之间关系的是( ) A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 解析:选C 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可,故选C. 2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进价),则该家具的进价是( ) A.118元 B.105元 C.106元 D.108元 解析:选D 设进价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108.故选D. 3.(2018·北京石景山联考)小明在如图1所示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30 s,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t(s),他与教练间的距离为y(m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )

A.点M B.点N C.点P D.点Q 解析:选D 假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故A选项错误;假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故B选项错误;假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小明的距离等于经过30 s时教练到小明的距离,而点P不符合这个条件,故C选项错误;经判断点Q符合函数图象,故D选项正确,选D. 4.(2019·洛阳模拟)某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数x(正常情况下0≤x≤100,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资y(元).要求绩效工资不低于500元,不设上限,且让大部分教职工绩效工资在600元左右,另外绩效工资越低或越高时,人数要越少.则下列函数最符合要求的是( )

A.y=(x-50)2+500 B.y=10x25+500

C.y=11 000(x-50)3+625 D.y=50[10+lg(2x+1)] 解析:选C 由题意知,拟定函数应满足:①是单调递增函数,且增长速度先快后慢再快;②在x=50左右增长速度较慢,最小值为500.A中,函数y=(x-50)2+500先减后增,

不符合要求;B中,函数y=10x25+500是指数型函数,增长速度是越来越快,不符合要求;D中,函数y=50[10+lg(2x+1)]是对数型函数,增长速度是越来越慢,不符合要求;而C中,函数y=11 000(x-50)3+625是由函数y=x3经过平移和伸缩变换得到的,符合要求.故选C. 5.(2019·邯郸名校联考)某企业准备投入适当的广告费对甲产品进行促销宣传,在一

年内预计销售量y(万件)与广告费x(万元)之间的函数关系为y=1+3xx+2(x≥0).已知生产此产品的年固定投入为4万元,每生产1万件此产品仍需再投入30万元,且能全部售完. 若每件甲产品售价(元)定为“平均每件甲产品所占生产成本的150%”与“年平均每件甲产品所占广告费的50%”之和,则当广告费为1万元时,该企业甲产品的年利润为( ) A.30.5万元 B.31.5万元 C.32.5万元 D.33.5万元

解析:选B 由题意,产品的生产成本为(30y+4)万元,销售单价为30y+4y×150%+xy

×50%,故年销售收入为z=30y+4y×150%+xy×50%·y=45y+6+12x.∴年利润W=z-(30y+4)-x=15y+2-x2=17+45xx+2-x2(万元).∴当广告费为1万元时,即x=1,该企业甲产品的年利润为17+451+2-12=31.5(万元).故选B. 6.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元. 解析:∵m=6.5,∴[m]=6,则f(m)=1.06×(0.5×6+1)=4.24. 答案:4.24 7.(2019·唐山模拟)某人计划购买一辆A型轿车,售价为14.4万元,购买后轿车每年的保险费、汽油费、车检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用________年后,用在该车上的费用(含折旧费)达到14.4万元. 解析:设使用x年后花费在该车上的费用达到14.4万元,依题意可得,14.4(1-0.9x)+2.4x=14.4. 化简得x-6×0.9x=0. 令f(x)=x-6×0.9x, 易得f(x)为单调递增函数,又f(3)=-1.374<0,f(4)=0.063 4>0,所以函数f(x)在(3,4)上有一个零点. 故大约使用4年后,用在该车上的费用达到14.4万元. 答案:4 8.某地区要建造一条防洪堤,其横断面为等腰梯形ABCD,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x的取值范围为________.

解析:根据题意知,93=12(AD+BC)h,其中AD=BC+2×x2=BC+x,h=32x,

所以93=12(2BC+x)32x,得BC=18x-x2,

由 h=32x≥3,BC=18x-x2>0,得2≤x<6. 所以y=BC+2x=18x+3x2(2≤x<6), 由y=18x+3x2≤10.5,解得3≤x≤4. 因为[3,4] ⊆[2,6),所以腰长x的取值范围为[3,4]. 答案:[3,4] 9.如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.

(1)设MP=x米,PN=y米,将y表示成x的函数,并求该函数的解析式及定义域; (2)求矩形BNPM面积的最大值. 解:(1)如图,作PQ⊥AF于Q,所以PQ=8-y,EQ=x-4,

在△EDF中,EQPQ=EFFD,

所以x-48-y=42, 所以y=-12x+10, 定义域为{x|4≤x≤8}. (2)设矩形BNPM的面积为S,

则S(x)=xy=x10-x2=-12(x-10)2+50, 所以S(x)是关于x的二次函数,且其图象开口向下,对称轴为直线x=10,所以当x∈[4,8]时,S(x)单调递增, 所以当x=8时,矩形BNPM的面积取得最大值,最大值为48平方米. 10.近年来,某企业平均每年缴纳的电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的费用(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业平均每年缴纳的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)

=k20x+100(x≥0,k为常数) .记y为该企业安装这种太阳能供电设备的费用与该企业今后15年共将缴纳的电费之和. (1)试解释C(0)的实际意义,并建立y关于x的函数关系式; (2)当x为多少时,y取得最小值?最小值是多少万元? 解:(1)C(0)的实际意义是安装这种太阳能电池板的面积为0时该企业平均每年缴纳的

电费,即未安装太阳能供电设备时,该企业平均每年缴纳的电费.由C(0)=k100=24,得k=2 400, 所以y=15×2 40020x+100+0.5x=1 800x+5+0.5x(x≥0).

(2)因为y=1 800x+5+0.5(x+5)-2.5≥21 800×0.5-2.5=57.5, 当且仅当1 800x+5=0.5(x+5),即x=55时取等号, 所以当x为55时,y取得最小值,最小值为57.5万元. 11.[选做题]某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)=1600x2+x+150万元. (1)若使每台机器人的平均成本最低,问应买多少台? (2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量q(m)=

 815m-m,1≤m≤30,

480, m>30(单位:件),已知传统人工分拣每人每日的平均分拣量为

1 200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?

解:(1)由总成本p(x)=1600x2+x+150万元,可得每台机器人的平均成本y=pxx

=1600x2+x+150x=1600x+150x+1≥21600x·150x+1=2.当且仅当1600x=150x,即x=300时,上式等号成立.∴若使每台机器人的平均成本最低,应买300台. (2)引进机器人后,每台机器人的日平均分拣量

q(m)= 815m-m,1≤m≤30,480, m>30,当1≤m≤30时,300台机器人的日平均分拣量

为160m(60-m)=-160m2+9 600m,∴当m=30时,日平均分拣量有最大值144 000件.当m>30时,日平均分拣量为480×300=144 000(件).∴300台机器人的日平均分拣量的最

大值为144 000件.若传统人工分拣144 000件,则需要人数为144 0001 200=120(人).∴日平

均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少120-30120×100%=75%.

相关文档
最新文档