成都市2014—2015学年度上期期末高一数学答案
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
2014-2015下学期期末考试高一数学(A卷)试题与答案

答案一、CDABA BACDCDA 13、57-14、3/10 15、017、)4sin(π+x 18、3- 19、解:(1)由条件1OA =,AON θ∠=cos OC θ∴=,sin AC θ= ……2分1sin cos sin 22S θθθ∴== ……4分其中02πθ<< ……6分(2) 02πθ<<,02θπ∴<< ……8分故当22πθ=,即4πθ=时,……10分max 12S =. ……12分20、解:(1) 这二十五个数据的中位数是397.……4分 (2)品种A 亩产量的频率分布表如下:………………………8分(3)品种A 亩产量的频率分布直方图如下:0.0.0.0.0.0.0.0.………12分21、解:(1)由图象知:4()24T πππ=-=,则:22Tπω==,…………2分 由(0)1f =-得:sin 1ϕ=-,即:()2k k z πϕπ=-∈,……………4分∵||ϕπ< ∴ 2πϕ=-。
………………………………6分(2)由(1)知:()sin(2)cos 22f x x x π=-=-,……………………7分∴g()()()1cos )[cos()]12284xx x f x x ππ=--=----2[sin )]12cos 2sin cos 12x x x x x x =+-=+-cos 2sin 2)4x x x π=+=+,………………………10分当[0,]2x π∈时,52[,]444x πππ+∈,则sin(2)[,1]42x π+∈-,∴()g x 的值域为[-。
………………………………………12分22、解:(1)设(14,)P y ,则(14,),(8,3)OP y PB y ==---, ……………1分 由OP PB λ=,得(14,)(8,3)y y λ=---, …………2分 解得7,74y λ=-=-,所以点(14,7)P -。
2014-2015学年云南省高一上学期期末考试数学试卷(解析版)

2014-2015学年云南省高一上学期期末考试数学试卷(解析版)一 、选择题(本大题共12小题,每小题0分,共0分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.)613sin(π-的值是( ) A .23 B .23-C .21 D .21-【答案解析】D【解析】试题分析:根据三角函数的诱导公式可知,131sin sin sin 6662πππ⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,故选D . 考点:考查了三角函数的诱导公式.点评:解本题的关键是掌握三角函数的诱导公式和特殊角的三角函数值.2.已知集合M={}{},25|,,32|2≤≤-=∈-+=x x N R x x x y y 集合则)(N C M R 等于( )A .[)+∞-,4B .),2()5,(+∞--∞C .),2(+∞D .∅【答案解析】C【解析】试题分析:{}{}2|23|4M y y x x y y ==+-=≥-,{}|52R C N x x x =<->或, ∴(){}|2R M C N x x ⋂=>,故选C .考点:考查了补集和交集.点评:解本题的关键还掌握集合M 表示的是函数的值域,集合M 和集合N 中的元素都是实数,先求出集合N 的补集,再求出两个集合的交集.3.已知点A (1,1),B (4,2)和向量),,2(λ=a 若AB a //, 则实数λ的值为( )A .32-B .23 C .32 D .23-【答案解析】C【解析】试题分析:根据A .B 两点的坐标可得AB =(3,1),∵a ∥AB ,∴2130λ⨯-=,解得23λ=,故选C .考点:考查了向量共线的条件.点评:解本题的关键是掌握两个向量共线的条件,代入两个向量的坐标进行计算.●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●4.函数x x x f ln )(+=的零点所在的区间为( )A .(-1,0)B .(0,1)C .(1,2)D .(1,e )【答案解析】B 【解析】试题分析:函数()ln f x x x =+在(0,+∞)上单调递增,1111ln 10f e e e e⎛⎫=+=-< ⎪⎝⎭,()11ln110f =+=>,故选B .考点:考查了函数的零点.点评:解本题的关键是掌握函数在某个区间上存在零点的条件,若函数在某个区间上单调,且在区间两端点的函数值异号,则函数在这个区间内存在零点. 5.若幂函数222)33(--+-=m m xm m y 的图像不过原点,则实数m 的取值范围为( )A .21≤≤-mB .2=m 或 1=mC .2=mD .1=m【答案解析】B【解析】试题分析:∵()22233m m y m m x--=-+为幂函数且函数图象不过原点,∴2233120m m m m ⎧-+=⎨--≤⎩,解得m =1或m =2,故选B .考点:考查了幂函数.点评:解本题的关键是掌握幂函数的形式,形如y x α=的函数为幂函数,注意x 的前边系数为1,还要注意幂函数图象不过原点时,指数小于等于0. 6.已知⎩⎨⎧<+≥-=)6(),2()6(,5)(x x f x x x f ,则f (3)为( )A .2B .3C .4D .5【答案解析】A【解析】试题分析:∵3<6,∴f (3)=f (3+2)=f (5),5<6,∴f (5)=f (5+2)=f (7)=7-2=5,∴f (3)=2,故选A .考点:考查了分段函数求函数值.点评:利用分段函数求函数值的时候,一定要注意自变量的范围,要代入到对应的解析式中求函数值.7.函数122+=x xy 的值域是( )A .(0,1)B .(]1,0C .()+∞,0D .[)+∞,0【答案解析】A【解析】试题分析:221111212121x x x x x y +-===-+++,20,211x x>+>,则10121x <<+,∴101121x<-<+,故选A . 考点:考查了函数的值域.点评:解本题的关键是把函数的解析式变形,利用指数函数的值域求出函数的值域. 8.已知3log 3log 22+=a ,3log 9log 22-=b ,2log 3=c 则c b a ,,的大小关系是( )A .c b a <=B .c b a >=C .c b a <<D .c b a >>【答案解析】B 【解析】试题分析:2222222log 3log log log 9log log log a b =+==-==,2log 1>,3c log 21=<,∴a b c =>,故选B .考点:利用对数函数的性质比较大小.点评:解本题的关键是根据对数的运算化简对数式,然后根据函数值与1的大小关系进行比较. 9.函数)sin()(ϕω+=x A x f (其中A>0,2,0πϕω<>)的图像如图所示,为了得到x x g 3sin )(=的图像,则只要将)x f (的图像( )A .向右平移12π个单位长度B .向右平移4π个单位长度 C .向左平移4π个单位长度D .向左平移12π个单位长度【答案解析】A【解析】试题分析:根据图象可知,A =1,541246T πππ=-=,∴223T ππω==,∴3ω=,把点5,112π⎛⎫- ⎪⎝⎭代入函数解析式可得:51sin 312πϕ⎛⎫-=⨯+ ⎪⎝⎭,∴()53242k k Z ππϕπ+=+∈,∵2πϕ<,∴4πϕ=,∴()sin 3sin 3412f x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,要想得到()sin3g x x =的图象,只需把f (x )的图象向右平移12π个单位即可,故选A . 考点:考查了根据三角函数的图象求解析式和函数图像的平移.点评:解本题的关键是根据函数的图象,由最小值求出A 的值,根据周期求出ω的值,代入最低点的坐标求出ϕ的值得到函数的解析式,再根据“左加右减”得出由函数f (x )的图象得到函数g (x )的图象应平移的单位数. 10.若函数)0(1>-+=a m a y x 的图像经过第一、三和四象限,则( )A .a >1B .0< a <1且m>0C .a >1 且m<0D .0< a <1 【答案解析】C 【解析】试题分析:根据题意,若函数()10xy a m a =+->的图像经过第一、三和四象限,∴a >1且m -1<-1,∴a >1且m <0,故选C . 考点:函数的图像点评:解本题的关键是掌握指数函数的图像,要熟练掌握底数a >1和0<a <1时图像的特征. 11.已知P 是边长为2的正三角形ABC 的边BC 上的动点,则)(AC AB AP +⋅( )A .有最大值,为8B .是定值6C .有最小值,为2D .与P 点的位置有关 【答案解析】B 【解析】 试题分析:AP AB BP =+,∴()()()()2AP AB AC AB BPAB AC AB AB AC BP AB AC +=++=+++,∵△为正三角形,∴()AB AC BC +⊥,∵点P 在BC 上,∴()AB AC BP +⊥,∴()0AB AC BP +=,∴()22122262AP AB AC AB AB AC +=+=+⨯⨯=,故选B . 考点:向量的数量积的计算.点评:解本题的关键还熟练掌握向量加法的几何意义,得出正三角形中()AB AC BC +⊥,然后根据向量的数量积等于向量的模及其夹角余弦值的乘积.12.若函数)x f (为奇函数,且在()+∞,0上是减函数,又 03(=)f ,则0)()(<--xx f x f 的解集为( ) A .(-3,3) B .)3,0()3,( --∞C .),3()0,3(+∞-D .),3()3,(+∞--∞【答案解析】D【解析】试题分析:∵f (x )为奇函数,∴()()()20f x f x f x x x--=<,∵在()+∞,0上是减函数,且()30f =,∴f (x )在(-∞,0)上单调递减且()()330f f -=-=,∴原不等式等价于()00x f x >⎧⎨<⎩ 或()0x f x <⎧⎨>⎩,∴x >3或x <-3,故选D . 考点:考查了函数性质的综合应用.点评:解本题的关键是掌握奇函数的性质,在原点两侧单调性相同,利用函数的单调性解不等式. 二 、填空题(本大题共4小题,每小题0分,共0分) 13.已知2tan =α,则=+-ααααcos sin cos sin __________.【答案解析】13【解析】试题分析:根据同角三角函数的关系可得:sin cos sin cos tan 1211cos sin cos sin cos tan 1213cos αααααααααααα----====++++. 考点:利用同角三角函数的关系式求值. 点评:解本题的关键是掌握一个角的正切值等于正弦和余弦的比值,把要求值的式子转化为关于角α的正切值进行求值.14.若向量b a ,满足,1==b a 且,23)(=⋅+b b a 则向量b a ,的夹角为__________.【答案解析】3π 【解析】试题分析:设向量,a b 的夹角为α,∴()223cos cos 12a b b a b b a b b αα+=+=+=+=,∴1cos 2α=, 又[]0,απ∈,∴3πα=.考点:考查了利用向量的数量积求向量的夹角.点评:解本题的关键是掌握向量的数量积等于向量的模及其夹角余弦值的乘积,利用向量的数量积及向量的模求出向量夹角的余弦值,得出向量的夹角.15.若函数(]1-)32(log )(221,在∞+-=ax x x f 上是增函数,则实数a 的取值范围是__________. 【答案解析】 [1,2)【解析】试题分析:根据复合函数的单调性可知,∵12log y u =在(0,+∞)上单调递减,∴若函数(]1-)32(log )(221,在∞+-=ax x x f 上是增函数,必须满足:223u x ax =-+在(-∞,1]上单调递减且函数值0u >,∴11230a a ≥⎧⎨-+>⎩,解得1≤a <2,即a ∈[1,2).考点:考查了复合函数的单调性.点评:解本题的关键是掌握复合函数的单调性“同增异减”,要注意函数的单调区间必须在函数的定义域内,即对数的真数必须大于0.16.已知)(x f 是定义在R 上的偶函数,并满足)(1)2(x f x f -=+,当时,32≤≤x x x f =)(,则=-)211(f __________. 【答案解析】52【解析】试题分析:由()()12f x f x +=-可得()()()142f x f x f x +=-=+,∵函数f (x )是R 上的偶函数,∴111122f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,∴11554222f f f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∵5232≤≤,∴5522f ⎛⎫= ⎪⎝⎭,即11522f ⎛⎫-= ⎪⎝⎭.考点:考查了函数性质的应用.点评:解本题的关键是根据题中给出的条件把自变量转化为在[2,3]的范围内,求出函数值. 三 、解答题(本大题共6小题,共0分)17.(本小题满分10分)已知βα,都是锐角,,54sin =α135)cos(=+βα. (Ⅰ)求α2tan 的值; (Ⅱ)求βsin 的值.【答案解析】(1)247-;(2)1665. 【解析】试题分析:(Ⅰ)∵0,2πα⎛⎫∈ ⎪⎝⎭,4sin 5α=,∴3cos 5α===,∴sin 4tan cos 3ααα==, ∴22tan 24tan 21tan 7ααα==--; (Ⅱ)∵,0,2παβ⎛⎫∈ ⎪⎝⎭,()0,αβπ+∈,()5cos 13αβ+=, ∴()12sin 13αβ+=, ∴()()()1235416sin sin sin cos cos sin 13513565βαβααβααβα=+-=+-+=⨯-⨯=⎡⎤⎣⎦. 考点:三角函数的求值.点评:解本题的关键是熟练掌握同角三角函数的关系式和二倍角公式,两角和与差的三角函数公式. 18.(本小题满分12分)已知函数R x x x x f ∈++=,1)6sin(cos 2)(π.(Ⅰ)求函数)x f (的最小正周期及单调递增区间;(Ⅱ)若⎥⎦⎤⎢⎣⎡-∈3,6ππx ,求函数的值域. 【答案解析】(1)f (x )的最小正周期为π,单调递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)[1,52]. 【解析】试题分析:(Ⅰ)())2cos cos 1cos cos 1f x xx x x x x =++=+1cos 2131cos 221sin 22262x x x x π+⎛⎫=+=+=++ ⎪⎝⎭, ∵222T πππω===,即函数f (x )的最小正周期为π. 由()3sin 262f x x π⎛⎫=++ ⎪⎝⎭, 由222,262k x k k Z πππππ-≤+≤+∈,解得:,36k x k k Z ππππ-+≤≤+∈,故函数()3sin 262f x x π⎛⎫=++ ⎪⎝⎭的单调递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦; (Ⅱ)x ∈[-,63ππ],252,233666x x πππππ-≤≤-≤+≤, ∴-12≤sin (2x +6π)≤1,∴1≤sin (2x +6π)+32≤52,∴函数的值域为[1, 52].考点:考查了三角函数的性质.点评:解本题的关键还把函数转化为一个角的三角函数,根据周期公式求出函数的周期,利用正弦函数的单调性和值域求出单调区间和值域.19.(本小题满分12分)已知函数xx f 2)(=的定义域是[0,3],设)2()2()(+-=x f x f x g(Ⅰ)求)(x g 的解析式及定义域; (Ⅱ)求函数)(x g 的最大值和最小值.【答案解析】(1)g (x )的定义域是[0,1];(2)最大值-3,最小值-4.【解析】 试题分析:(Ⅰ)∵f (x )=2x,∴g (x )=f (2x )-f (x +2)=2222xx +-.∵f (x )的定义域是[0,3], ∴023023x x ≤≤⎧⎨≤+≤⎩,解得0≤x≤1.∴g (x )的定义域是[0,1].(Ⅱ)()()()22242224x x x g x =-⨯=--,∵x ∈[0,1],∴2x ∈[1,2].∴当2x =1,即x =0时,g (x )取得最大值-3; 当2x =2,即x =1时,g (x )取得最小值-4.考点:考查了求函数的定义域和最值.点评:函数的定义域是x 的取值集合,求最值的关键是函数转化为二次函数,在指定的闭区间内求出函数的最值.20.(本小题满分12分)已知向量))sin(),(cos(θπθ+-=a ,))2sin(),2(cos(θπθπ--=b .(Ⅰ)求证b a⊥;(Ⅱ)若存在不等于0的实数k 和t, 使b t a x )3(2++=,b t a k y +-=满足,y x ⊥试求此时tt k 2+的最小值.【答案解析】(1)见解析;(2)114【解析】 试题分析:(Ⅰ)∵a b ⋅ =()()cos cos sin sin sin cos sin cos 022ππθθπθθθθθθ⎛⎫⎛⎫--++-=-= ⎪ ⎪⎝⎭⎝⎭, ∴a b ⊥ ;(Ⅱ)由x y ⊥ 可得0x y ⋅=, 即()()230a t b ka tb ⎡⎤++⋅-+=⎣⎦,∴()()2232330ka t t b t k t a b ⎡⎤-+++-+=⎣⎦,∴()22330k a t t b -++=, 又∵221,1a b ==,∴30k t t -++=,∴33k t t =+,∴223223111324k t t t t t t t t t +++⎛⎫==++=++ ⎪⎝⎭,故当t =-12时,2k t t + 取得最小值,为114.考点:考查了向量垂直的条件和二次函数求最小值.点评:解本题的关键是掌握向量垂直的充要条件,把函数转化为二次函数,根据二次函数的性质求出最小值.21.(本小题满分12分)已知)(x f 是定义在R 上的偶函数,且0≤x 时,)1(log )(21+-=x x f .(Ⅰ)求函数)(x f 的解析式;(Ⅱ)若求实数,1)1(-<-a f a 的取值范围.【答案解析】(1)()()()1212log 1,0log 1,0x x f x x x ⎧+>⎪=⎨-+≤⎪⎩;(2)(-∞, 0) (2, +∞).【解析】 试题分析:(Ⅰ)令x >0,则-x <0,从而()()()12log 1f x x f x -=+= ,∴x >0时,()()12log 1f x x =+.∴函数f (x )的解析式为()()()1212log 1,0log 1,0x x f x x x ⎧+>⎪=⎨-+≤⎪⎩ .(Ⅱ)设12,x x 是任意两个值,且120x x <≤ , 则120x x ->-≥,∴1211x x ->-.∵()()()()221121111122221log 1log 1log log 101x f x f x x x a --=-+--+=>=-,∴()()21f x f x >,∴()()12log 1f x x =-+在(-∞, 0]上为增函数.又f (x )是定义在R 上的偶函数,∴f (x )在(0, +∞)上为减函数.∵f (a -1)<-1=f (1),∴|a -1|>1,解得a >2或a <0. 故实数a 的取值范围为(-∞, 0) (2, +∞).考点:考查了求函数的解析式,利用函数的单调性解不等式.点评:解本题的关键是掌握偶函数的性质,利用定义证明函数的单调性,利用函数的单调性解不等式.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- 22.(本小题满分12分)已知)x f (是定义在[]1,1- 上的奇函数,且1)1(=f ,当∈b a ,[]1,1-,0≠+b a 时,有0)()(>++ba b f a f 成立. (Ⅰ)判断)x f (在[]1,1- 上的单调性,并加以证明;(Ⅱ)若12(2+-≤am m x f )对所有的[]1,1-∈a 恒成立,求实数m 的取值范围. 【答案解析】(1)f (x )在[-1, 1]上单调递增;(2)m =0或|m|≥2.【解析】试题分析:(Ⅰ)任取12,x x ∈[-1, 1],且12x x <,则-2x ∈[-1,1].因为f (x )为奇函数. 所以()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-, 由已知得()()()1212f x f x x x +-+- >0,120x x -<, 所以()()120f x f x -<,即()()12f x f x <.所以f (x )在[-1, 1]上单调递增.(Ⅱ)因为f (1)=1, f (x )在[-1, 1]上单调递增,所以在[-1, 1]上,f (x )≤1.问题转化为2211m am -+≥,即22m am -≥0,对a ∈[-1,1]恒成立.下面来求m 的取值范围.设g (a )=22am m -+≥0.①若m =0,则g (a )=0,对a ∈[-1, 1]恒成立。
2014—2015学年度高一数学竞赛试题(含答案)

2014—2015学年度高一数学竞赛试题(含答案)2014-2015学年度高一数学竞赛试题一.选择题:本大题共5小题,每小题6分,共30分。
在每个小题给出的四个选项中,只有一个正确的答案。
1.已知集合$M=\{x|x+3<0\}$,$N=\{x|x\leq -3\}$,则集合$M\cap N$=()A。
$\{x|x0\}$ D。
$\{x|x\leq -3\}$2.已知$\alpha+\beta=\frac{\pi}{4}$,则$(1-\tan\alpha)(1-\tan\beta)$等于()A。
2 B。
$-\frac{2}{3}$ C。
1 D。
$-\frac{1}{3}$3.设奇函数$f(x)$在$(0,+\infty)$上为增函数,且$f(1)=0$,则不等式$f(x)-f(-x)<0$的解集为()A。
$(-\infty,-1)\cup (0,1)$ B。
$(-1,0)\cup (1,+\infty)$ C。
$(-\infty,-1)\cup (1,+\infty)$ D。
$(0,1)$4.函数$f(x)=\ln|x-1|-x+3$的零点个数为()A。
3 B。
2 C。
1 D。
05.已知函数$f(x)=\begin{cases}1/x。
& x\geq 4 \\ 2.&x<4\end{cases}$,则$f(\log_2 5)$=()A。
$-\frac{11}{23}$ B。
$\frac{1}{23}$ C。
$\frac{11}{23}$ D。
$\frac{19}{23}$二.填空题:本大题共5小题,每小题6分,共30分。
将正确的答案写在题中横线上。
6.已知$0\leq x\leq \frac{\pi}{2}$,则函数$f(x)=4\sqrt{2}\sin x\cos x+\cos^2 x$的值域是\line(5,0){80}。
7.已知:$a,b,c$都不等于0,且$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$,则$\max\{m,n\}=$\line(5,0){80},$\min\{m,n\}=$\line(5,0){80}。
湖北省荆门市2014-2015学年高一上期末考试数学试题及答案

7 .
∴ tan 1 7 4 7
4
4
1 7
3
………12 分
注:若有两种结果,扣 2 分.
20.(1) h f (t) 3 2cos π t 6
……………………………… 4 分
列表 2 分,描点连线 2 分
(Ⅱ)由 3 2cos π t 4 得 cos π t 1
……11 分 …………12 分
uur uuur
19.(1)由 OA OC (2 cos ,sin ) 得 4 4 cos cos2 sin 2 7 ………2 分
即 cos 1 ,又 0 π 解得 π .
2
3
……………………………3 分
tan2 1 10 2 tan 1 7
………………………………………12 分
18. (1)由 P P0ekt 可知,当 t 0 时, P P0 ; ………………………………………2 分
当 t 5 时, P (1 10%)P0 .于是有
(1 10%) P0
小时 ) 间的关系为 P P0ekt .如果在前 5 个小时消除了10% 的污染物,试求: (1)10 个小时后还剩百分之几的污染物? (2)污染物减少 50% 所需要的时间.(参考数据: ln 2 0.7, ln 3 1.1, ln 5 1.6 )
高一数学·第 3 页(共 8 页)
19.(本小题满分 12 分)
已知 A(2,0), B(0, 2), C(cos ,sin )(0 π) .
uur uuur
uuur uuur
(1)若 OA OC 7 ( O 为坐标原点),求 OB 与 OC 的夹角;
2014—2015学年度高一数学竞赛试题(含答案)

2014—2015学年度高一数学竞赛试题【本试题满分100分,考试时间120分钟】一.选择题:本大题共5小题,每小题6分,共30分.在每个小题给出的四个选项中,只有一个正确的答案.1.已知集合M =⎭⎬⎫⎩⎨⎧<-+013|x x x ,N ={}3|-≤x x ,则集合{}1|≥x x =( ) A .N M ⋂B .N M ⋂C .C R )(N M ⋂D .C R )(N M ⋃ 2.已知43πβα=+,则)tan 1)(tan 1(βα--等于( ) A .2 B .2- C .1 D .1-3.设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式0)()(<--x x f x f 的解集为( )A .)1,0()1,(⋃--∞B .),1()0,1(+∞⋃-C .),1()1,(+∞⋃--∞D .)0,1()0,1(⋃- 4.函数()ln |1|3f x x x =--+的零点个数为( )A .3B .2C .1D .05.已知函数⎪⎩⎪⎨⎧<+≥=4),1(4,)21()(x x f x x f x 则=)(log 32f A .823-B .111C .241D .191 二.填空题:本大题共5小题,每小题6分,共30分.将正确的答案写在题中横线上.6. 已知20π≤≤x ,则函数x x x x f 2cos cos sin 24)(+=的值域是 .7. 已知:a ,b ,c 都不等于0,且abcabc c c b b a a +++的最大值为m ,最小值为n ,则=+n m . 8. 已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间]2,0[上是增函数,若方程)0()(>=m m x f 在区间]8,8[-上有四个不同的根4321,,,x x x x ,则=+++4321x x x x .9.定义集合A ,B 的一种运算:},,{2121B x A x x x x x B A ∈∈+==*,若,则中的所有元素之和为 .10.= 70sin 50sin 30sin 10sin .三.解答题:本大题共4小题,每小题10分,共40分.解答时须写出必要的解题步骤、文字说明和计算结果.11.已知函数2()cos 2cos 1()f x x x x x R =+-∈(1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值.12.设a ,R b ∈,且2≠a ,定义在区间),(b b -内的函数)(x f =xax 211lg ++是奇函数 (1)求a 的值 (2)求b 的取值范围 (3)讨论)(x f 的单调性.13.已知函数)(x f 的定义域为R ,对任意实数m ,n 都有)()()(n f m f n m f ∙=+,且当0>x 时,1)(0<<x f .(1)证明1)0(=f ,且0<x 时,1)(>x f .(2)若21)1(=f ,解关于x 的不等式 81)2(2<-x x f .14.已知函数())(22R a a ax x x f ∈+-=,∈x [0,1],求()x f 的最小值)(a g ,并求)(a g 的最大值.参考答案一.选择题:1.D ; 2.A ; 3.B ; 4.A ; 5.C .二.填空题:6.]3,1[-; 7.0; 8.8-; 9.14; 10.161. 三.解答题:11.(本小题满分10分)(1))62sin(2cos 2sin 31cos 2cos sin 32)(2π+=+=-+=x x x x x x x f ,…2分所以函数()f x 的最小正周期π=T . ……………………………………………3分 因为]2,0[π∈x ,所以]67,6[62πππ∈+x , 所以1)62sin(21≤+≤-πx ,所以2)(1≤≤-x f ,所以当262ππ=+x 即6π=x 时,()f x 有最大值为2; 当6762ππ=+x 即2π=x 时,()f x 有最小值为1-. ……………………………6分 (2)由(1)知56)62sin(2)(00=+=πx x f ,所以53)62sin(0=+πx .7分 因为]2,4[0ππ∈x ,所以]67,32[620πππ∈+x ,所以54)62cos(0-=+πx , …8分 所以6sin )62sin(6cos )62cos()662cos(2cos 0000ππππππ+++=-+=x x x x 1034321532354-=⨯+⨯-=.……………………………………………10分12.(本小题满分10分)(1)∵定义在区间),(b b -内的函数)(x f =xax 211lg ++是奇函数, ∴)()(x f x f -+=0411lg 211lg 211lg 2=--=--+++xx a x ax x ax ,…………………… 2分 ∴14112=--xx a ,∴42=a ,又∵2≠a ,∴2-=a .……………………… 3分 (2)由(1)知)(x f =x x 2121lg+-,令02121>+-x x ,解得2121<<-x ,…………… 4分 ∴)21,21(),(-⊆-b b ,∴)21,0()0,21(⋃-∈b .……………………………… 5分 (3)设1x ,)21,21(),(2-⊆-∈b b x ,且21x x <,则 )()(21x f x f -=21212121221122114)(214)(21lg )21212121lg(2121lg 2121lg x x x x x x x x x x x x x x x x --+---=-+⋅+-=+-++-, 7分 ∵1x ,)21,21(),(2-⊆-∈b b x ,∴04)(212121>---x x x x ,04)(212121>--+x x x x ,∵21x x <,∴212121214)(214)(21x x x x x x x x --+>---,……………… 9分∴14)(214)(2121212121>--+---x x x x x x x x ,∴0)()(21>-x f x f ,∴)()(21x f x f >, ∴)(x f 在),(b b -上单调递减.………………………………………………… 10分13.(本小题满分10分)(1)令1=m ,0=n ,则有)0()1()1(f f f =,∵1)1(0<<f ,∴1)0(=f . 2分 当0<x 时,0>-x ,∴1)(0<-<x f ,又∵1)()())(()0(=-=-+=x f x f x x f f ,∴)(1)(x f x f -=,∴1)(>x f .4分 (2)∵)()()(n f m f n m f =+,∴)()()()()(n f m f n f m f n m f =-=-.…………… 5分 设1x ,R x ∈2,且21x x <,则0)(2>x f ,且1)()()(2121>-=x x f x f x f , ∴)()(21x f x f >,∴)(x f 在),(+∞-∞上单调递减. ……………………… 7分 又∵21)1(=f ,∴)3()1()1()1(21212181f f f f =⨯⨯=⨯⨯=, …………… 8分 ∴不等式81)2(2<-x x f 可化为)3()2(2f x x f <-, ∴322<-x x ,∴31<<-x , ……………………………………………… 9分即不等式 81)2(2<-x x f 的解集为}31{<<-x x .…………………… 10分 14.(本小题满分10分) 二次函数())(22R a a ax x x f ∈+-=的图像开口向上,对称轴为2a x =.……… 1分 ①当02<a ,即0<a 时,()x f 在]1,0[上单调递增, 所以()x f 的最小值为2)0(a f =;………………………………………………… 3分 ②当120<≤a ,即20<≤a 时,()x f 在]2,0[a 上单调递减,在]1,2(a 上单调递增,所以()x f 的最小值为24)2(2a a a f +-=;………………………………………… 5分 ③当12≥a ,即2≥a 时,()x f 在]1,0[上单调递减, 所以()x f 的最小值为21)1(a f -=.……………………………………………… 6分 综合①②③可得,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<≤+-<=2,2120,240,2)(2a a a a a a a a g .………………………………… 7分 又当0<a 时,02)(<=a a g ;当20<≤a 时,4124)(02≤+-=≤a a a g ;当2≥a 时,021)(≤-=a a g . …………………………………………………………………… 9分 所以当1=a 时,)(a g 有最大值为41.…………………………………………… 10分。
江苏省扬州市2014-2015学年高一上学期末考试数学试题及答案
扬州市2014—2015学年度第一学期期末试题高 一 数 学2015.2(全卷满分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1. 若集合{}1,3A =,{}0,3B =,则A B ⋃= ▲ . 2. sin210°的值为 ▲ .3. lg2+的值为 ▲ .4. 函数tan(3)4y x π=+的最小正周期为 ▲ .5. 函数11y x=-的定义域为 ▲ . 6. 已知幂函数)(x f 的图象过)22,2(,则=)4(f ▲ . 7. 函数()()ln 2f x x =-的单调递增区间为 ▲ .8. 已知扇形的周长为8cm ,圆心角为2rad ,则该扇形的面积S 为 ▲ 2cm . 9. 在△ABC 中,已知D 是BC 上的点,且CD =2BD .设→AB =a →,→AC =b →,则→AD =___▲____.(用a →,b →表示)10.已知不共线向量a 、b ,AB ta b =- ()t R ∈,23AC a b =+,若A 、B 、C 三点共线,则实数t 等于 ▲ . 11.将函数sin y x =的图象上所有点向左平移3π个单位长度,再把所得各点的横坐标变为原来的3倍(纵坐标不变),则所得函数图象的对称中心坐标为 ▲ . 12.在ABC ∆中,角A 为钝角,且=(1, ),=(3, 2 )AB m AC m --,则m 的取值范围是▲. 13.已知函数)(|1|)(22R m x mx x x f ∈--+=,若)(x f 在区间(0,2)上有且只有1个零点,则实数m 的取值范围是 ▲ .14.已知()f x 为R 上增函数,且对任意x R ∈,都有()34x f f x ⎡⎤-=⎣⎦,则(3)f =▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)设集合A 为方程2280x x --+=的解集,集合B 为不等式10ax -≤的解集. (1)当1a =时,求B A ⋂;(2)若A B ⊆,求实数a 的取值范围.16.(本小题满分14分)已知||4,||3a b ==,,a b 的夹角θ为060,求: (1)(2)(2)a b a b +⋅-的值; (2)|2|a b -的值. 17.(本小题满分15分)设向量(2,sin ),(1,cos ),a b θθθ==为锐角. (1)若25=⋅→→b a ,求sin cos θθ+的值; (2)若//a b ,求221cos sin θθ+的值.18.(本小题满分15分)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现,但生猪养殖成本逐月递增.下表是今年前四个月的统计情况:现打算从以下两个函数模型:①()sin ,(0,0,)y A x B A ωϕωπϕπ=++>>-<<, ②()2log y x a b =++中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.(1)请你选择适当的函数模型,分别求出这两个函数解析式;(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在接下来的月份里有没有可能亏损? 19.(本小题满分16分)设12()2x x mf x n+-+=+(0,0m n >>).(1)当1m n ==时,证明:)(x f 不是奇函数; (2)设)(x f 是奇函数,求m 与n 的值;(3)在(2)的条件下,求不等式1(())()04f f x f +<的解集.20.(本小题满分16分)已知0,a <函数()cos f x a x =,其中,22x ππ⎡⎤∈-⎢⎥⎣⎦. (1)设t =求的取值范围,并把()f x 表示为t 的函数()g t ; (2)求函数()f x 的最大值(可以用a 表示); (3)若对区间,22ππ⎡⎤-⎢⎥⎣⎦内的任意12,x x ,总有()()121f x f x -≤,求实数a 的取值范围.t扬州市2014—2015学年度第一学期期末试题高一 数 学 参 考 答 案一、填空题: 1. {}0,1,3 2.12-3.1 4. 3π 5. {|31}x x x ≥-≠且 6.217.()2,+∞ 8.4 9.2133a b →→+ 10. 23- 11. (3,0),()k k Z ππ-∈ 12. (-3,1)(1,2)(2,+)∞ 13.12m ≥-或1m =- 14. 2813. 解:由题方程22|1|0x mx x +--=在区间(0,2)上有且只有1解,即方程2|1|x m x x -=-在区间(0,2)上有且只有1解,从而函数2|1|,(0,2)x y x x x-=-∈图象与直线y m =有且只有一个公共点。
中学2014-2015学年高一数学上学期期末考试试题
云南省景洪市第三中学2014-2015学年高一数学上学期期末考试试题 时间:120分钟 总分:150分姓名: 班级: 得分:第一卷一.选择题:本大题共14小题,每小题5分,共70分。
在每小题给出的四个选项中只有一个选项是符合题目要求的。
1. 已知集合{}{} ,3,2,4,3,1==B A 则B A ⋂等于( )A.{}2B.{}4,1 C.{}3 D.{}4,3,2,1 2. 下列各组函数是同一函数的是( ) A. x x y ||= 与 1=y B. 1-=x y 与 {1,11,1>-<-=x x x x yC. 2x y = 与 x x y 3=D.123++=x x x y 与 x y = 3. 327-的值是( )A. 3B. -3C. 3±D. -94. 函数313-=x y 的定义域为( )A. [)+∞,0B. ⎪⎭⎫⎢⎣⎡∞+,31 C. [)+∞-,1 D. (]1,-∞- 5. 函数2x y -=的单调递增区间为( )A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞6.下列函数是偶函数的是( )A. x y =B. 322-=x yC. 21-=x y D.]1,0[,2∈=x x y7.函数()33--=xxf x的一个零点所在区间是()A. (0, 1)B. (1, 2)C. (2, 3)D. (3, 4)10、如图的组合体的结构特征是( )A.一个棱柱中截去一个棱柱B.一个棱柱中截去一个圆柱C.一个棱柱中截去一个棱锥D.一个棱柱中截去一个棱台11、有一个几何体的三视图如图所示,这个几何体应是一个( ) A.棱台B.棱锥C.棱柱D.都不对12、已知△ABC是边长为2a的正三角形,那么△ABC的平面直观图△A′B′C′的面积为( )A .32a2B .34a2C .64a2 D .6a213. 圆锥的表面积公式( )A. rl r S ππ+=2B. rl r S ππ222+=C. rl S π=D. Rl rl R r S ππππ+++=2214.一个球的表面积是π16,那么这个球的体积为( )A.π332 B .π16 C .π316D .π24第II 卷二、填空题:本大题共4小题,每小题5分,共20分。
XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析
XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。
XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。
$\{2\}$。
B。
$\{1,2\}$。
C。
$\{0,1,2\}$。
D。
$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。
$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。
2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。
利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。
3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。
$(1,+\infty)$。
B。
$[1,+\infty)$。
C。
$(0,+\infty)$。
D。
$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。
由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。
4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。
$y=-|x|$。
B。
$y=x$。
C。
$y=|x|$。
高一数学上期末试卷分析
高一数学期末试卷分析(2014—2015学年度上期末考试)济源六中周锋一、试卷结构分析本期高一数学期末测试内容包括集合与函数、基本初等函数及其应用,立体几何,解析几何中的直线和圆的方程。
其中集合的考查有1个选择题和一个解答题的第小题,分值为10分。
函数及其性质、应用有5个选择题、1个填空题和3个解答题(分值67分);立体几何有3个选择题,2个填空题,1个解答题(分值37分);直线和圆的方程有2个选择题,1个填空题,1个解答题(分值27分)。
从试卷分析来看,整套试卷难度比较适中,试题难度由浅入深,且区分度明显;从知识分布来看,似乎直线和圆的方程的知识考查得偏少了一点,且在填空题和解答题中缺乏基础题型的考查;另外,我校学生普遍反映集合(17题第1小题)考查难度较大,初学者不易入手,做题信心受到打击。
二、期末成绩统计分析及存在的问题我校本年级有249人参考,其中最高分为84分,最低分为5分,平均分为52.6分。
虽然我们的学生本身基础就很差,但这个分数还是太低了。
经过分析可以看出:选择题第3题、第7题、第8题、第11题第12题等得分率很低,填空题第13题得分率较低,第16题全军覆没、解答题第17题得分率最低,平均只有4分,其次是20题、21题和22题,平均得分均在2分左右,其中从这些题来看,主要是学生对知识的概念理解不够,模棱两可,造成大量失分,而第20题、21题,22题是学生抽象理解能力和计算能力太差,乱用定理公式,导致得分率很低,这与教学时间短,训练不够有关;21题主要是学生对函数的性质掌握不熟,尤其是函数单调性的证明,完全不顾a值的取值范围,直接按照a>1来进行证明;20题为一个和函数相关的实际问题,审题难度对学生而言较大,需要有一定的数学阅读能力和相应的计算能力,对学生的综合能力要求较高,因此得分较低。
三、对今后教学的几点启示1、要重视基础。
数学教学必须面向全体学生、立足基础,教学过程中要落实基本概念知识、基本技能和基本数学思想方法的要求,特别要关心数学学习困难的学生,通过学习兴趣培养和学习方法指导,努力提高本年级学生数学的合格率,力争培养出少部分优生。