哈三中2012-2013学年度高一数学上学期期中试卷

合集下载

湖北省部分重点中学2012-2013学年高一上学期期中考试 数学试题 含答案

湖北省部分重点中学2012-2013学年高一上学期期中考试 数学试题 含答案

湖北省部分重点中学2012—2013学年度上学期高一期中考试数学试卷命题人:四十九中 徐方 审题人:武汉中学 方玉林 一.选择题:本大题共10小题,每题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1 .已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()UC A B 为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,42.下列函数中,不满足(2)2()f x f x =的是( )A .()f x x =-B .()f x x =C .()f x x x =-D .()f x x =-1 3. 下列函数中,在区间(0,+∞)上是增函数的是( ) A .||y x =- B 。

21y x =-C 。

1()2x y = D.21log y x= 4.已知0a >且1a ≠,则下述结论正确的是( ) A .8.0log log 23<π B .1.33.09.07.1>C .27.0a a < D .6log 7log aa >5.已知{}|log ,,|,U y y x x P y y x x21⎧⎫==>1==>3⎨⎬⎩⎭,则UCP =( )A .[,)1+∞3B .(,)103C .(,)0+∞D .(,][,)1-∞0+∞36.已知函数)(x f 是偶函数,当0x <时,xx x f 1)(-=,那么当0x >时,)(x f 的表达式为( )A .x x 1-B .xx 1-- C .xx 1+D .xx 1+-7.已知定义在区间[0,2]上的函数()y f x =的图像如右图所示,则()y f x =2-的图像为( )A B C D 8。

某市2008年新建住房100万平方米,其中有25万平方米经济适用房,有关部门计划以后每年新建住房面积比上一年增加5%,其中经济适用房每年增加10万平方米。

黑龙江省哈三中高一数学上学期期中试题

黑龙江省哈三中高一数学上学期期中试题

黑龙江省哈三中2014-2015学年高一数学上学期期中试题考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合{}3,1,0,1,3A =--,集合{}2,1,0,1B =--,则A B ⋂=A .{}3,1,3-B . {}1C . {}1,0,1-D . {}1,0,3-2. 若函数()2log 2-=x x f ,则函数()f x 定义域为A .()+∞,4B .)[∞+,4C . ()4,0D . ](4,03. 下列各组中的两个函数是同一函数的是A .21()()11x f x g x x x -==-+与 B . )0()()0()(22≥=≥=x x x g r r r f ππ与C .x a a x f log )(=)1,0(≠>a a 且与 =)(x g x a a log (1,0≠>a a 且)D .()()f x x g t ==与4. 已知函数()])(()22,,21,,2,1x x f x x x ⎧-∈-∞-⋃+∞⎡⎪⎣=⎨-∈-⎪⎩,则=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-23f f A .41 B . 23 C .1631- D .23- 5. (){}**,5,,P x y x y x N y N =+=∈∈,则集合的非空子集的个数是A .3B .4C .15D .16 6. 设0.89a =,0.4527b =, 1.51()3c -=,则,,a b c 大小关系为 A .a b c >> B .a b c << C .a c b >> D .b c a >> 7. 若函数()246f x x x =++,则()x f 在)[0,3-上的值域为 A .[]6,2 B . )[6,2 C .[]3,2 D .[]6,38. 若不等式312≤-x 的解集恰为不等式012≥++bx ax 的解集,则=+b aA .0B . 2C .2-D .49. 计算:3321212121(log 3)(log 7)3log 3log 7++=A .0B .1C .1-D .210. 定义在R 的偶函数,当0≥x 时,()x x x f 22-=,则()3f x <的解集为A .()3,3-B .[]3,3-C .()(),33,-∞-⋃+∞D .](),33,-∞-⋃+∞⎡⎣ 11. 若函数()⎪⎩⎪⎨⎧>-≤-+=1,1,2212x a a x ax x x f x 在()+∞,0上是增函数,则a 的范围是 A .](2,1 B . )[2,1 C .[]2,1 D .()+∞,112. 设f 为()()+∞→+∞,0,0的函数,对任意正实数x ,()()x f x f 55=,()32--=x x f ,51≤≤x ,则使得()()665f x f =的最小实数x 为A .45 B. 65 C. 85 D. 165第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.{}022=--=x x x A ,{}01=-=ax x B ,若B B A =⋂,则=a .14. 已知32a =,95b =,则22327a b -=________________.15. 已知41122-+=⎪⎭⎫ ⎝⎛+x x x x f ,则函数()x f 的表达式为__________________. 16. 若函数)(x f , )(x g 分别是R 上的奇函数、偶函数,且满足xx g x f 10)()(=-,则)3(),2(),1(g f f 从小到大的顺序为_______________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本大题10分) {}13<-=x x A ,103x B xx ⎧-⎫=>⎨⎬-⎩⎭,求,()R A B A C B ⋃⋂.18.(本大题12分)判断函数()212f x x x =- 在()0,+∞上的单调性,并加以证明.19.(本大题12分)解关于x 的不等式12ax ≤-,(其中a 为常数)并写出解集.20.(本大题12分)求下列函数的值域:(Ⅰ) 5734x y x +=+ (0x >);(Ⅱ) 34y x =+21.(本大题12分)已知函数()(0,1)x x f x k a a a a -=⋅->≠为R 上的奇函数,且8(1)3f =.(Ⅰ)解不等式:2(2)(4)0f x x f x ++->;(Ⅱ)若当[1,1]x ∈-时,121x x b a +->恒成立,求b 的取值范围.22. (本大题12分) 已知函数b a x f x x +-=22)(.(Ⅰ) 当0,1==b a 时, 判断函数)(x f 的奇偶性, 并说明理由;(Ⅱ) 当4==b a 时, 若5)(=x f , 求x 的值;(Ⅲ) 若4-<b , 且b 为常数, 对于任意(]2,0∈x , 都有0)(log 2<x f 成立, 求a 的取值范围.哈三中2014—2015学年度上学期高一学年第一模块数学试卷答案1C 2B 3B 4A 5C 6C 7B 8A 9B 10A 11A 12B 13 10,1,2- 14.645 15。

2012-2013学年安徽省宿州市十三校高一上学期期中考试数学试题

2012-2013学年安徽省宿州市十三校高一上学期期中考试数学试题

宿州市十三校2012-2013学年度第一学期期中考试高一数学试题命题人:刘小宇 审核人:苗宗瑞一、选择题:(本大题共10小题,每小题5分,共50分)1.设全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则()()U U C A C B =A.{0}B.{0,1}C. {0,1,4}D.{0,1,2,3,4}2. 若实数a b 、满足:集合⎭⎬⎫⎩⎨⎧=1,a b M ,{}0,a N =,f :x →x 表示把M 中的元 素x 映射到集合N 中的像仍为x ,则a b +等于A .-1B .0C .1D .±13. 与函数y x =有相同图像的一个函数是A.y =B.log a x y a =其中0,1a a >≠C.2x y x= D.log x a y a =其中0,1a a >≠ 4. 函数111y x =+-的图像是 A . B. C. D. 5. 函数()lg(31)f x x =+的定义域是 A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-6. 函数f (x )的递增区间是 (-2,3),则函数y =f (x +5)的递增区间是A. (3,8)B. (-7,-2)C. (-2,3)D. (0,5) 7. 函数x y a =在[0,1]上的最大值为2, 则a = A. 12 B.2 C. 4 D. 148. 方程x x -=3log 3的解所在区间是A.(0,2)B.(1,2)C.(2,3)D.(3,4)9.已知2-<m ,点()1,1y m -,()2,y m ,()3,1y m +都在二次函数x x y 22-=的图像 上,则A .321y y y << B. 2y <1y <3y C. 1y <3y <2y D. 3y <2y <1y10. 已知(3),1()log ,1.a a x a x f x x x --⎧⎪=⎨≥⎪⎩<,是(-∞,+∞)上的增函数,那么a 的取值范围是A .(1,+∞) B. (-∞,3) C. (1,3) D. [32,3) 二、填空题:(本大题共5小题,每小题5分,共25分)11.幂函数()f x 的图像过点(4,2),则()f x 的解析式是_____________.12.集合{}26,y N y x x N ∈=-+∈的非空真子集的个数为_____________.13.设0.90.48-1.54,b=8,c=()a =12,则a b c 、、三数从小到大排列依次为_____. 14. 设1232,2()log (1) 2.x e x f x x x -⎧⎪=⎨-≥⎪⎩<,,((2))f f 则的值为_______. 15. 以下说法正确的是 .①在同一坐标系中,函数x y 2=的图像与函数x y )21(=的图像关于y 轴对称; ②函数11(1)x y a a +=+>的图像过定点(1,2)-; ③函数1()f x x=在区间(,0)(0,)-∞+∞上单调递减; ④若1x 是函数()f x 的零点,且1m x n <<,则()()0f m f n ⋅<;⑤ 方程4123log =x 的解是91=x .三、解答题:(本大题共6小题,共75分。

外国语学校2012-2013学年高一上学期期中考试数学试题与答案

外国语学校2012-2013学年高一上学期期中考试数学试题与答案

一.判断题(每小题1分,共5分,在相应的括号内打勾或打叉) 1. 空集是任何集合的真子集( ▲ ) 2. =∙N M a a log log N M a a log log +( ▲ )3. 若0=b ,则函数b x k x f ++=)12()(在R 上必为奇函数 ( ▲ ) 4.已知()x f 是偶函数,且()54=f ,那么()()44-+f f =10 ( ▲ ) 5.已知函数()x f ,若在[]b a ,上有()()0<b f a f ,则()x f y =在()b a ,内必有零点( ▲ )二.单项选择题(每小题5分,共25分)1. 已知集合{1,2,3}A =,{2,4}B =,则A B 为( ▲ ) A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{1,2,3,4}2. 下列函数与y x =表示同一函数的是( ▲ )A. y =y =2y =D. 2x y x=3. 设0x 是方程ln 5x x +=的解,则0x 属于区间( ▲ ). A.(0,1) B.(1,2) C.(2,3) D.(3,4) 4.已知函数()x f y =,则直线a x =与函数()x f y =的图像的交点个数为( ▲ )A. 可能有不止一个交点B. 至多有一个交点C.至少有一个交点D.有且必有一个交点5.函数(0,1)x y a a a a =->≠的图象可能是( ▲ ).三.填空题(每小题5分,共50分)1.设函数()g x 2x 3=+,则(3)g 的值为 ▲ .2.函数f(x)= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则[](2)f f -= ▲ .3.写出一个函数,使其在定义域R 内既是奇函数又是减函数 ▲4.函数()f x 与函数2,x y x R =∈互为反函数,则函数)(x f 的值域为 ▲5.设A {x |2x 3}=<<,B {x |x a}=<,若B A ⊆,则a 的取值范围是 ▲ .6.已知幂函数()f x 的图象经过点1(3,)3,则2log (4)f = ▲ .7.比较大小:将0.90.820.8,log 0.8, 1.2a b c ===三数从小到大依次排列........为 ▲ . 8.函数2)(lg 1)(x x f -=的定义域是 ▲9. 函数11(0,1)x y a a a -=+>≠的图象恒过的定点为 ▲ .10.已知f (x)为R 上的奇函数, 当x 0> 时,f (x)x(x 1)=+,则当x 0<时,f (x)的表达式为 ▲ .四.解答题(第1题10分,其余每题均为12分,共70分.)(请在答题卷内作答,解答时应写出文字说明、证明过程或演算步骤.............................).1.(本小题满分10分) (1)计算:()142110.2541216--⎛⎫⎛⎫⨯--÷-- ⎪⎪⎝⎭⎝⎭;(2)计算:11(lg9lg 2)229416()100ln log 8log 9--+++⋅()(2.(本小题满分12分)已知函数()1f x x =-.(1)用分段函数的形式表示该函数;(2)在右边所给的网格中建立平面直角坐标系,并画出该函数的图象;(网格见答卷)(要求:坐标轴的标识以及刻度需写明,函数图像需准确无误。

高一上学期期中考试数学试题及答案(哈师大附中)

高一上学期期中考试数学试题及答案(哈师大附中)

高一上学期数学期中考试试卷考试时间:120分钟 满分:150分第Ⅰ卷 (选择题 60分)一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}220A x x x =->,{B x x =<<,则A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆2.如图所示,曲线1234,,,C C C C 分别为指数函数,,x xy a y b ==,x x y c y d ==的图象, 则d c b a ,,,与1的大小关系为A .d c b a <<<<1B .c d a b <<<<1C .1b a c d <<<<D .c d b a <<<<13.函数()f x =A.(]3,0-B.(]3,1-C.()(],33,0-∞--D.()(],33,1-∞--4.已知函数)(x f 是定义在R 上的奇函数,且满足)()2(x f x f -=+,则)6(f 的值为 A.1- B.0 C.1 D.25.已知0.80.80.70.7, 1.1, 1.1a b c ===,则c b a ,,的大小关系是A.c b a << B.c a b << C.a c b << D.a c b << 6.已知函数)(x f 、()g x 分别是R 上的奇函数、偶函数,且满足()()3xf xg x +=,则()f x 的解析式为A.()33xxf x -=- B.33()2x x f x --= C.()33x xf x -=- D.33()2x x f x --=7.已知函数221,1,(),1,xx f x x ax x ⎧+<⎪=⎨+≥⎪⎩若((0))f f =4a ,则实数a =A.12 B. 45C. 2D. 9 8.关于x 的方程22230x x a a -+--=的两个实根中有一个大于1,另一个小于1,则实数a 的取值范围为A .13a -<<B .31a -<<C .3a >或1a <-D .132a -<< 9.函数y =的定义域为R ,则实数k 的取值范围是A .02k <<B .04k ≤≤C .04k <<D . 04k ≤<10.函数()f x =A .(),2-∞B .()1,2C .()2,3D .()2,+∞ 11.若函数()f x 为偶函数,且在()0,+∞上是减函数,又(3)0f =,则()()0f x f x x+-<的解集为 A .()3,3- B .()(),33,-∞-+∞ C .()()3,03,-+∞D .()(),30,3-∞-12.已知函数()(1)(0)f x x ax a =-≠,设关于x 的不等式()()f x a f x +<的解集为A ,若33,44A ⎛⎫-⊆ ⎪⎝⎭,则实数a 的取值范围是 A.()1,20,2⎛⎫-∞- ⎪⎝⎭B.(]1,20,2⎛⎤-∞- ⎥⎝⎦C.()()2,01,-+∞D.[)[)2,01,-+∞第Ⅱ卷 (非选择题90分)二.填空题(本大题共4小题,每小题5分,共20分)13.计算:1100.532131(4)(3)(2)(0.01)284--⨯+=_______________.14.函数224x x y x-+=([1,3])x ∈的值域为_______________.15.已知函数()y f x =是偶函数,当0x <时,()(1)f x x x =-,那么当0x >时,()f x =_____________.16.对实数a 和b ,定义新运算,2,, 2.a ab ab b a b -≤⎧=⎨->⎩设函数22()(2)(2)f x x x x =--,x R ∈.若关于x 的方程()f x m =恰有两个实数解,则实数m 的取值范围是______________.三.解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求值:2lg10lg 5--.18.(本小题满分12分)若集合{}21|21|3,2,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭求(1)A B ;(2)()RA B ð.19.(本小题满分12分)已知函数1010()1010x xx xf x ---=+.(1)判断()f x 的奇偶性; (2)求函数()f x 的值域. 20.(本小题满分12分)已知函数()f x 满足:对任意的实数,x y ,都有()()()f x y f x f y +=+,且0x >时,()0f x >.(1)证明:函数()f x 在R 上单调递增;(2)若(3)mf f <,求实数m 的取值范围.21.(本小题满分12分)已知函数()423xxf x a =+⋅+,a R ∈.(1)当4a =-时,且[]0,2x ∈,求函数()f x 的值域;(2)若关于x 的方程()0f x =在()0,+∞上有两个不同实根,求实数a 的取值范围.22. (本小题满分12分)已知函数()()2f x x a x =--,()22xg x x =+-,其中a R ∈.(1)写出()f x 的单调区间(不需要证明);(2)如果对任意实数[]0,1m ∈,总存在实数[]0,2n ∈,使得不等式()()f m g n ≤成立,求实数a 的取值范围.数学参考答案一、选择题:BBABC DCADB CB二、填空题:13.110;14.[2,3];15.(1)x x -+;16.{|3,m m <-或2,m =-或10}m -<<. 三、解答题: 17.原式=()211lg 21lg512lg 222⎛⎫-+- ⎪⎝⎭=()()2211lg 21lg 222+-=1. (10)分18.{|3213}{|12}A x x x x =-<-<=-<<,455{|0}{|,34x B x x x x -=<=<-或3}x >.……4分(1)5{|1}4AB x x =-<<; …………7分(2)5{|3}4R B x x =≤≤ð,∴(){|13}R A B x x =-<≤ð.…………12分19.(1)()f x 的定义域为R ,∵1010()()1010x x xxf xf x ----==-+,∴()f x 是奇函数. …………4分(2)令10x t =,则0t >,∴2221121111t t t y t t t t--===-+++ …………8分 ∵0t >,∴211t +>,∴21011t <<+,即221111t -<-<+.∴函数()f x 的值域为(1,1)-. …………12分 20.(1)证明:任取12,x x R ∈,且12x x <,则210x x ->,有21()0f x x ->. ∴22112111()()()()()f x f x x x f x x f x f x =-+=-+>,即12()()f x f x <. ∴函数()f x 在R 上单调递增. …………6分(2)由(1)知,3m <3233m<,解得32m <. ∴实数m 的取值范围3(,)2-∞. …………12分21.(1)当4a =-时,令2xt =,则[1,4]t ∈,2243(2)1y t t t =-+=--当2t =时,min 1y =-;当4t =时,max 3y =.∴函数()f x 的值域为[1,3]-. …………6分 (2)令2x t =,由0x >知1t >,且函数2x t =在(0,)+∞单调递增. ∴原题转化为方程230t at ++=在(1,)+∞上有两个不等实根.设2()3g t t at =++,则012(1)0a g ∆>⎧⎪⎪->⎨⎪>⎪⎩,即2120240a a a ⎧->⎪<-⎨⎪+>⎩,解得4a -<<-∴实数a的取值范围是(4,--. …………12分 22.(1)()(2),2,()()(2), 2.x a x x f x x a x x --≥⎧=⎨---<⎩①当2a =时,()f x 的递增区间是(,)-∞+∞,()f x 无减区间; …………1分②当2a >时,()f x 的递增区间是(,2)-∞,2(,)2a ++∞;()f x 的递减区间是2(2,)2a +;………3分 ③当2a <时,()f x 的递增区间是2(,)2a +-∞,(2,)+∞,()f x 的递减区间是2(,2)2a +.………5分 (2)由题意,()f x 在[0,1]上的最大值小于等于()g x 在[0,2]上的最大值.当[0,2]x ∈时,()g x 单调递增,∴max [()](2)4g x g ==. …………6分 当[0,1]x ∈时,2()()(2)(2)2f x x a x x a x a =---=-++-. ①当202a +≤,即2a ≤-时,max [()](0)2f x f a ==-. 由24a -≤,得2a ≥-.∴2a =-; …………8分②当2012a +<≤,即20a -<≤时,2max 244[()]()24a a a f x f +-+==. 由24444a a -+≤,得26a -≤≤.∴20a -<≤; …10分③当212a+>,即0a>时,max[()](1)1f x f a==-.由14a-≤,得3a≥-.∴0a>.综上,实数a的取值范围是[2,)-+∞.…………12分。

黑龙江省哈尔滨三中高一数学上学期期中试卷(含解析)

黑龙江省哈尔滨三中高一数学上学期期中试卷(含解析)

2015-2016学年黑龙江省哈尔滨三中高一(上)期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={2,4,5},则A∪B=()A.{2} B.{2,4} C.{2,4,5} D.{1,2,3,4,5}2.函数y=+的定义域是()A.{x|x≥﹣} B.{x|x≥﹣且x≠0}C.{x|x≤} D.{x|x≤且x≠0}3.已知函数f(x)满足f(x+1)=x2﹣1,则()A.f(x)=x2﹣2x B.f(x)=x2+2x C.f(x)=x2﹣4x D.f(x)=x2+4x4.已知a=(),b=2,c=(),则下列关系式中正确的是()A.c<a<b B.b<a<c C.a<c<b D.a<b<c5.函数f(x)=的单调递增区间为()A.[2,+∞)B.(﹣∞,] C.[,+∞)D.(﹣∞,﹣1]6.设集合A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.﹣1<a≤2B.a>2 C.a≥﹣1 D.a>﹣17.若函数y=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,则a的取值范围是()A.{a|1≤a≤19} B.{a|<a<19} C.{a|1≤a<19} D.{a|1<a≤19}8.下列函数是偶函数且值域为[0,+∞)的是()①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|A.①② B.②③ C.①④ D.③④9.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x>2}10.二次函数y=ax2+bx与指数函数y=(﹣)x的图象只可能是()A.B.C.D.11.已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,若f(﹣1)=0,则不等式f(2x﹣1)>0解集为()A.(﹣∞,0)∪(1,+∞)B.(﹣6,0)∪(1,3) C.(﹣∞,1)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)12.设f(x)是定义在[1,+∞)的函数,对任意正实数x,f(3x)=3f(x),且f(x)=1﹣|x﹣2|,1≤x≤3,则使得f(x)=f(2015)的最小实数x为()A.172 B.415 C.557 D.89二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.化简:(2)(﹣6)÷(﹣3)= .14.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2+x,则当x<0时,f (x)的解析式为.15.若函数f(x)=是(﹣∞,+∞)上的减函数,则实数a的取值范围是.16.下列四个说法:(1)y=x+1与y=是相同的函数;(2)若函数f(x)的定义域为[﹣1,1],则f(x+1)的定义域为[0,2];(3)函数f(x)在[0,+∞)时是增函数,在(﹣∞,0)时也是增函数,所以f(x)是(﹣∞,+∞)上的增函数;(4)函数f(x)=()在区间[3,+∞)上单调递减.其中正确的说法是(填序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知集合A={x|(x﹣1)(x+2)>0},B={x|2﹣3x≤0},C={y|y=x2},求:①A∪C;②(∁U A)∩B.18.用单调性定义证明函数f(x)=在区间(1,+∞)上是减函数.19.已知函数,求(1)的值;(2)若f(a)>2,则a的取值范围.20.要建造一个容量为1200m3,深为6m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,求当水池的长在什么范围时,才能使水池的总造价不超过61200元(规定长大于等于宽).21.设x1,x2是方程x2﹣2mx+4m2﹣4m+1=0的两个不等实根,(Ⅰ)将x12+x22表示为m的函数g(m),并求其定义域;(Ⅱ)设f(m)=,求f(m)的值域.22.已知函数f(x)=2x﹣2﹣x,定义域为R;函数g(x)=2x+1﹣22x,定义域为[﹣1,1].(Ⅰ)判断函数f(x)的单调性(不必证明)并证明其奇偶性;(Ⅱ)若方程g(x)=t有解,求实数t的取值范围;(Ⅲ)若不等式f(g(x))+f(3am﹣m2﹣1)≤0对一切x∈[﹣1,1],a∈[﹣2,2]恒成立,求m的取值范围.2015-2016学年黑龙江省哈尔滨三中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={2,4,5},则A∪B=()A.{2} B.{2,4} C.{2,4,5} D.{1,2,3,4,5}【考点】并集及其运算.【专题】计算题.【分析】根据并集的定义可知,A与B的并集为属于A或属于B的所有元素组成的集合,求出两集合的并集即可.【解答】解:因为集合A={1,2,3,4},B={2,4,5},所以A∪B={1,2,3,4,5}.故选D【点评】此题考查学生掌握并集的定义并会进行并集的运算,是一道基础题.2.函数y=+的定义域是()A.{x|x≥﹣} B.{x|x≥﹣且x≠0}C.{x|x≤} D.{x|x≤且x≠0}【考点】函数的定义域及其求法.【专题】函数思想;综合法;函数的性质及应用.【分析】根据二次根式的性质得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:x≥﹣且x≠0,故选:B.【点评】本题考查了求函数的定义域问题,考查二次个数的性质,是一道基础题.3.已知函数f(x)满足f(x+1)=x2﹣1,则()A.f(x)=x2﹣2x B.f(x)=x2+2x C.f(x)=x2﹣4x D.f(x)=x2+4x【考点】函数解析式的求解及常用方法.【专题】函数思想;综合法;函数的性质及应用.【分析】可由f(x+1)=x2﹣1得到f(x+1)=(x+1)2﹣2(x+1),这样将x+1换上x便可得出f(x).【解答】解:f(x+1)=x2﹣1=(x+1)2﹣2(x+1);∴f(x)=x2﹣2x.故选:A.【点评】考查函数解析式的概念及求法,本题还可用换元法求f(x):令x+1=t,然后求出f(t),从而得出f(x).4.已知a=(),b=2,c=(),则下列关系式中正确的是()A.c<a<b B.b<a<c C.a<c<b D.a<b<c【考点】指数函数单调性的应用.【专题】函数思想;分析法;函数的性质及应用.【分析】将b改写成利用指数函数的单调性即可得出答案.【解答】解:b=,∵y=()x是减函数,∴<()<().故选:B.【点评】本题考查了函数单调性的应用,是基础题.5.函数f(x)=的单调递增区间为()A.[2,+∞)B.(﹣∞,] C.[,+∞)D.(﹣∞,﹣1]【考点】复合函数的单调性;函数的单调性及单调区间.【专题】转化思想;换元法;函数的性质及应用.【分析】利用换元法结合复合函数单调性之间的关系进行求解即可.【解答】解:设t=x2﹣x﹣2,则y=为增函数,由t=x2﹣x﹣2≥0得x≥2或x≤﹣1,要求函数f(x)的单调递增区间,则等价为求函数t=x2﹣x﹣2的单调递增区间,当x≥2时,函数t=x2﹣x﹣2为增函数,故函数t=x2﹣x﹣2的单调递增区间为[2,+∞),故函数f(x)的单调递增区间为[2,+∞),故选:A.【点评】本题主要考查函数单调区间的求解,利用换元法结合复合函数单调性的关系是解决本题的关键.6.设集合A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.﹣1<a≤2B.a>2 C.a≥﹣1 D.a>﹣1【考点】集合关系中的参数取值问题.【专题】计算题.【分析】根据A∩B≠∅,可知A,B有公共元素,利用集合A,B即可确定a的取值范围【解答】解:∵A∩B≠∅,∴A,B有公共元素∵集合A={x|﹣1≤x<2},B={x|x<a},∴a>﹣1故选D.【点评】本题考查了集合的运算,考查求参数问题,属于基础题.7.若函数y=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,则a的取值范围是()A.{a|1≤a≤19} B.{a|<a<19} C.{a|1≤a<19} D.{a|1<a≤19}【考点】函数恒成立问题;函数的图象.【专题】计算题;函数思想;判别式法;函数的性质及应用.【分析】分二次项系数为0和不为0讨论,当二次项系数为0时,求得a=1满足题意;当二次项系数不为0时,由二次函数的开口方向及判别式联立不等式组求解.【解答】解:当a2+4a﹣5=0时,解得a=﹣5或a=1,若a=1,则原函数化为y=3,满足题意;当a2+4a﹣5≠0时,要使函数y=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,则,即,解①得a<﹣5或a>1;解②得1<a<19.取交集得:1<a<19.综上,a的取值范围是{a|1≤a<19}.故选:C.【点评】本题考查函数恒成立问题,考查了二次函数的图象和性质,是基础题.8.下列函数是偶函数且值域为[0,+∞)的是()①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|A.①② B.②③ C.①④ D.③④【考点】函数的值域.【专题】函数思想;分析法;函数的性质及应用;不等式的解法及应用.【分析】由函数的奇偶性逐一判断,找出正确选项.【解答】解:①函数y=f(x)=|x|,可得f(﹣x)=|﹣x|=f(x),故函数为偶函数且|x|≥0,故①正确;②函数y=f(x)=x3,可得f(﹣x)=(﹣x)3=﹣x3=﹣f(x),故函数为奇函数;③y=2|x|是非奇非偶函数;④y=x2+|x|,可得f(﹣x)=(﹣x)2+|﹣x|=f(x),故函数为偶函数且y=x2+|x|≥0,故④正确.故选:C.【点评】本题考查了函数的值域,考查了函数的奇偶性,是基础题.9.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x>2} 【考点】Venn图表达集合的关系及运算.【专题】计算题;新定义.【分析】利用函数的定义域、值域的思想确定出集合A,B是解决本题的关键.弄清新定义的集合与我们所学知识的联系:所求的集合是指将A∪B除去A∩B后剩余的元素所构成的集合.【解答】解:依据定义,A#B就是指将A∪B除去A∩B后剩余的元素所构成的集合;对于集合A,求的是函数的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1};依据定义,借助数轴得:A#B={x|0≤x≤1或x>2},故选D.【点评】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确定.10.二次函数y=ax2+bx与指数函数y=(﹣)x的图象只可能是()A.B.C.D.【考点】指数函数的图像变换.【专题】综合题;函数的性质及应用.【分析】根据二次函数的对称轴首先排除A与C选项,再根据a﹣b的值的正负,结合二次函数和指数函数的性质检验即可得出答案.【解答】解:根据指数函数y=(﹣)x可知a,b异号且不相等则二次函数y=ax2+bx的对称轴﹣>0可排除A与C选项D,a﹣b>0,a<0,∴﹣>1,则指数函数单调递增,故D不正确故选:B.【点评】本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.11.已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,若f(﹣1)=0,则不等式f(2x﹣1)>0解集为()A.(﹣∞,0)∪(1,+∞)B.(﹣6,0)∪(1,3) C.(﹣∞,1)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)【考点】奇偶性与单调性的综合.【专题】转化思想;数形结合法;函数的性质及应用;不等式的解法及应用.【分析】根据函数奇偶性和单调性的关系进行转化即可.【解答】解:∵f(﹣1)=0,∴不等式f(2x﹣1)>0等价为f(2x﹣1)>f(﹣1),∵f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,∴不等式等价为f(|2x﹣1|)>f(1),即|2x﹣1|>1,即2x﹣1>1或2x﹣1<﹣1,即x>1或x<0,则不等式的解集为(﹣∞,0)∪(1,+∞),故选:A.【点评】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质进行转化是解决本题的关键.12.设f(x)是定义在[1,+∞)的函数,对任意正实数x,f(3x)=3f(x),且f(x)=1﹣|x﹣2|,1≤x≤3,则使得f(x)=f(2015)的最小实数x为()A.172 B.415 C.557 D.89【考点】抽象函数及其应用.【专题】数形结合;转化思想;综合法;函数的性质及应用.【分析】根据条件先求出f(2015)=172,然后根据条件求出分段函数在每一段上的最大值,然后只需找到相应的那个区间即可求出来.【解答】解:因为f(x)对于所有的正实数x均有f(3x)=3f(x),所以f(x)=3f(),所以f(2015)=3f()=32f()=…=3n f(),当n=6时,∈(1,3),所以f(2015)=36[1﹣+2]=37﹣2015=172,同理f(x)=3n f()==,(n∈N*)∵f(2)=1,∴f(6)=3f(2)=3,f(18)=3f(6)=32=9,f(54)=3f(18)=33=27,f(162)=3f(54)=34=81,f(486)=3f(162)=35=243,即此时由f(x)=35f()=35(﹣1)=x﹣35=172得x=35+172=243+172=415,即使得f(x)=f(2015)的最小实数x为415,故选:B.【点评】本题应属于选择题中的压轴题,对学生的能力要求较高,解决问题的关键在于如何将f(2015)转化到[1,3]上求出它的函数值,二是如何利用方程思想构造方程,按要求求出x的值.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.化简:(2)(﹣6)÷(﹣3)= 4a .【考点】有理数指数幂的化简求值.【专题】函数的性质及应用.【分析】利用指数幂的运算性质即可得出.【解答】解:原式==4a.故答案为:4a.【点评】本题考查了指数幂的运算性质,属于基础题.14.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2+x,则当x<0时,f (x)的解析式为f(x)=x2﹣x .【考点】函数奇偶性的性质;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】根据函数奇偶性的性质,进行转化即可求f(x)的解析式.【解答】解:若x<0,则﹣x>0,∵当x≥0时,f(x)=x2+x,∴当﹣x>0时,f(﹣x)=x2﹣x,∵函数f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),即f(﹣x)=x2﹣x=f(x),解得f(x)=x2﹣x,x<0,故答案为:f(x)=x2﹣x,【点评】本题主要考查函数解析式,根据函数的奇偶性的性质是解决本题的关键.15.若函数f(x)=是(﹣∞,+∞)上的减函数,则实数a的取值范围是[﹣2,0).【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】若函数f(x)=是(﹣∞,+∞)上的减函数,则函数在每一段上均为减函数,且在x=1时,前一段的函数值不小于后一段的函数值,进而构造关于a的不等式,解得实数a的取值范围【解答】解:若函数f(x)=是(﹣∞,+∞)上的减函数,则,解得:a∈[﹣2,0),故答案为:[﹣2,0)【点评】本题考查的知识点是函数单调性的性质,熟练掌握分段函数单调性的特征是解答的关键.16.下列四个说法:(1)y=x+1与y=是相同的函数;(2)若函数f(x)的定义域为[﹣1,1],则f(x+1)的定义域为[0,2];(3)函数f(x)在[0,+∞)时是增函数,在(﹣∞,0)时也是增函数,所以f(x)是(﹣∞,+∞)上的增函数;(4)函数f(x)=()在区间[3,+∞)上单调递减.其中正确的说法是(4)(填序号).【考点】命题的真假判断与应用.【专题】转化思想;数学模型法;函数的性质及应用;简易逻辑.【分析】根据同一函数的定义,可判断(1);根据抽象函数的定义域,可判断(2),根据函数单调性的定义,可判断(3);根据复合函数的单调性,可判断(4).【解答】解:y==|x+1|,两函数的解析式不一致,故不是相同的函数,故(1)错误;则x+1∈[﹣1,1]得x∈[﹣2,0],即f(x+1)的定义域为[﹣2,0],故(2)错误;函数f(x)在[0,+∞)时是增函数,在(﹣∞,0)时也是增函数,但f(x)是(﹣∞,+∞)上可能不具单调性,故(3)错误;当x∈[3,+∞)时,t=x2﹣2x+3为增函数,y=为减函数,故函数f(x)=()在区间[3,+∞)上单调递减,故(4)正确;故答案为:(4)【点评】本题以命题的真假判断为载体,考查了同一函数,抽象函数的定义域,函数单调性的定义,复合函数的单调性等知识点,难度中档.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知集合A={x|(x﹣1)(x+2)>0},B={x|2﹣3x≤0},C={y|y=x2},求:①A∪C;②(∁U A)∩B.【考点】交、并、补集的混合运算.【专题】计算题;集合.【分析】先化简集合A,B,C,再进行集合的运算即可.【解答】解:由集合A={x|(x﹣1)(x+2)>0},B={x|2﹣3x≤0},C={y|y=x2},解得:A={x|x<﹣2或x>1}=(﹣∞,﹣2)∪(1,+∞),,C=[0,+∞)①A∪C=(﹣∞,﹣2)∪[0,+∞);②∁U A=[﹣2,1],∴(∁U A)∩B=[,1].【点评】本题考查交、并、补集的混合运算,可查学生的计算能力,比较基础.18.用单调性定义证明函数f(x)=在区间(1,+∞)上是减函数.【考点】函数单调性的判断与证明.【专题】证明题;函数思想;定义法;函数的性质及应用.【分析】在定义域上任取x1<x2,只需证明f(x1)>f(x2)即可.【解答】解:在(1,+∞)内任取两数x1,x2,且x1<x2,则f(x1)﹣f(x2)==,∵1<x1<x2,∴x2﹣x1>0,x1﹣1>0,x2﹣1>0,∴f(x1)﹣f(x2)>0,∴f(x1)>f(x2),∴f(x)在(1,+∞)上为单调递减函数.【点评】本题考查了函数单调性的证明,属于基础题.19.已知函数,求(1)的值;(2)若f(a)>2,则a的取值范围.【考点】分段函数的解析式求法及其图象的作法;函数的值;其他不等式的解法.【专题】计算题.【分析】(1)根据已知中函数的解析式,将,﹣1,代入解析式,即可得到函数的值;(2)根据已知中的函数解析式,结合f(a)>2,分别在a≤0时,0<a≤1时,a>1时,构造关于a的不等式,解不等式即可得到a的取值范围.【解答】解:(1);f(f(﹣1))=f(﹣3+5)=f(2)=﹣4+8=4;(2)由知f(x)的值域情况为:,由题意知f(a)>2,当a≤0时,3a+5>2⇒a>1,无解;当0<a≤1时,a+5>2⇒a>3,此时也无解;当a>1时,﹣2a+8>2⇒a<3,此时1<a<3.故所求a的取值范围是1<a<3【点评】本题考查的知识点是分段函数的解析式,函数的值,分段型不等式的解法,分段函数分段处理,是解答分段函数及相应方程及不等式的最常用的方法.20.要建造一个容量为1200m3,深为6m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,求当水池的长在什么范围时,才能使水池的总造价不超过61200元(规定长大于等于宽).【考点】函数模型的选择与应用.【专题】转化思想;综合法;函数的性质及应用.【分析】设池底的长为x米,泳池的造价为y元,则由长大于等于宽可得x≥,求得x≥10.再根据y≤61200求得x的范围,综合可得x的范围.【解答】解:设池底的长为x米,泳池的造价为y元,则由长大于等于宽可得x≥,∴x≥10.由题意可得总造价y=135×+95×(6x+6x+×6×2)=27000+95•12x+95•≤61200,即 57x+≤1710,即 x﹣30+≤0,求得10≤x≤20,答:水池长在[10,20]米范围内,满足题意.【点评】本题主要考查函数的模型的选择应用,属于中档题.21.设x1,x2是方程x2﹣2mx+4m2﹣4m+1=0的两个不等实根,(Ⅰ)将x12+x22表示为m的函数g(m),并求其定义域;(Ⅱ)设f(m)=,求f(m)的值域.【考点】函数的值域;函数的定义域及其求法.【专题】计算题;函数思想;判别式法;函数的性质及应用.【分析】(Ⅰ)由x1,x2是方程x2﹣2mx+4m2﹣4m+1=0的两个不等实根,得到△>0,则可求出m的取值范围.(Ⅱ)把g(m)=﹣4m2+8m﹣2代入f(m)=,再令,则f(m)的值域可求.【解答】解:(I)对于x2﹣2mx+4m2﹣4m+1=0,△>0得(﹣2m)2﹣4×(4m2﹣4m+1)>0即=,其定义域为.(II),令则,则f(m)的值域为.【点评】本题考查了函数的定义域及其值域的求法,是基础题.22.已知函数f(x)=2x﹣2﹣x,定义域为R;函数g(x)=2x+1﹣22x,定义域为[﹣1,1].(Ⅰ)判断函数f(x)的单调性(不必证明)并证明其奇偶性;(Ⅱ)若方程g(x)=t有解,求实数t的取值范围;(Ⅲ)若不等式f(g(x))+f(3am﹣m2﹣1)≤0对一切x∈[﹣1,1],a∈[﹣2,2]恒成立,求m的取值范围.【考点】函数恒成立问题;函数的零点.【专题】转化思想;分类法;函数的性质及应用.【分析】(I)f(x)在R上为增函数;在R上为奇函数;(II)可知t的范围与g(x)的值域相同,由指数函数的单调性和二次函数的值域求法,即可得到所求范围;(III)由f(x)的单调性和奇偶性可得,f(g(x))≤f(﹣3am+m2+1),即有g(x)≤﹣3am+m2+1对一切x∈[﹣1,1],a∈[﹣2,2]恒成立,(g(x))max≤(﹣3am+m2+1)min,运用单调性求得最值,即可得到m的范围.【解答】解:(I)f(x)=2x﹣2﹣x在R上单调递增,因为f(﹣x)=2﹣x﹣2x=﹣f(x),所以f(x)为奇函数;(II)可知t的范围与g(x)的值域相同,g(x)=2x+1﹣22x,令t=2x∈[,2],则g(x)=﹣t2+2t的值域为[0,1];(III)由f(g(x))+f(3am﹣m2﹣1)≤0得f(g(x))≤﹣f(3am﹣m2﹣1),由(I)得f(g(x))≤f(﹣3am+m2+1),即有g(x)≤﹣3am+m2+1对一切x∈[﹣1,1],a∈[﹣2,2]恒成立,则(g(x))max≤(﹣3am+m2+1)min,设h(a)=﹣3am+m2+1,则h(a)≥1对一切a∈[﹣2,2]恒成立,若m=0则恒成立;若m≠0则,即,解得m∈(﹣∞,﹣6]∪[6,+∞).综上所述m的取值范围是(﹣∞,﹣6]∪[6,+∞)∪{0}.【点评】本题考查函数的单调性和奇偶性的判断和应用,考查方程有解和不等式恒成立问题的解法,注意运用函数的单调性,考查运算能力,属于中档题.。

数学上学期期中试题-城南中学2012-2013学年高一上学期期中考试数学试题及答案

安徽省六安市城南中学2012-2013学年高一上学期期中考试时间:120分钟 总分:150 分一、选择题:(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合要求,请将所选答案填在答题卷...中对应位置.) 1.若集合}4,3,2,1{=A ,{2478}{0,1,3,4,5}B C ==,,,,,则集合()AB C 等于( ) A. {2,4} B.{1,3,4} C. {2,4,7,8}D. {0,1,2,3,4,5}2.下列四组函数中,表示同一函数的是( )A .2)1(1-=-=x y x y 与 B .xx y x y 2==与C .242222++==x x y y 与 D .111--=-=x x y x y 与3.已知函数2)(x x f =,x x h =)(,则()(),f x h x 的奇偶性依次为 ( )A 偶函数,奇函数B 奇函数,偶函数C 偶函数,偶函数D 奇函数,奇函数4.下列函数中,在区间),0(+∞上不是..增函数的是( ) A. xy 2= B. x y lg = C. 3x y = D. 1y x=5.已知集合M 满足M ∪{2,3}={1,2,3},则集合M 的个数是( )A .1B .2C .3D .46.若函数log ()b y x a =+(b >0且b 1≠)的图象过点(0,1)和(1-,0),则a b +=( )A .B .2+.3 D .47.已知3.0log 2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是( )A .a c b >>B .c a b >>C .c b a >>D .a b c >>8.函数)1(3log 2≥+=x x y 的值域是( )A .[)+∞,2B .(3,+∞)C .[)+∞,3D .(-∞,+∞)9.已知)(x f 是定义在R 上的奇函数,当0<x 时,xx f )31()(=,那么)21(f 的值是 ( )A .33B . 3C .- 3D .910.已知集合},|{},0125|{22R x a x y y B x x x A ∈+===++=,若φ≠⋂B A ,则a 的取值范围是( ) A. ]21,(--∞ B. ]2,(--∞ C. ),21(+∞- D. ]41,4[--二、填空题:(本题共5小题,每小题5分,共25分,把答案填在答题卷...中对应题号后的横线上.)11.若幂函数)(x f y =的图象经过点)31,9(, 则)25(f 的值是_____________.12.已知函数⎩⎨⎧>≤≤-=2,220,4)(2x x x x x f ,若00()8,f x x ==则_____________.13.)4(log 5.0x y -=的定义域为_____________.14.指数函数xa y )2(-=在定义域内是减函数,则a 的取值范围是_____________.15.定义在R 上的奇函数)(x f 在区间]4,1[上是增函数,在区间]3,2[上的最小值为1-,最大值为8,则=+-+)0()3()2(2f f f _____________.三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)16.(本小题12分)已知集合A ={1,3,2m -1},集合B ={3,2m };若B ⊆A ,求实数m 的值。

枣庄三中12-13学年高一上学期期中考试(数学)

2012—2013学年度第一学期期中考试高一年级数学试卷一、选择题:本大题共12个小题,每小题5分,在每小题的四个选项中只有一项是符合题目要求的。

1、设集合{}{}32,13M m Z m m N n Z n =∈≤-≥=∈-≤≤或,则()Z C M N ⋂=( ) A . {0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2}2、设集合{}{}04,02P x x Q y y =≤≤=≤≤,下列对应f 中不能..构成A 到B 的映射 是( ) A .12y x =B .13y x =C .23y x =D .18y x =3、二次函数542+-=mx x y 的对称轴为2-=x ,则当x=1时,y 的值为( ) A 7- B 1 C 17 D 254、已知函数23212---=x x x y 的定义域为( )A .]1,(-∞B .]2,(-∞C .]1,21()21,(-⋂--∞ D . ]1,21()21,(-⋃--∞5、设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( )A .1+πB .0C .πD .1-6、下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( )7、521log2+=( )A.7B.10C.6D. 928、若213logx<,则x 的取值范围为( )A 2(,)3-∞ B 2(0,)3 C 2(,1)3D 2(0,)(1,)3+∞9.对实数a b 和,定义运算“⊗”:,,,.a ab a b b a b ≤⎧⊗=⎨<⎩设函数22()(1)(),.f x x x x x R =-⊗-∈若函数()y f x c =-恰有两个不同的零点,则实数c 的取值范围是 ( )A .3(,1)(,0)4-∞-⋃-B .3{1,}4--C .3(1,)4--D .3(,1)[,0)4-∞-⋃-10.下列关系中正确的是( )A.(21)32<(51)32<(21)31B.(21)31<(21)32<(51)32C.(51)32<(21)31<(21)32D.(51)32<(21)32<(21)3111、 若函数()f x 在R 上是单调递减的奇函数,则下列关系式不成立的是( ) A.()()34f f < B.()()34f f <-- C.()()34f f --<- D.()()34f f ->- 12、已知y=f(x)是定义域在R 上的奇函数,当0x ≥时,2()2f x x x =-,则f(x)在R 上的表达式是( )A. (2)y x x =-B.(1)y x x =-C.(2)y x x =-D.(2)y x x =-二、填空题:本大题共四个小题,每小题4分,共16分13、设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 . 14、函数22x y a+=-过定点15、函数()()2110+m y m m x -=--∞是幂函数且在,上单调递增,则实数m 的值为 16、若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围为 .三、解答题:本题共6个大题,共74分17、(本小题满分8分)已知集合{}{}|16,|44A x x x B x x =<-≥=-<≤或, 求,,(),()R R A B A B A B A B C C18、(本小题满分8分)计算下列各题:①41320.753440.0081(4)16---++- ②211log 522lg 5lg 2lg 502+++19、(本小题满分8分)[]()(0)()4 6.f x kx b k f f x x +>=+已知=且求f(x)的解析式。

2024学年哈尔滨市三中高一数学上学期期中考试卷附答案解析

哈三中2024-2025学年度上学期高一学年期中考试数学试卷考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟;第Ⅰ卷(选择题,共58分)一、单选题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{M x y ==,(],2N =-∞,则M N = ( )A. [)1,+∞B. []1,2 C. RD. ∅【答案】B 【解析】【分析】根据函数有意义求出集合A ,进而结合交集的定义求解即可.【详解】因为{{}1M x y x x ===≥,(],2N =-∞,所以[]1,2M N = .故选:B.2. 已知函数()1,13,1x x x f x x ⎧-≤=⎨>⎩,则()3f f -=⎡⎤⎣⎦( )A. 0B. 1C. 3D. 9【答案】D 【解析】【分析】根据分段函数解析式,由内而外,逐步计算, 即可得出结果.【详解】由题意,()3312f -=--=,则()()23239f f f -===⎡⎤⎣⎦.故选:D.3. 若函数()211f x x +=-,则()f x =( )A. 22x x +B. 21x -C 22x x- D. 21x +.【答案】C 【解析】【分析】借助配凑法即可解答.【详解】由()()()2211121f x x x x +=-=+-+,则()22f x x x =-.故选:C.4. 已知20.1a =,2log 2b =,0.12c =,则a ,b ,c 的大小关系是( )A. c a b >> B. c b a >>C. b a c >> D. b c a>>【答案】B 【解析】【分析】先化简0.01a =,1b =,结合指数函数的单调性比较1c >,进而比较大小即可.【详解】因为20.010.1a ==,2log 21b ==,0.10221c =>=所以c b a >>.故选:B.5. 已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()1f x x x =-.则当0x <时,()f x =( )A. ()1x x + B. ()1x x -C. ()1x x -+ D. ()1x x -【答案】A 【解析】【分析】结合奇函数的性质求解即可.【详解】因为函数()f x 是定义在R 上的奇函数,所以()()f x f x -=-,当0x ≥时,()()1f x x x =-,则当0x <时,0x ->,()()()1f x x x f x -=-+=-,即()()1f x x x =+.故选:A.6. 函数()f x =的单调递增区间为( )A. ()0,2B. (),2-∞C. ()2,4D. ()2,+∞【答案】A 【解析】【分析】求出函数定义域,由复合函数的内函数的单调区间得到函数单调区间.【详解】函数定义域:240x x -+≥,∴04x ≤≤,∵函数24y x x =-+在区间()0,2上单调递增,()2,4上单调递减,∴函数()f x 在区间()0,2上单调递增,()2,4上单调递减.故选:A.7. 若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩满足对任意不相等的两个实数1x ,2x 都有()()()12120f x f x x x -->⎡⎤⎣⎦,则实数a 的取值范围是( )A [)4,8- B. [)4,8 C. ()4,8 D. ()1,8【答案】B 【解析】【分析】结合题设易得函数()f x 在R 上单调递增,进而由分段函数单调性的性,结合指数函数与一次函数单调性求解即可.【详解】因为对任意不相等的两个实数1x ,2x 都有()()()12120f x f x x x -->⎡⎤⎣⎦,所以函数()f x 在R 上单调递增,则1402422a a aa ⎧⎪>⎪⎪->⎨⎪⎪-+≤⎪⎩,解得48a ≤<,即实数a 的取值范围是[)4,8.故选:B..8. 关于x 的方程33245xa a +⎛⎫= ⎪-⎝⎭有负根的一个充分不必要条件是( )A. 344a << B.354a <<C 364a << D. 2334a -<<【答案】A 【解析】【分析】结合指数函数的性质,要使关于x 的方程33245xa a +⎛⎫= ⎪-⎝⎭有负根,可得3215a a+>-,解出354a <<,再根据充分不必要条件的定义判断即可.【详解】当0x <时,314⎛⎫> ⎪⎝⎭x,要使关于x 的方程33245xa a +⎛⎫= ⎪-⎝⎭有负根,则3215a a +>-,即4305a a->-,即()()4350a a --<,解得354a <<,所以关于x 的方程33245xa a +⎛⎫= ⎪-⎝⎭有负根的一个充分不必要条件是344a <<.故选:A.二、多选题:共3小题,每小题6分,共18分在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知0x >,0y >,且31x y +=,则下列选项正确的是( )A. y 的范围为10,3⎛⎫ ⎪⎝⎭B. xy 的最大值为112C. 13x y+的最小值为16D. 229x y +的最小值为2【答案】ABC 【解析】【分析】根据题意,结合不等式的性质可判断A ;根据基本不等式可判断BCD.【详解】对于A :由题知0,0x y >>,所以0130y x y >⎧⎨=->⎩,解得103y <<,即10,3y ⎛⎫∈ ⎪⎝⎭,故A 正确;.对于B :31x y +=≥=,即112xy ≤,当且仅当3x y =,即11,26x y ==时等号成立,所以xy 的最大值为112,故B 正确;对于C :()1313310310316x y x y x y x y y x ⎛⎫⎛⎫+=++=++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当x y =时等号成立,所以13x y+的最小值为16,故C 正确;对于D :222293112224x y x y ++⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭,∴22192x y +≥,当且仅当132x y ==,即11,26x y ==时,时等号成立,∴229x y +有最小值12,故D 不正确.故选:ABC.10. 在同一平面直角坐标系中,函数21:aC y x-=,2:xC y a =(0a >且1a ≠)图象可能是( )A. B.C. D.【答案】AC 【解析】【分析】根据幂函数和指数函数的单调性分析判断即可.【详解】若01a <<,122a <-<,则21:aC y x-=在[)0,+∞上单调递增,且图象呈现下凸趋势,2:x C y a =是R 上的减函数,故A 正确,BD 错误;若3a =,21a -=-,则11:1xC y x-==在(),0-∞和()0,∞+上单调递减,2:3x C y =是R 上的增函数,故C 正确.故选:AC.11. 下列命题中正确的是( )A. 函数()2xf x x =+,[]1,2x ∈的值域是[]3,6B. 函数()1421xx f x +=++的值域是[)1,+∞C. 函数()211f x x x =++的值域是40,3⎛⎤⎥⎝⎦D. 函数()2125x f x x x +=++的值域是11,44⎡⎤-⎢⎥⎣⎦【答案】ACD 【解析】【分析】对于A ,结合指数函数和一次函数的性质求解判断即可;对于B ,令()20xt t =>,换元,利用二次函数的性质求解判断即可;对于C ,利用二次函数的性质求解判断即可;对于D ,结合基本不等式讨论求解判断即可.【详解】对于A ,因为函数2,x y y x ==在[]1,2上单调递增,所以函数()2xf x x =+在[]1,2上单调递增,且()()13,26f f ==,所以函数()2xf x x =+,[]1,2x ∈的值域是[]3,6,故A 正确;对于B ,令()20xt t =>,则()()1242121xx f x g t t t +=++==++,因为函数()g t 在()0,∞+上单调递增,且()01g =,所以函数()1421xx f x +=++的值域是()1,+∞,故B 错误;对于C ,因为221331244y x x x ⎛⎫=++=++≥ ⎪⎝⎭,所以214013x x <≤++,则函数()211f x x x =++的值域是40,3⎛⎤⎥⎝⎦,故C 正确;对于D ,对于函数()2125x f x x x +=++,当1x =-时,()0f x =;当1x ≠-时,()()221114251411x x f x x x x x x ++===+++++++,若1x >-,则4141x x ++≥=+,当且仅当411x x +=+,即1x =时等号成立,则()110,4411f x x x ⎛⎤=∈ ⎥⎝⎦+++;若1x <-,则4141x x ++≤-=-+,当且仅当411x x +=+,即3x =-时等号成立,则()11,04411f x x x ⎡⎫=∈-⎪⎢⎣⎭+++.综上所述,函数()2125x f x x x +=++的值域是11,44⎡⎤-⎢⎥⎣⎦,故D 正确.故选:ACD.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12. 函数()21f x x =-在区间[]2,4上的最大值为________.【答案】2【解析】【分析】根据函数的单调性求解最值即可.【详解】因为函数()21f x x =-在区间[]2,4上单调递减,所以()()max 22221f x f ===-.故答案为:2.13. 已知函数()f x 的数据如下表,则该函数可能的一个解析式为________.x012345…()f x 3612244896…【答案】()32xf x =⋅(答案可能不止一个)【解析】【分析】根据表中数据可得函数与指数函数相关,故可得一个可能的解析式.【详解】表中数据中函数值从左到右的规律为:右侧数据为相邻左侧数据的2倍,故可设()2xf x a =⨯,由()03f =可得3a =,故()32xf x =⋅,检验符合,另外,如果()()()()123(4)(5)312345x x x x x f x -----=-⨯⨯⨯⨯⨯()()()()()()()()()()()23(4)(5)13(4)(5)6121123421123x x x x x x x x x x --------+⨯+⨯⨯-⨯-⨯-⨯-⨯⨯-⨯-⨯-()()()()()()()12(4)(5)12(3)(5)24483211243211x x x x x x x x x x --------+⨯+⨯⨯⨯⨯-⨯-⨯⨯⨯⨯-()()12(3)(4)9612345x x x x x ----+⨯⨯⨯⨯⨯,检验后也符号要求.故答案为:()32xf x =⋅(答案可能不止一个)14. 设函数()()()4e 166xf x x x x =+--<<,则()f x 是________函数(从“奇”、“偶”、“既奇又偶”、“非奇非偶”中选一个恰当答案填入),关于x 的不等式()()()31213f x f f x ++-<-的解集为________.【答案】 ①. 奇函数. ②. 51,33⎛⎫- ⎪⎝⎭.【解析】【分析】根据奇函数的定义可判断函数为奇函数,再根据函数单调性定义可判断()f x 在()6,6-上为增函数,设()()()()31213s x f x f f x =++---,根据复合函数的单调性可得()s x 在()6,6-上为增函数,据此可求不等式的解.【详解】因为()()()4e 1xf x x x f x -=-+-=-且()6,6-关于原点对称,故()f x 为奇函数.当06x ≤<时,()5e xf x x x x =+-,设()()e 1xg x x =-,06x ≤<,任意1206x x ≤<<,则有120e 1e 1x x ≤-<-,故()()12120e 1e 1xxx x ≤-<-即()()12g x g x <,故()()e 1x g x x =-在[)0,6上为增函数,而5y x =在[)0,6上为增函数,故()5e xf x x x x =+-在[)0,6上为增函数,结合()f x 为奇函数,()00f =,故()5e xf x x x x =+-在()6,6-上为增函数,设()()()()31213s x f x f f x =++---,由复合函数的同增异减可得()s x 在()6,6-上为增函数,而()()()122003s f f f ⎛⎫=+--= ⎪⎝⎭,故()()()31213f x f f x ++-<-即为()10()3s x s <=,故13x <,又63166136x x -<+<⎧⎨-<-<⎩,故5133x -<<故不等式的解集为51,33⎛⎫- ⎪⎝⎭.故答案为:奇函数;51,33⎛⎫- ⎪⎝⎭.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知102m =,105n =,求下列各式的值:(1)210m n -;(2)m n +;(3)1125mn+.【答案】(1)225(2)1 (3)20【解析】【分析】(1)根据同底数幂的除法法则及幂的乘方求解即可;(2)根据同底数幂的乘法法则求解即可;(3)结合指数与对数相互转化可得lg 2m =,lg 5n =,再结合换底公式可得21log 10m =,51log 10n=,进而代值计算即可.【小问1详解】()2222101022105251010m m m n n n-====.【小问2详解】因为1010251010m n n m +=⋅=⨯=,所以1m n +=.【小问3详解】由102m =,105n =,则lg 2m =,lg 5n =,则21log 10m =,51log 10n=,所以52log 10log 01112510102025m n ==+++=16. 已知幂函数()()21af x a a x =+-在()0,∞+上单调递增.(1)求()f x 解析式;(2)若()()22g x x f x mx m =⋅-+在[]0,2上的最小值为2-,求m 的值.【答案】(1)()f x x = (2)1-或3【解析】【分析】(1)根据幂函数的定义和单调性可得2110a a a ⎧+-=⎨>⎩,进而求解即可;(2)根据二次函数的性质讨论求解即可.【小问1详解】由题意得,2110a a a ⎧+-=⎨>⎩,解得1a =,则()f x x =.【小问2详解】的.由()()22222g x x f x mx m x mx m =⋅-+=-+,对称轴为x m =,当0m ≤时,()()min 02g x g m ==,则22m =-,即1m =-;当02m <<时,()()2min 2g x g m m m ==-+,则222m m -+=-,即1m =+1m =;当2m ≥时,()()min 242g x g m ==-,则422m -=-,即3m =.综上所述,1m =-或3.17. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经研究:把茶水放在空气中冷却,如果茶水开始的温度是1θ℃,室温是0θ℃,那么t min 后茶水的温度θ(单位:℃)可由公式()()010e kt t θθθθ-=+-求得,其中k 是常数.为了求出这个k 的值,某数学建模兴趣小组在25℃室温下进行了数学实验,先用95℃的水泡制成95℃的茶水,利用温度传感器,测量并记录从0t =开始每一分钟茶水的温度,多次实验后搜集整理到了如下的数据:t min012345θ(℃)95.0089.1984.7581.1978.1975.00(1)请你仅利用表中的一组数据5t =,75.00θ=,求k 的值,并求出此时()t θ的解析式;(2)在25℃室温环境下,王老师用95℃的水泡制成的茶水,想等到茶水温度降至45℃时再饮用,根据(1)的结果,王老师要等待多长时间?(参考数据:ln 20.7≈,ln 5 1.6≈,ln 7 1.9≈,e 是自然对数的底数.)【答案】(1)350k ≈,()3502570et θ-=+ (2)王老师大约等待20min 【解析】【分析】(1)由题意得()575259525ek-=+-,结合指数与对数的相互转化及对数的运算性质求解即可;(2)令3502570e 45t -+=,进而结合指数与对数的相互转化及对数的运算性质求解即可.【小问1详解】由题意,得()575259525ek-=+-,即55e7k-=,即55ln ln 5ln 7 1.6 1.90.37k -==-≈-=-,解得350k ≈,此时()3502570e t t θ-=+.【小问2详解】令3502570e 45-+=,即3502e7-=,即32ln ln 2ln 70.7 1.9 1.2507t -==-≈-=-,解得20t ≈,所以王老师大约等待20min.18. 已知函数()e 1e 1x x a f x -=+为奇函数.(1)求a 的值;(2)利用定义证明()y f x =在R 上单调递增;(3)若存在实数[]1,3x ∈,使得()()4320xxf k f ⋅-+>成立,求k 的取值范围.【答案】(1)1 (2)证明见解析(3)1,12⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)利用奇函数的性质求解即可;(2)利用函数的单调性定义证明即可;(3)结合函数()f x 的单调性和奇偶性转化题目问题为存在实数[]1,3x ∈,使得3142xx k >-成立,则min3142x x k ⎛⎫>- ⎪⎝⎭,进而令111282x t t ⎛⎫=≤≤ ⎪⎝⎭,结合二次函数的性质求解即可.【小问1详解】因为函数()e 1e 1x x a f x -=+为奇函数,定义域为R ,所以()10011a f -==+,即1a =,此时()e 1e 1x x f x -=+,则()()e 11e e 11e x xx xf x f x -----===-++,满足题意,所以1a =.【小问2详解】证明:由(1)知,()e 1e 1221e 1e 1e 1x x x x xf x -+-===-+++,任取12,x x ∈R ,且12x x <,则()()122112222211e 1e 1e 1e 1x x x x f x f x -=--+=-++++()()()()()()121212122e 1e 12e e e 1e 1e 1e 1x x x x x x x x +---==++++,因为12x x <,则12e e 0x x -<,()()12e 1e 10xx++>,所以()()120f x f x -<,即()()12f x f x <,所以()y f x =在R 上单调递增.【小问3详解】由()()4320xxf k f ⋅-+>,即()()()4322xxxf k f f ⋅->-=-,因为函数()y f x =在R 上单调递增,所以432x x k ⋅->-,即3142xx k >-,由题意,存在实数[]1,3x ∈,使得3142xx k >-成立,则min3142x x k ⎛⎫>- ⎪⎝⎭,令111282x t t ⎛⎫=≤≤ ⎪⎝⎭,则()2min 3k t t >-当16t =时,()2min1312t t -=-,即112k >-,所以k 的取值范围为1,12⎛⎫-+∞ ⎪⎝⎭.19. 对于定义在区间D 上的函数()f x ,若存在闭区间[],a b D ⊆和常数c ,使得对任意[]1,x a b ∈,都有()1f x c =,且对任意2x D ∈,当[]2,x a b ∉时,()2f x c >恒成立,则称函数()f x 为区间D 上的“卷函数”.(1)判断函数()11g x x x =++-是否为R 上的“卷函数”?并说明理由:(2)设()g x 是(1)中的“卷函数”,若不等式()2344222xttttg ---≤+++-对t ∀∈R 恒成立,求实数x 的取值范围;(3)若函数()h x mx =[)3,∞-+上的“卷函数”,求m n 的值.【答案】(1)函数()11g x x x =++-为R 上的“卷函数”,理由见解析 (2)[]1,2 (3)4【解析】【分析】(1)写出函数()g x 的分段函数形式,再结合新定义判断即可;(2)令()222ttm m -=≥+,结合二次函数的性质及题意可得不等式()232x g -≤恒成立,进而结合函数()g x 的值域可得1231x -≤-≤,进而求解即可;(3)根据题意可得存在区间[][),3,a b ⊆-+∞和常数c,使得mx c +=恒成立,即()224x x n mx c ++=-,列出方程组即可求得m 、c 、n 的值,代入函数验证是否满足题意即可确定m 、n的值,进而求解.【小问1详解】函数()11g x x x =++-为R 上的“卷函数”,理由如下:对于函数()2,1112,112,1x x g x x x x x x -<-⎧⎪=++-=-≤≤⎨⎪>⎩,当[]1,1x ∈-时,()2g x =,且当1x <-或1x >时,()2g x >恒成立,所以函数()11g x x x =++-为R 上的“卷函数”.【小问2详解】由于222t t -≥=+,当且仅当22t t -=,即0t =时等号成立,令()222ttm m -=≥+,则2244t t m -+=-,所以2442224t t t t m m --+++-=+-,因为函数24y m m =+-在[)2,+∞上单调递增,所以当2m =时,()2min42m m +-=,由题意,不等式()2344222xttttg ---≤+++-对t ∀∈R 恒成立,即不等式()232xg -≤恒成立,由(1)知,当[]1,1x ∈-时,()2g x =,且当1x <-或1x >时,()2g x >恒成立,则1231x -≤-≤,解得12x ≤≤,即实数x 的取值范围为[]1,2.【小问3详解】因为函数()h x mx =+是区间[)3,∞-+上的“卷函数”,则存在区间[][),3,a b ⊆-+∞和常数c,使得mx c +=恒成立.所以()2222242x x n c mx m x mcx c ++=-=-+恒成立,即22124m mc c n ⎧=⎪-=⎨⎪=⎩,解得124m c n =⎧⎪=-⎨⎪=⎩或124m c n =-⎧⎪=⎨⎪=⎩,当124m c n =⎧⎪=-⎨⎪=⎩时,()2,32222,2x h x x x x x x --≤≤-⎧==++=⎨+>-⎩,当[]3,2x ∈--时,()2h x =-,当()2,x ∈-+∞时,()2h x >-恒成立.此时,()h x 是区间[)3,∞-+上的“卷函数”.当124m c n =-⎧⎪=⎨⎪=⎩时,()22,3222,2x x h x x x x x ---≤≤-⎧=-+=-++=⎨>-⎩.当[]3,2x ∈--时,()2h x >-,当()2,x ∈-+∞时,()2h x =,此时,()h x 不是区间[)3,∞-+上的“卷函数”.综上所述,1m =,4n =,所以4m n =.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.。

黑龙江省哈三中09-10学年高一上学期期中考试(数学)

黑龙江省哈三中09-10学年高一上学期期中考试(数学)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若集合{|1}A x x =>-,则以下关系中正确的是 ( )A .0A ÜB .{0}A ∈C .0A ∉D .{0}A Ü2、已知11()1f xx =+,则()f x =( )A .11x+B .1x x+C .1x x+D .1x +3、已知{,(0)()0,(0)x x f x x π+>=…,则[(1)]f f -= ( )A .1π-B .0C .1D .π4、函数y =( )A .{|0}x x …B .{|1}x x …C .{|1}{0}x x …D .{|01}x x 剟5、下列各组中两个函数是同一函数的是( )A .21()1x f x x -=-与()1g x x =+ B .2()(0)f r r r π=…与2()(0)g x x x π=…C .()log (0x a f x a a =>,且1)a ≠与log ()(0,1)ax g x a a a =>≠且D.2()||()f x x g t ==与6、设1{1,1,,3}2α∈-,则使函数y x α=的定义域为R ,且为奇函数的所有α的值为( )A .1,1,3-B .1,1-C .1,3-D .1,3 7、下列函数中值域是(0,)+∞的是( ) A .22log (23)y x x =-- B .22y x x =++C .1||y x =D .221x y =+8、已知函数()log (0,1)a f x x a a =>≠且的图象如右图所示,函数()y g x =是()y f x =的反函数,则函数()y g x =的解析式为( )A .()2x g x =B .1()()2x g x = C .12()log g x x = D .2()log g x x =9、某地区的绿化面积每年平均比上一年增长10%,设经过x 年后,绿化面积与原绿化面积之比为y ,则()y f x =得图象大致为 ( ) A .B .C .D .10、已知定义在R 上的偶函数()f x 在[0,)+∞上单调递增,且(2)0f =,则不等式2(log )0f x >的解集为( )A .1(,4)4B .1(,)(4,)4-∞+∞ C .1(0,)(4,)4+∞D .1(,)(0,4)4-∞11、设1(0,)2a ∈,则1212,log ,a a a a 之间的大小关系是( )A .1212log a a a a >>B .1212log a a a a >>C .1212log a a a a >>D .1212log a a a a >>12、函数2()(0)f x ax bx c a =++≠,对任意的非常实数,,,,,a b c m n p ,关于x 的方程2[()]()0m f x nf x p ++=的解集不可能是( ) A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}二、填空题:本大题共4个小题,每小题5分,共20分13、已知全集{1,2,3,4,5,6}U =,集合{1,3,4,6}A =,则集合U A ð的所有子集共有 个. 14、已知2()345,()(2)f x x x g x f x =-+=-,则(3)g = . 15、函数122()log (2)f x x x =--的单调递增区间为 .16、定义在R 上的奇函数()f x 满足:当0x >时,2009()2009log x f x x =+,则方程()0f x =的实根个数为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17、(10分)已知集合2{|(1)(2)0},{|230},{|}A x x x B x x C y y x =-+>=-==…, 求①A C ;②()U A B ð 18、(12分)计算或花间下列各式: (1)552log 10log 0.25+(2)521111336622(2)(6)(3)(0,0)a b a b a b a b -÷->>19、(12分)已知函数2()(0)1ax f x a x =>-.(1)判断并证明函数()f x 的奇偶性;(2)判断函数()f x 的单调性,并用函数的单调性定义给予证明.20、(12分)某医药研究所开发一种抗甲流新药,如果成年人按规定的计量服用,据监测:服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线. (1)结合下图,求k 与a 的值;(2)写出服药后y 与t 之间的函数关系式()y f t =;(3)据进一步测定:每毫升血液中含药量不少于0.5微克时治疗疾病有效,求服药一次治疗有效的时间范围?y (21、(12分)设函数124()lg ()3x xa f x a R ++=∈.(1)当2a =-时,求()f x 的定义域;(2)如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; (3)如果01a <<,求证:当0x ≠时,有2()(2)f x f x <.22、(12分)设函数()l o g (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的点时,点(2,)Q x a y --是函数()y g x =图象上的点.(1)写出函数()y g x =的解析式;(2)若当[2,3]x a a ∈++时,恒有|()()|1f x g x -…,试确定a 的取值范围;(3)把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x a a a ---=-+,(0,1a a >≠且)在1[,4]4的最大值为54,求a 的值.参考答案一、选择题:(51260⨯=5420⨯=(,1)-∞-三、解答题:(17题10分;18~22题,每题12分,共70分)17、解:由集合2{|(1)(2)0},{|230},{|}A x x x B x x C y y x =-+>=-==…解得:{|21}(,2)(1,)A x x x =<->=-∞-+∞ 或,22{|}[,)33B x x ==+∞…,[0,)C =+∞(1)(,2)[0,)A C =-∞-+∞ ;(2)2[2,1]()[,1]3RR A A B =-⇒= 痧 18、解:(1)原式225555log 10log 0.25log (100.25)log 252=+=⨯==; (2)原式75516666(12)(3)4a b a b a -÷-=19、(1)函数2()1ax f x x =-(0a >)为奇函数;证明:首先()f x 的定义域为(,1)(1,1)(1,)-∞--+∞ 关于原点对称,其次,又有22()()()11ax ax f x f x x x --==-=----,于是()f x 为奇函数;(2)函数2()1ax f x x =-(0a >)在(,1)(1,1)(1,)-∞--+∞;;三个区间上单调递减;证明:设121x x <<-,则22212112121221222222212121[(1)(1)]()(1)()()11(1)(1)(1)(1)ax ax a x x x x a x x x x f x f x x x x x x x ----+-=-==------又∵120x x -<,1210x x +>,2221(1)(1)0x x -->且0a >∴2121()()0()()f x f x f x f x -<⇒<, ∴()f x 在(,1)-∞-上为减函数;同理,()f x 在(1,1)-及(1,)+∞上均为减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学 第 1 页 共 4 页
哈三中2012—2013学年度上学期
高一学年第一模块数学试卷

考试说明:(1) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,
考试时间为120分钟;
(2) 第I卷,第II卷试题答案均答在答题卡上,交卷时只交答题卡.
第I卷
(选择题, 共60分)

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1. 设3a,3xxM集合,则下列各式中正确的是
(A)Ma (B)Ma (C)Ma (D)Ma
2. 下列各组中的两个函数是相等函数的是
(A)11)(2xxxf与1)(xxg
(B)01)(xxf与1)(xg
(C)xaaxflog)((0a,且1a)与xaaxglog)((0a,且1a)
(D)||)(xxf与2)(ttg
3. 函数xxxf51)(21lgx的定义域是
(A),5 (B),5 (C),10, (D),50,
4. 函数21)(2xxf的值域是
(A)]21,0( (B)]21,0[ (C)2, (D))21,(
高一数学 第 2 页 共 4 页

5. 下列函数中在,0上是增函数的是
(A)1xy (B)422xxy (C)xy1 (D)12xy

6. 设21log3a,2.03b,3.0)21(c,则cba,,的大小关系是
(A)cba (B)bca (C)cab (D)abc
7. 函数xxxf11log)(2的图象
(A)关于原点对称 (B)关于直线xy对称
(C)关于直线xy对称 (D)关于y轴对称

8. 已知函数)6)(2()6(4)(xxfxxxf,则)3(f
(A)1 (B)2 (C)3 (D)4
9. 已知函数xxf3)(,函数)(xgy是函数)(xfy的反函数,则)91(g
(A)2 (B)2 (C)3 (D)3
10. 若奇函数)(xf在,0上是增函数,又0)3(f,则不等式0xfx的解集为
(A),30,3 (B)3,00,3
(C),33, (D)3,03,
11. 若函数axxf21log)(的图象不经过第二象限,则实数a的取值范围是

(A),0 (B),1 (C)0, (D)1,
12. 若方程xx2log)21(的解为1x,方程xx21log)21(的解为2x,则21xx的取值范围为
(A)1,0 (B),1 (C)2,1 (D),1
高一数学 第 3 页 共 4 页

第Ⅱ卷
(非选择题, 共90分)

二、填空题:本大题共4小题,每小题5分,共20分.
13. 已知全集5,4,3,2,1U,集合NxxxA,40,则集合ACU .
14. 已知569)13(2xxxf,则)2(f .
15. 函数)2(log)(221xxxf的单调增区间是 .
16. 若直角坐标平面上两点BA,满足条件:(1)BA,都在函数)(xf的图象上;(2)
BA,
关于原点对称,则称点对BA,是函数)(xf的一个“美好点对”(点对BA,与点对


AB,
看做同一个“美好点对”),已知函数)0(2)0(14)(2xexxxxfx,则函数
)(xf

的“美好点对”有 个.
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17. (本小题满分10分)设集合022xxxA,xxxB2233.求:
(Ⅰ)BA; (Ⅱ)BA.

18. (本小题满分12分)计算下列各式:
(Ⅰ))4)(2)(3(324132213141yxyxyx)0,0(yx;
(Ⅱ)25.0log10log22log18log5533.
高一数学 第 4 页 共 4 页

19. (本小题满分12分)已知函数xxxf12.
(Ⅰ)证明函数xf的奇偶性;
(Ⅱ)用定义法证明:函数xf在),0(上是增函数.

20. (本小题满分12分)已知函数xxf2)(,12)2(af,函数xaxxg92)(,)(xg的
定义域为]1,0[.
(Ⅰ)求函数)(xg的解析式;
(Ⅱ)求函数)(xg的值域.

21. (本小题满分12分)已知函数)3(log)(2axxxfa(0a,且1a).
(Ⅰ)当]2,0[x时,函数)(xf恒有意义,求实数a的取值范围;
(Ⅱ)是否存在这样的实数a,使得函数)(xf在]2,1[上的最大值是2?若存在,求
出a的值;若不存在,请说明理由.

22. (本小题满分12分)定义在R上的函数)(xf满足:对于任意实数ba,总有
)()()(bfafbaf
,当0x时,1)(0xf,且21)1(f.

(Ⅰ)用定义法证明:函数)(xf在),(上为减函数;
(Ⅱ)解关于x的不等式41)76()65(22xxfkkxkxf )(Rk;
(Ⅲ)若]1,1[x,求证:2)(631278xfkkk )(Rk.

相关文档
最新文档