几何证明途径--世外中学绝密资料--中考必备!

合集下载

初中数学:几何推理证明详解

初中数学:几何推理证明详解

初中数学:几何推理证明详解第一篇:初中数学:几何推理证明详解初中数学:几何推理证明详解几何推理的依据是定义、公理、定理,做这类题,首先就是要掌握基本公式的知识点,今天瑞德特刘老师就几何题的解题步骤进行详解。

一、三个关键词:“条件”,“推出”,“结论”。

简单地讲,几何推理就是由条件推出结论,这与命题的结构(任何一个命题都由条件和结论两部分组成)是相一致的。

推理的依据是命题,而命题就是在讲述什么条件可以推出什么结论。

上个世纪的初中以及现在的高中推理不仅可以使用“∵”、“∴”,还可以使用推出符号“?”。

了解推出符号“?”,可以更好地理解什么是几何推理。

二、学习几何推理,就从一步推理开始。

推理的依据是定义、公理、定理。

那么每学一个定义、公理、定理,都要熟练掌握它的推理形式。

第二篇:浅谈初中几何的推理与证明浅谈初中几何的推理与证明什么是推理呢?推理是根据已知判断得出新判断的思维过程,推理由题设和结论两部分所组成,学习几何对培养学生逻辑思维及逻辑推理能力有特殊的作用,但面对许多而不同的证明题,往往很多学生都感到束手无策,无从下手,因此,帮助学生寻找证题方法,探求规律,是我们初中数学教师教学的一个重要教学任务,它对培养学生的证题能力,有较好的积极作用,下面就如何培养学生的推理证明能力,谈谈我在教学中的具体做法。

一、首先培养学生学会划分几何命题的“题设”和“结论”1、任何一个命题都是由题设和结论两部分组成的,通常的形式为“如果……那么……”“若……则”等等,“如果”或“若”开头的部分就是题设,“那么”或“则”开始的部分就是结论,要求学生掌握这些重要的关联词语进行划分,有的命题,题设,结论较为明显,如:如果两条直线都与第三条直线平行(题设),那么这两条直线也互相平行(结论)。

但也有的命题,题设与结论不太明显,例如“等角的补角相等”对这样的命题,最好要求将它改写成“如果……那么……”的形式,等角的补角相等“可改写为:如果两个角是等角的补角(题设),那么这两个角相等(结论)。

初中数学几何基证明技巧

初中数学几何基证明技巧

初中数学几何基证明技巧黄文杰一.总论:1.研究几何图形要把我们生活中的折叠,平移,旋转等操作运用到几何学习和探究中来,充分运用生活的观察视角去研究问题和解决问题;2.要熟练掌握几何图形够成的基本元素是边和角,运用分类思想对组成图形的各要素进行研究和探索,得出合理的结论;3.充分灵活运用“边清,角清,已知条件清,等量关系清,问题清”和“合情推理”。

4.图形计算问题一般运用公式,等量关系,勾股定理,相似比建立方程解决。

5.辅助线的添加要以基本公理,定理模型图为根据,完善模型;计算题一般是构造直角三角形和相似三角形;面积问题一般是根据面积的和与差建立等量关系。

二.几何证明的分析和书写:(一)几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

(二)掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;例:如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.12AB CDE(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;例、如图,在△ABC 中,AD 平分∠BAC 交BC 于D ,EF 垂直平分AD ,交AC 于E ,交AC 于F.求证:四边形AEDF 是菱形.(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

例;已知:如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD ,AD 2+CD 2=2AB 2.(1)求证:AB =BC ;(2)当BE ⊥AD 于E 时,试证明:BE =AE +CD .(4)分析法与综合法的特点:分析法的特点是从要证明的结论开始一步步地寻求其成立的条件,直至寻求到已知条件上。

初中数学几何题100条秘籍——三角形篇

初中数学几何题100条秘籍——三角形篇

个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.
例:已知 D 为△ABC 内任一点,求证:∠BDC>∠BAC
证法(一):延长 BD 交 AC 于 E, ∵∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC
A
D
E
ቤተ መጻሕፍቲ ባይዱ
同理:∠DEC>∠BAC ∴∠BDC>∠BAC
B
CB
证法(二):连结 AD,并延长交 BC 于 F
求证:∠EAD = 1 (∠C-∠B) 2
证明:∵AE 平分∠BAC
∴∠BAE =∠CAE = 1 ∠BAC 2
∵∠BAC =180°-(∠B+∠C)
∴∠EAC = 1 [180°-(∠B+∠C)] 2
∵AD⊥BC
∴∠DAC = 90° -∠C
∵∠EAD = ∠EAC-∠DAC
∴∠EAD = 1 [180°-(∠B+∠C)]-(90°-∠C) 2
∵∠BDF 是△ABD 的外角, ∴∠BDF>∠BAD 同理∠CDF>∠CAD
A
D
E
A D
∴∠BDF+∠CDF>∠BAD+∠BCAD 即:∠BDC>∠BAC
CB
F
C
A
D
F
C
规律 21.有角平分线时常在角两边截取相等的线段,构造全等三角形.
例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,
①AB+AF>BD+DG+GF
②GF+FC>GE+CE
③DG+GE>DE
∴①+②+③有
AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE
∴AB+AC>BD+DE+CE
注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求

浅谈初中数学几何证明题解题方法--

浅谈初中数学几何证明题解题方法--

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。

做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程关键词:几何证明 条件 结论 。

执因索果 执果索因 辅助线初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步.这种思维方式学生刚接触,会遇到一些困难。

许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。

为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。

学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。

一、几何证明题的一般结构初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。

已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。

求证指题目要求的经过推理最终得出的结论.已知条件是题目既定成立的、毋庸置疑而且必然正确的。

求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。

例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB,AB = DC ,AC = DB ,AC 与DB 交于点M图形给出的有:BC=CB ,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤(一)、审题审题就是读题,这一步是解决几何证明题的关键,非常重要。

许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。

和读其它类型的题有所不同,读几何证明题要求图文对照,做到心中有几何基础知识,一边读题一边对照几何图形,要求每读一句题对照图形一次,读懂而且要读完整。

初中数学几何题证明思路汇总

初中数学几何题证明思路汇总

初中数学几何题证明思路汇总初中几何证明题考察的重点是学生的逻辑思维实力,能通过严密的因为、所以逻辑将条件一步步转化为所要证明的结论。

这类题目出法相当敏捷,更看重的是对重要模型的总结、常见思路的总结。

下面是我为大家整理的关于初中几何题证明思路汇总,盼望对您有所协助。

几何问题怎么解解决几何问题有几个要点,首先要具有比拟扎实的根底,见到题目条件后能联想到与之相关的学问点和方法;其次,几何题目对学生的读图实力有比拟高的要求,在分析题目时须要将确定条件与几何图像综合起来分析和思索;第三,做几何题目须要要具备较强的分析实力和逻辑思维实力,能从错综困难的条件中分析和整理出解题思路和方法。

当题目中的条件比拟多的时候或图形比拟困难的时候许多同学就会陷入恐慌之中。

解决几何题目较重要的两种实力就是分析确定条件的实力和读图实力。

解题的过程就是对确定条件整理和分析运用的过程,对条件的分析和理解越透彻,解题的过程也就会越顺当。

数学证明题不会做的缘由第一,教材里的证明很能加深你对定理理解的精度和精确度。

好多人对于定理和推论理解的失误,并非源于他们的记忆和理解实力。

而是不熟识这个定理是怎么来的,有什么假设条件。

熟识定理和推论的证明过程有助于更好的理解定理的条件,适用性和精确性。

而假如很熟识这个定理的证明,就会对这些性质的准确度了如指掌了,所以可以看到,加深对定理证明的理解也有助于加强我们数学表达的严谨性。

其次,性质、定理的证明本身有助于加强一些数学概念的进一步理解。

有些定理的证明很简洁,但有些定理的证明却是很长的一大串,在一大串中用到了许多的数学概念,这些概念有时我们平常可能理解的不透,通过这些证明过程就更能加深对概念的理解和运用。

一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

《初中几何证明题》课件

《初中几何证明题》课件

提高练习题
总结词:能力提升
详细描述:提高练习题是在基础练习题的基础上,进一步加深对几何证明题的理解和应用。这些题目 通常涉及多个知识点,需要学生综合运用所学知识进行解答,有助于提高学生的思维能力和解题技巧 。
竞赛练习题
总结词
挑战与突破
VS
详细描述
竞赛练习题是针对初中数学竞赛的几何证 明题,难度较大,对学生的思维能力和解 题技巧提出了更高的要求。这些题目通常 需要学生突破常规思维,寻找独特的解题 方法,有助于培养学生的创新思维和解决 问题的能力。
反证法
总结词
通过假设结论不成立,然后推导出矛盾,从而证明结论成立 。
详细描述
反证法是一种常用的证明方法。首先假设结论不成立,然后 在此基础上进行推理和计算,如果推导出矛盾,则说明假设 不成立,从而证明结论成立。
综合法与分析法
总结词
综合法是从已知条件出发,逐步推导到结论;分析法是从结论出发,逐步推导到已知条 件。
05
几何证明题总结与反思
总结几何证明题的解题思路
明确已知条件和求证目标
在解题前,应仔细阅读题目,明确已 知的条件和需要证明的目标,以便确 定解题方向。
分析图形结构
根据题目的描述,分析图形的结构, 包括角度、线段、平行、垂直等关系 ,为解题提供依据。
选择合适的证明方法
根据图形的结构和已知条件,选择合 适的证明方法,如利用全等三角形、 相似三角形、勾股定理等。
逐步推导
根据选择的证明方法,逐步推导所需 证明的结论,每一步推导都要有明确 的逻辑依据。
反思几何证明题的常见错误与注意事项
常见错误
在解题过程中,容易出现一些常 见的错误,如混淆已知条件和求 证目标、忽略图形的结构、选择 错误的证明方法等。

做题技巧数学初中几何证明题

做题技巧数学初中几何证明题推荐文章高考数学答题策略技巧有哪些热度:数学学习方法技巧热度:高考数学概率题解题技巧热度:高考数学答题技巧及注意事项热度:2022高考数学答题技巧热度:初中数学的学习是非常重要的,数学成绩也决定了我们中考成绩的好坏,在数学大大小小的考试中,几何证明题是必考知识点,但是很多同学对于这种题型不知道如何下手,几何题型在将来的高中数学中也是基础内容,所有应该引起大家的重视。

下面给大家分享一些关于做题技巧数学初中几何证明题,希望对大家有所帮助。

一.证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二.证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等三.证明两直线平行1.垂直于同一直线的各直线平行。

做题技巧数学初中几何证明题

做题技巧数学初中几何证明题学校数学的学习是特别重要的,数学成果也打算了我们中考成果的好坏,在数学大大小小的考试中,几何证明题是必考学问点,但是许多同学对于这种题型不知道如何下手,几何题型在将来的高中数学中也是基础内容,全部应当引起大家的重视。

下面给大家共享一些关于做题技巧数学学校几何证明题,盼望对大家有所关心。

一.证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分其次边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二.证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相像三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等三.证明两直线平行1.垂直于同始终线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

初中几何公理定理 通用版中考绝密复习资料

初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。

8、直线公理:过两点有且只有一条直线。

9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。

2、经过两点有一条直线,并且只有一条直线。

3、同角或等角的补角相等,同角或等角的余角相等。

4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、经过已知直线外一点,有且只有一条直线与已知直线平行。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。

初中数学几何证明试题技巧

初中数学几何证明题技巧几何证明题入门难,证明题难做,是很多初中生在学习中的共鸣,这里面有好多要素,有主观的、也有客观的,学习不得法,没有适合的解题思路则是此中的一个重要原由。

掌握证明题的一般思路、商讨证题过程中的数学思想、总结证题的基本规律是求解几何证明题的重点。

在这里联合自己的教课经验,说说自己的一些方法与大家一同分享。

一要审题。

好多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这特别不行取。

我们应当逐一条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入坐,结论从什么地方下手去找寻,也在图中找到地点。

二要记。

这里的记有两层意思。

第一层意思是要标志,在读题的时候每个条件,你要在所给的图形中标志出来。

如给出对边相等,就用边相等的符号来表示。

第二层意思是要切记,题目给出的条件不单要标志,还要记在脑海中,做到不看题,就能够把题目复述出来。

三要引申。

难度大一点的题目常常把一些条件隐蔽起来,因此我们要会引申,那么这里的引申就需要平常的累积,平常在讲堂上学的基本知识点掌握坚固,平常训练的一些特别图形要熟记,在审题与记的时候要想到由这些条件你还能够获得哪些结论(就像电脑一下,你一点击开始马上弹出对应的菜单),而后在图形旁边标明,固然有些条件在证明时可能用不上,可是这样长久的累积,便于此后难题的学习。

四要剖析综合法。

剖析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。

看看结论是要证明角相等,仍是边相等,等等,如证明角相等的方法有( 1.对顶角相等 2.平行线里同位角相等、内错角相等 3.余角、补角定理4.角均分线定义 5.等腰三角形 6.全等三角形的对应角等等方法。

而后联合题意选出此中的一种方法,而后再考虑用这类方法证明还缺乏哪些条件,把题目变换成证明其余的结论,往常缺乏的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一同,很条理的写出证明过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何一般证题途径
Page 1 of 2
证明两线段相等
1.全等三角形对应边相等。
2.等角对等边。
3.等腰三角形三线合一。
4.平行四边形对边相等、对角线互相平分。
5.直角三角形斜边上的中线等于斜边的一半。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角两边距离相等。
8.垂径定理:过圆心、垂直于弦、平分弦、平分弦所对的弧(这条弦不是直径)
*其中若有两条成立,则其余两条成立。
9.同圆(或等圆)中:弧相等、圆心距相等、圆心角相等,弦相等。
*只需一条成立,则其余三条成立
10.等于同一线段的两条线段相等。--- 等量代换

证明两个角相等
1.全等三角形对应角相等。
2.等边对等角。
3.等腰三角形三线合一。
4.两直线平行,同位角、内错角相等。
5.同角(或等角)的余角(或补角)相等。
6. 同圆(或等圆)中:弧相等、圆心距相等、圆心角相等,弦相等。
*只需一条成立,则其余三条成立
7.平行四边形的对角相等。

证明两直线平行
1.垂直于同一直线的两直线平行。
2.同位角相等,内错角相等、同旁内角互补,两直线平行。
3.平行四边形的对边互相平行。
4.平行于同一直线的两直线平行。

证明两条直线互相垂直
1.等腰三角形三线合一。
2.在一个三角形中,若有两个角互余,则第三个角是直角。
3.两条直线相交成直角则两直线垂直。
4.到一条线段两端的距离相等的点在线段的垂直平分线上。
5. 垂径定理:过圆心、垂直于弦、平分弦、平分弦所对的弧(这条弦不是直径)
*其中若有两条成立,则其余两条成立。

证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.倍长中线法:延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.直角三角形中,30度角所对的边等于斜边的一半
初中几何一般证题途径
Page 2 of 2
6.直角三角形中,斜边上的中线等于斜边的一半
证明角的和差倍分
1.角平分线上一点到角两边的距离相等。
2.三角形的一个外角等于和它不相邻的两个内角的和。

证明线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。

证明两角不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。

相关文档
最新文档