[精选]2019-2020年深圳市南山七年级上册期末数学模拟试卷(有答案)

合集下载

广东省深圳南山2018-2019学年七年级上期中数学模拟试卷(有答案)

广东省深圳南山2018-2019学年七年级上期中数学模拟试卷(有答案)

2018-2019学年深圳南山七上期中数学模拟试卷一、选择题(每题3分)1. 有理数2. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负A. 支出元B. 收入元C. 支出元D. 收入元3. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为A. B. C. D.4.A. 祝B. 你C. 顺D. 利5. A. B. C.6.A. B. C. D.7. C.8. A. B. C. D.9.A. B. C. D.10.A. B. C. D.11.A. 的倒数是B. 最大的负有理数是C. 的相反数是它本身12. 代数式 A. B. C. D. 无法确定13.A. 和B. 和C. 和D. 和14. 观察下列各式:,,,,,,根据上述算A. B. C. D.二、填空题(每题3分)15. 代数式的系数是.16. ,与互为倒数,则.17. 如果正方体的棱长是,那么正方体的表面积是;18. 则____19. 如图,每一幅图中均含有若干个正方形,第①幅图中含有个正方形;第②幅图中含有个正方形按这样的规律下去,则第⑥幅图中含有个正方形.三、解答题(共43分)20. (每题3分)计算:(1)(2(3)(4)21.(每题4分)化简:(1)(2)22. (共5分)先化简,再求值:其中,23. (共9分)明光学校七()班林老师准备组织全班学生秋游,现联系了甲、乙两家旅行社,两家旅行社报价均为元/人,两家旅行社同时都对人以上的团体推出了优惠举措:甲旅行社对每位团员(包括老师及学生)七五折(即按报价的)优惠;乙旅行社是免去一位带队老师的费用,其余团员按八折优惠.(1)设参加秋游的学生共有人,则甲旅行社的费用为元,乙旅行社的费用为元;(2)如果学生人数人,那么应选择哪家旅行社更合算?24.(共9分)如图,半径为个单位长度的圆片上有一点与数轴上的原点重合(提示:圆的周长)(1)把圆片沿数轴向左滚动周,点到达数轴上点的位置,点表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:,,,,,①第几次滚动后,点距离原点最近?第几次滚动后,点距离原点最远?②当圆片结束运动时,点运动的路程共有多少?此时点所表示的数是多少?答案第一部分1. B2. C 【解析】题中收入元记作,那么收入就记为正数,支出就记为负数,所以就表示支出元.3.C 4. C 5 B 6. A 7.D 8. C 9. A 10. A 11. C 12. D 13. A 14. B第二部分16. 或17.18.19.【解析】观察图形发现第一个有个正方形;第二个有个正方形;第三个有个正方形;;第个有:个正方形.第个有个正方形.第三部分20. (1)(2)(3)(4)21. (1)(2)22.当,时,.23. (1);(2)当名时:甲旅行社的费用:(元),乙旅行社的费用:(元),故选择甲旅行社合算.24. (1)(2)①第次滚动:;第次滚动:;第次滚动:;;第次滚动:;第次滚动:;第次滚动后点离原点最近,第次滚动后,点离原点最远;②,点运动的路程共有:;,,此时点所表示的数是.。

七年级上册数学学案设计2.1第3课时多项式(附模拟试卷含答案)

七年级上册数学学案设计2.1第3课时多项式(附模拟试卷含答案)

2.1 整式第3课时 多项式学习内容:课本p58例3及课本p64提到的一个内容 学习目的和要求:1、通过用整式来表示事物间的关系,逐步掌握数学建模思想;2、理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。

3、通过尝试和交流,体会多项式升(降)幂排列的可行性和必要性。

4、初步体验排列组合思想与数学美感,培养审美观。

学习重点和难点:重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

一、 自主学习:1、教材p58例3:我们知道船在河流中行驶时,船的速度需要分两种情况讨论: (1)顺水行驶:船的速度= ; (2)逆水行驶:船的速度= ;在上面两个关系式中若用字母V 表示静水速度则 船的顺水速度为 船的逆水速度为 当V=20时则甲船顺水速度 甲船逆水速度 乙船顺水速度 乙船逆水速度2..请运用加法交换律,任意交换多项式x 2+x +1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐?【提示】有六种不同的排列方式,像x 2+x +1与1+x +x 2这样的排列比较整齐。

这两种排列有一个共同点,那就是x 的指数是逐渐变小(或变大)的。

我们把这种排列叫做升幂排列与降幂排列。

例如:把多项式5x2+3x -2x 3-1按x 的指数从大到小的顺序排列,可以写成-2x 3+5x 2+3x -1,这叫做这个多项式按字母x 的降幂排列。

若按x 的指数从小到大的顺序排列,则写成-1+3x +5x 2-2x 3,这叫做这个多项式按字母x 的升幂排列。

二、合作探究1、请把卡片按x 降幂排列2、把多项式2πr -1+3πr 3-π2r 2按r 升幂排列。

【提示】:π是数字,不是字母,题目中一次项、二次项、三次项系数分别为2π、-π2、3π。

3、把多项式a3-b3-3a2b+3ab2重新排列。

(1)按a升幂排列;(2)按a降幂排列。

2019--2020第二学期期末考试七年级数学试题(附答案)

2019--2020第二学期期末考试七年级数学试题(附答案)
pOPq#$-$%$'4+ %!$0,'0#,4"
54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:

人教版七年级上数学:1.4.1《有理数的乘法(1)》学案(附模拟试卷含答案)

人教版七年级上数学:1.4.1《有理数的乘法(1)》学案(附模拟试卷含答案)

数学:1.4.1《有理数的乘法(1)》学案(人教版七年级上)【学习目标】:1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;【重点难点】:有理数乘法法则【导学指导】一、温故知新1.有理数加法法则内容是什么?2.计算(1)2+2+2= (2)(-2)+(-2)+(-2)=3.你能将上面两个算式写成乘法算式吗?二、自主探究1、自学课本28-29页回答下列问题(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?可以表示为 .( 2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?可以表示为(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?可以表示为(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?可以表示为由上可知:(1) 2×3 = ;(2)(-2)×3 = ;(3)(+2)×(-3)= ;(4)(-2)×(-3)= ;(5)两个数相乘,一个数是0时,结果为0观察上面的式子,你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号 ,异号 ,并把 相乘。

任何数与0相乘,都得 。

2、直接说出下列两数相乘所得积的符号1)5×(—3) ; 2)(—4)×6 ; 3)(—7)×(—9); 4)0.9×8 ;3、请同学们自己完成例1 计算:(1)(-3)×9; (2)(-21)×(-2);归纳: 的两个数互为倒数。

例2【课堂练习】课本30页练习1.2.3(直接做在课本上)【要点归纳】: 有理数乘法法则:【拓展训练】1.如果ab>0,a+b>0,确定a、b的正负。

2.对于有理数a、b定义一种运算:a*b=2a-b,计算(-2)*3+1 【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.甲看乙的方向是南偏西26︒,则乙看甲的方向是( ) A.南偏东64︒B.北偏西64︒C.北偏东26︒D.北偏西26︒2.如图,点C 是直线AB 上一点,过点C 作CD CE ⊥,那么图中1∠和2∠的关系是( )A .互为余角B .互为补角C .对顶角D .同位角 3.计算75°23′12″﹣46°53′43″=( ) A .28°70′69″B .28°30′29″C .29°30′29″D .28°29′29″4.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元 5.方程1﹣22x -=13x +去分母得( )A.1﹣3(x ﹣2)=2(x+1)B.6﹣2(x ﹣2)=3(x+1)C.6﹣3(x ﹣2)=2(x+1)D.6﹣3x ﹣6=2x+26.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干。

七年级数学上册3.3解一元一次方程二_去括号与去分母课时练(附模拟试卷含答案)

七年级数学上册3.3解一元一次方程二_去括号与去分母课时练(附模拟试卷含答案)

3.3 解一元一次方程(二)——去括号与去分母1.下列等式变形,错误的是( ) A .若x ﹣1=3,则x=4 B .若x ﹣1=x ,则x ﹣1=2xC .若x ﹣3=y ﹣3,则x ﹣y=0D .若3x+4=2x ,则3x ﹣2x=﹣42.设P=2y ﹣2,Q=2y+3,有2P ﹣Q=1,则y 的值是( ) A .0.4 B .4 C .-0.4 D .-2.5 3.某书上有一道解方程的题:+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字( )A .7B .5C .2D .-2 4.设a⊕b=3a﹣b ,且x⊕(2⊕3)=1,则x 等于( )A .3B .8C .43D .165.要使方程6x+5y ﹣2+3kx ﹣2ky ﹣5k=0中不含有y ,那么k 的值应是( ) A .0 B .25 C .-52 D .526.动物园的门票售价为成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29000元.设儿童票售出x 张,依题意可列出下列哪一个一元一次方程式?( )A .B . 00C .D .7.当x= 时,代数式3x ﹣2与2x+3的差是1.8.刘谦的魔术表演风靡全国,小明也学起了刘谦、发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数a ﹣2b+3,例如把(3,﹣2)放入其中,就会得到3﹣2×(﹣2)+3=10.现将实数对(m ,﹣2m )放入其中,得到实数﹣22,则m= .9.解方程:3(x ﹣1)=5x+4.10.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知两个大齿轮与三个小齿轮配成一套,那么应如何安排工人才能使生产的产品刚好成套?参考答案1.答案:B 解析:A.若x ﹣1=3,根据等式的性质1,等式两边都加1,可得x=4;B.若x ﹣1=x ,根据等式的性质2,两边都乘2,可得x ﹣2=2x ,所以B 错误;C.两边分别加上3﹣y ,可得x ﹣y=0,正确;D.两边分别加上﹣2x ﹣4,可得3x ﹣2x=4,正确;故选B .2.答案:B 解析:∵P=2y﹣2,Q=2y+3,∴2P﹣Q=2(2y ﹣2)﹣(2y+3)=1,化简得y=4.故选B .3.答案:B 解析:把x=﹣2代入+1=x ,得+1=﹣2,解这个方程,得□=5.故选B .4.答案:C 解析:根据a⊕b=3a ﹣b , 可以得出,2⊕3=3×2﹣3=3,∴x⊕(2⊕3)=1可化简为x⊕3=1, 同理,x⊕3=3x﹣3, 即3x ﹣3=1, 解得x=,故选C .5.答案:D 解析:∵6x+5y﹣2+3kx ﹣2ky ﹣5k=(6+3k )x+(5﹣2k )y ﹣(5k+2),又∵6x+5y﹣2+3kx﹣2ky﹣5k=0中不含有y,∴5﹣2k=0,∴k=.故选D.6.A.7.解:依题意,得(3x﹣2)﹣(2x+3)=1,去括号,得3x﹣2﹣2x﹣3=1,解得x=6.8.﹣5.9.解:3(x﹣1)=5x+4,去括号,得=3x﹣3=5x+4,移项,得=3x﹣5x=4+3,合并,得﹣2x=7,化系数为1,得x=﹣.10.解:设安排x人生产大齿轮.由题意,得:16x×3=10(85-x)×2,解这个方程,得x=25,当x=25时,85-x=85-25=60(人).所以应安排25人生产大齿轮60人生产小齿轮才能使生产的产品刚好成套.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A.2cmB.3cmC.6cmD.7cm2.如图所示,将一张长方形纸的一角斜折过去,使顶点A 落在点A′处,BC 为折痕,如果BD 为∠A′BE 的平分线,则∠CBD 等于( )A.80°B.90°C.100°D.70°3.将一长方形纸片,按右图的方式折叠,BC ,BD 为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95°4.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A.1B.2C.3D.45.下列各式中,是方程的是( ) A.743x x -=B.46x -C.437+=D.25x <6.如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分 可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长 为3,则另一边长是()A .m+3B .m+6C .2m+3D .2m+67.下列计算正确的是( ) A.x 3·x 2=x 6B.(2x)2=2x 2C.()23x=x 6 D.5x -x =48.鸡兔同笼问题是我国古代著名趣题之一. 大约在1500年前,《孙子算经》中就记载了这个有趣的问题. 书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得( )A.鸡23只,兔12只B.鸡12只,兔23只C.鸡15只,兔20只D.鸡20只,兔15只9.数轴A 、B 两点相距4个单位长度,且A ,B 两点表示的数的绝对值相等,那么A 、B 两点表示的数是( ) A .−4,4 B .−2,2 C .2,2 D .4,0 10.下列代数式中:①3x 2-1;②xyz ;③12b ;④32x y+,单项式的是( ) A .①B .②C .③D .④11.在-(-8),|-1|,-|0|,(-2)3这四个数中非负数共有( )个 A .4 B .3 C .2 D .1 12.-0.2的相反数是( ) A.-2 B.2C.0.2D.-5二、填空题13.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是:______.14.如图,点B 、O 、D 在同一直线上,若∠AOB=17°30′,∠COD=107°29′,则∠AOC= _____.15.当x =________时,代数式2x +3的值比代数式6-4x 的值的13大2. 16.若x 与3的积等于x 与﹣16的和,则x =______.17.如果在数轴上表示 a ,b 两个实数的点的位置如图所示,那么|a ﹣b|+|a+b|化简的结果为_____.18.若2162m xy +-与311043m n x y -+是同类项,则m n +=___________.19.24-+=______.20.根据下图所示的流程图计算,若输入x 的值为1,则输出y 的值为__________。

人教版2019-2020年度七年级(上)期末数学试卷 含答案解析

 人教版2019-2020年度七年级(上)期末数学试卷  含答案解析

人教版2019-2020年度七年级(上)期末数学试卷含答案解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作()A.259 B.﹣960 C.﹣259 D.4422.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.63.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.6.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣22xab2的次数是6D.﹣的系数是7.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=38.钟表上的时间指示为两点半,这时时针和分针之间形成的角(小于平角)的度数为()A.120°B.90°C.100°D.105°9.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)11.如图,数轴上的A、B、C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A与点B之间B.点B与点C之间C.点B与点C之间(靠近点C)D.点B与点C之间(靠近点C)或点C的右边12.将正偶数按表1排成5列:根据上面的排列规律,2018应在()A.第252行,第1列B.第252行,第4列C.第253行,第2列D.第253行,第5列二、填空题(本大题共6小题,每小题4分,共24分)13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.方程﹣2x﹣1=1的解为x=15.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.16.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,如(4,2)表示整数8.则(62,55)表示的数是.三、解答题(本大题共9小题,共78分。

五校联考2019-2020学年七年级上学期数学期末考试试卷

五校联考2019-2020学年七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共30分) (共10题;共30分)1. (3分) |-3|等于()A . 3B . -3C .D . -2. (3分)已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A . ﹣1B . 0C . 1D . 23. (3分)(2019·滨州) 下列计算正确的是().A .B .C .D .4. (3分)(2017·深圳模拟) 2016年10月28日,随着深圳地铁7,9号线的相继开通,深圳地铁日均客流量达到470万人次,则470万用科学记数法表示为()A . 47×104B . 47×105C . 4.7×105D . 4.7×1065. (3分) (2019七上·天峨期末) 下列说法正确的是()A . 射线AB和射线BA是两条不同的射线B . -a是负数C . 两点之间,直线最短D . 过三点可以画三条直线6. (3分) (2016七上·山西期末) 下列各式中运算错误的是()A . 2 a + a = 3 aB . − (a − b ) = − a + bC . a + a 2 = a 3D . 3 x 2 y − 2 y x 2 = x 2 y7. (3分) (2019七上·荣昌期中) 下列说法中正确的是A . 的系数是-5B . 单项式x的系数为1,次数为0C . 的次数是6D . xy+x-1是二次三项式8. (3分)如图是正方体的表面展开图,标注了字母a的面是正方体的正面。

若正方体相对的两个面上的数字相等,则x和y的值分别是:()A . x=1,y=-1B . x=-1,y=-1C . x=-1,y=2D . x=1,y=-29. (3分) (2017七下·肇源期末) 如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形有()A . 1个B . 2个C . 3个D . 4个10. (3分) (2017七上·扬州期末) “地球停电一小时”活动的某地区烛光晚餐中,设座位有 x 排,每排坐 30 人,则有 8 人无座位;每排坐 31 人,则空 26 个座位.则下列方程正确的是()A . 30x﹣8=31x﹣26B . 30x + 8=31x+26C . 30x + 8=31x﹣26D . 30x﹣8=31x+26二、填空题(共24分) (共6题;共24分)11. (4分) (2018七上·孝南月考) 冬季某日,上海最低气温是3℃,北京最低气温是-5℃,这一天上海的最低气温比北京的最低气温高________℃.12. (4分) (2017七下·泰兴期末) 若把代数式化成的形式,其中m , k为常数,则 =________.13. (4分) (2020七上·西湖期末) 下列说法:①两点确定一条直线;②射线OA和射线AO是同一条射线;③对顶角相等;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的序号是________.14. (4分)如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为________.15. (4分) (2017七上·深圳期末) 线段AB=8㎝,M 是 AB 的中点,点 C 在AM 上,AC=3㎝,N 为 BC 的中点,则 MN= ________㎝.16. (4分) (2020七上·西湖期末) 定义新运算若(n是常数),则, .若则 ________,________, ________.三、解答题(共18分) (共3题;共18分)17. (6分)(1) 23+(﹣36)﹣84+(﹣43)(2) +(﹣10)×(﹣)÷(﹣)(3)(﹣﹣ + )÷(﹣)(4)(﹣5)3×(﹣)2+32÷(﹣22)×(﹣1 )(5)﹣72× ﹣49×(﹣)+49×(﹣)(6)(﹣1)2017﹣×[12+(﹣2)3÷ ].18. (6分) (2020七上·洛宁期末) 先化简再求值:a2﹣(5a2﹣3b)﹣2(2b﹣a2),其中a=﹣1,b= .19. (6分) (2020七上·德城期末)(1)计算:(2)解方程:;四、解答题(共21分) (共3题;共21分)20. (7分) (2018七上·揭西期末) 如图,AB与CD相交于O , OE平分∠AOC ,OF⊥AB于O ,OG⊥OE 于O ,若∠BOD=40°,求∠AOE和∠FOG的度数.21. (7分) (2018八上·自贡期末) 证明:如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等.22. (7.0分) 2010年6月1日中国总理温家宝在东京接受NHK电视台专访时表示,促进社会公平正义,首先是教育,教育公平是最大的公平.为满足市民对优质教育的需求,缩小城乡差距,最大限度的促进教育公平.宝应县县政府决定改变办学条件,计划拆除一部分乡镇旧校舍、建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元.计划在年内拆除全县旧校舍与建造新校舍共72000平方米,在实施中新建校舍只完成了计划的80%,拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积分别是多少平方米?(2)若每绿化一平方米的新校舍需200元,那么在实际完成的拆、建中节余的资金用来绿化新校舍大约是多少平方米?五、解答题(共27分) (共3题;共27分)23. (9.0分)如图,直线AB、CD交于O,OE平分∠AOC,(1) OF为OE的反向延长线,试说明OF平分∠BOD;(2)若OF平分∠BOD,则F、O、E在一条直线上吗?证明你的结论?24. (9.0分) (2018七上·孝南月考) 苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?25. (9.0分) (2019七上·宜兴月考) 在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点 -7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC =3AD?若存在,求t得值;若不存在,说明理由.参考答案一、选择题(共30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共24分) (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共18分) (共3题;共18分) 17-1、17-2、17-3、17-4、17-5、17-6、18-1、19-1、19-2、四、解答题(共21分) (共3题;共21分) 20-1、21-1、22-1、22-2、五、解答题(共27分) (共3题;共27分) 23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

2019-2020学年广东省深圳市坪山区七年级(上)期末数学试卷(附答案详解)

2019-2020学年广东省深圳市坪山区七年级(上)期末数学试卷1.−3的绝对值是()A. −3B. 3C. 13D. −132.深圳2019常住人口总数大概12500000人,数据12500000用科学记数法为()A. 1.25×107B. 0.125×108C. 1.25×108D. 12.5×1063.下面的几何体的左视图是()A.B.C.D.4.下列调查中,适宜采用普查方式的是()A. 了解一批节能灯的使用寿命B. 了解深圳初中生每天家庭作业所需时间C. 考察人们保护环境的意识D. 调查七年级一个班级学生的每天运动时间5.当时钟指向下午2点整时,时钟的时针与分针的夹角为()A. 75°B. 30°C. 45°D. 60°6.若2x m+1y2与−3x3y n−1是同类项,则m+n的值是()A. 3B. 4C. 5D. 67.有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A. a+b<0B. ab<0C. a−b<0D. |a|<|b|8.下列各式运算正确的是()A. 3a+2b=5abB. 7a−5a=2C. −a2−a2=−2a2D. 19a2b−9a2b=109.如图所示:在直线上取A,B,C三点,使得AB=4厘米,BC=2厘米,如果O是线段AC的中点,则线段OB的长为()A. 0.5厘米B. 1厘米C. 1.5厘米D. 2厘米10.已知(x+3)2+|y−2|=0,则x+y的值是()A. 1B. 3C. −3D. −111.甲、乙两地相距300千米,从甲地开出一辆快车,速度为100千米/时,从乙地开出一辆慢车,速度为65千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意列方程为()A. 100+(100+65)x=300B. 100(x−1)+65x=300C. 65+(100+65)x=300D. 65+(100−65)x=30012.扑克牌游戏中,小明背对小亮,让小亮按下列四个步骤操作:①第一步:分发左、中、右三堆牌,每堆牌不少于四张,且各堆牌的张数相同;②第二步:从左边一堆拿出四张,放入中间一堆;③第三步:从右边一堆拿出三张,放入中间一堆;④第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆的张数是()A. 9B. 11C. 13D. 1513.−3x2y的系数是______.14.25°的余角是______度.15.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为______个.16.某商场有两件进价不同的上衣,标价均为100元,其中一件打六折出售,亏本40%;另一件打九折出售,盈利50%,这次买卖中商家亏了______元.17.计算:(1)10−(−3)+|−5|;(2)(−6)2×(34−59)−32.18.解方程:(1)3x−5=5x+3;(2)1+x2+1=2x−33.19.先化简,再求值:5(4a2−2ab3)−4(5a2−3ab3),其中,b=2.20.为了了解某市学生中考体育选考项目情况,更好地进行课程安排.体育老师在全校随机抽取一部分同学就“中考选考体育的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)体育老师共抽取______名学生;(2)补全条形统计图.(3)在扇形统计图中,“游泳”部分对应的圆心角的度数是______;(4)若全校共2000名学生,请你估算“引体向上”部分的学生人数.21.某校学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了香蕉和苹果共80千克,了解到这些水果的种植成本共720元,还了解到如下信息.水果香蕉苹果成本(元/千克)812售价(元/千克)9.616(1)求采摘的香蕉和苹果各多少千克?(2)若把这80kg的水果按照上表给的售价全部销售完毕,那么总共可赚多少元?22.如图,O为直线AB上一点,∠DOE=90°,OF分∠BOD.(1)若∠AOE=20°,则∠BOF=______;(2)若∠BOF是∠AOE的5倍,求∠AOE度数.23.已知:如图,点E是线段AB上一点,AB=15cm,动点C从E出发,以1cm/s的速度向A点运动,同时,动点D从B出发以2cm/s的速度向E运动.(C在线段AE 上,D在线段BE上)(1)若AE=6cm,当点C、D运动了2s,此时AC=______cm,DE=______cm;(填空)(2)若AE=5cm,当线段CD=6cm时,求动点C和D运动的时间.(3)若AE=5cm,当点C,D运动时,AC和ED有什么数量关系,请说明理由.答案和解析1.【答案】B【解析】解:−3的绝对值是:3.故选:B.直接利用绝对值的定义分析得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】A【解析】解:12500000=1.25×107.故选:A.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【答案】D【解析】解:从左边看,第一列三个正方形,第二列排两个正方形,第三列一个正方形.故选:D.找到几何体从左面看所得到的图形即可.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【答案】D【解析】解:A、了解一批节能灯的使用寿命,有破坏性,适宜采用样调查方式,故本选项不合题意;B、了解深圳初中生每天家庭作业所需时间,样本容量较大,适宜采用样调查方式,故本选项不合题意;C、考察人们保护环境的意识,样本容量较大,适宜采用样调查方式,故本选项不合题意;D、调查七年级一个班级学生的每天运动时间,适宜采用普查方式,故本选项符合题意.故选:D.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【答案】D【解析】解:∵下午2点整时,时针在2,分针在12,∴时针与分针的夹角为:2×30°=60°.故选:D.根据2点整时,时针在2,分针在12,之间共有2个大格列式计算即可得解.本题考查了钟面角,根据时间判断出时针与分针之间的大格子的个数是解题的关键,1个大格子的角度是30°.6.【答案】C【解析】解:根据题意得:m+1=3,n−1=2,解得m=2,n=3,∴m+n=5.故选:C.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.本题考查了同类项的定义,熟记同类项定义是解答本题的关键.7.【答案】B【解析】解:由有理数a,b在数轴上的位置可知,b<0<a,且|a|>|b|,因此a+b>0,故A不符合题意;ab<0,故B符合题意;a−b>0,故C不符合题意;|a|>|b|,故D不符合题意;故选:B.根据有理数a,b在数轴上的位置逐项进行判断即可.本题考查数轴表示数的意义,有理数的加、减、乘法运算,掌握计算法则是正确判断的前提.8.【答案】C【解析】解:A、3a与2b不是同类项,所以不能合并,故本选项不合题意;B、7a−5a=2a,故本选项不合题意;C、−a2−a2=−2a2,故本选项符合题意;D、19a2b−9a2b=10a2b,故本选项不合题意;故选:C.合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此逐一判断即可.本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.9.【答案】B【解析】解:∵AB=4厘米,BC=2厘米,∴AC=AB+BC=6(厘米).又∵O是AC中点,AC=3(厘米).∴AO=OC=12∴OB=OC−BC=1(厘米).故选:B.AC.欲求OB,需求OC,进而需求AC,进而解决此题.由O是AC中点,得AO=OC=12本题主要考查线段中点的定义以及线段和差关系,熟练掌握线段中点的定义以及线段和差关系是解决本题的关键.【解析】解:∵(x+3)2+|y−2|=0,∴x+3=0,y−2=0,∴x=−3,y=2,∴x+y=−3+2=−1,故选:D.根据非负数的意义求出x、y的值,再代入计算即可.本题考查非负数的性质,理解绝对值、偶次幂的性质是解决问题的前提.11.【答案】C【解析】解:设再经过x小时两车相遇,则此时慢车出发(x+1)小时,依题意得:65(x+1)+100x=300,即65+(100+65)x=300.故选:C.设再经过x小时两车相遇,则此时慢车出发(x+1)小时,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.【答案】B【解析】解:①设有a张,②左、中、右分别有x−4,x+4,x,③左、中、右分别有x−4,x+7,x−3.④左边有x−4,中间拿走x−4,即x+7−(x−4)=11.故选:B.设各堆牌的张数为a张,根据题中的步骤操作,确定出中间一堆的张数即可.此题考查了整式的加减,弄清题意是解本题的关键.【解析】解:单项式−3x2y的系数是−3.故答案是:−3.单项式的系数就是单项式的数字因数,据此即可解答.本题考查了单项式的系数的定义,理解单项式的系数就是单项式的数字因数是解题的关键.14.【答案】65【解析】解:25°的余角等于90°−25°=65°.故答案为:65.根据余角的定义,用90°减去25°即可.本题考查了余角的定义,正确进行角度的计算是关键.15.【答案】3n+2【解析】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+2.观察图形可知从第二个图案开始,每加一扇窗户,就增加3个剪纸.照此规律便可计算出第n个图形中剪纸的个数.本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.【答案】10【解析】解:设两件上衣进价分别为a元,b元,第一件(1−0.4)a=100×0.6,解得a=100;第二件(1+0.5)b=100×0.9,解得b=60,进价a+b=160(元),售价60+90=150(元),150−160=−10(元),答:这次买卖中商家亏了10元.故答案为10.设进价分别为a元,b元,根据进价+利润售价列方程,计算求解两件上衣的进价,利用两件上衣的总售价−总进价可求解.本题主要考查一元一次方程的应用,找准等量关系是解题的关键.17.【答案】解:(1)原式=10+3+5=18;(2)原式=36×(34−59)−9=36×34−36×59−9=27−20−9=27−29=−2.【解析】(1)原式利用减法法则,以及绝对值的代数意义计算即可求出值;(2)原式先计算乘方运算,再利用乘法分配律计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)3x−5=5x+3,移项得:3x−5x=3+5,合并同类项得:−2x=8,系数化为1得:x=−4;(2)1+x2+1=2x−33,去分母得:3(1+x)+6=2(2x−3),去括号得:3+3x+6=4x−6,移项得:3x−4x=−6−6−3,合并同类项得:−x=−15,系数化为1得:x=15.【解析】(1)移项、合并同类项、系数化为1解答即可;(2)去分母、去括号、移项、合并同类项、系数化为1解答即可.此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.19.【答案】解:原式=20a2−10ab3−20a2+12ab3=2ab3,当a=−1,b=2时,原式=−16.【解析】【试题解析】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.20.【答案】50 72°【解析】解:(1)由题意可得,体育老师共抽取9÷18%=50名学生,故答案为:50;(2)选择游泳的学生有:50−15−16−9=10(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“游泳”部分对应的圆心角的度数=72°,是:360°×1050故答案为:72°;=640(人),(4)2000×1650即估算“引体向上”部分的学生有640人.(1)根据其他的人数和所占的百分比,可以求得体育老师共抽取的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出选择游泳的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据,可以计算出“游泳”部分对应的圆心角的度数;(4)根据统计图中的数据,可以估算“引体向上”部分的学生人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)设香蕉x千克,则苹果(80−x)千克,由题意可得:8x+12(80−x)=720,解得:x=60,∴80−x=20,答:香蕉60千克,则苹果20千克;(2)利润=60×(9.6−8)+20×(16−20)=60×1.6+20×4=96+80=176(元),答可赚176元.【解析】(1)设香蕉x千克,则苹果(80−x)千克,由这些水果的种植成本共720元,可列方程,即可求解;(2)由利润=香蕉利润+苹果利润,列式可求解.本题考查了一元一次方程的应用,找到正确的数量关系是本题的关键.22.【答案】55°【解析】解:(1)∵∠DOE=90°,∠AOE=20°,∴∠AOD=∠DOE−∠AOE=90°−20°=70°.∴∠BOD=180°−∠AOD=180°−70°=110°.∵OF分∠BOD.∴∠BOF=12∠BOD=12×110°=55°.故答案为:55°.(2)设∠AOE=x,则∠BOF=5x.∴∠AOD=90°−x.∠BOD=180°−(90°−x)=90°+x.∵OF平分∠BOD,∴∠BOF=12(90°+x)=45°+12x.∴45°+12x=5x,即92x=45°∴x=45°×29=10°,∴∠AOE=10°.(1)根据互余、互补以及角平分线的定义可得答案;(2)由(1)的方法列出方程可求出答案.本题考查互为余角,互为补角,角平分线的定义,掌握角平分线的定义以及角度的和差是解决问题的关键.23.【答案】4 5【解析】解:(1)∵AB=15cm,AE=6cm,∴BE=9cm,∵点C、D运动了2s,点C、D的速度分别为1cm/s和2cm/s,∴BD=4cm,CE=2cm,∴AC=AE−CE=6−2=4(cm),DE=BE−BD=9−4=5(cm),故答案为:4,5;(2)∵AB=15cm,AE=5cm,∴BE=10cm,设运动时间为ts,则CE=tcm,BD=2tcm,∵CD=CE+DE,CD=6cm∴t+10−2t=6,∴t=4,∴动点C和D运动的时间为4s;(3)AB=15cm,AE=5cm,∴BE=10cm,设运动时间为ts,则CE=tcm,BD=2tcm,∴AC=AE−CE=(5−t)cm,ED=BE−BD=(10−2t)=2(5−t)cm,∴AC=12 ED(1)根据运动时间和速度求得CE和BD的长,结合图形即可求得AC和DE的长;(2)设运动时间为ts,求出BE=10cm,由CD=CE+BE−BD列出关于t的方程,解方程即可求得结果;(3)分别用t表示AC和DE,即可得出数量关系.本题考查了线段的和差倍分之间的关系,能够理清线段之间的关系是解题的关键.。

七年级上册数学期末试卷(带答案)-百度文库

七年级上册数学期末试卷(带答案)-百度文库一、选择题1.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .272.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-13.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快4.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-20195.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+6.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .917.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .88.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><9.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <10.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°11.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .12.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .76二、填空题13.有30个数据,其中最大值为40,最小值为19,若取组距为4,则应该分成____组. 14.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.15.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .16.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C 出现的频率是__________.17.已知一个角的补角是它余角的10倍,则这个角的度数是_______________ 18.已知方程2x ﹣a =8的解是x =2,则a =_____. 19.一个角的余角为50°,则这个角的补角等于_____. 20.若25m n a b 与569a b -是同类项,则m n +的值是____.21.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____. 22.关于x 的方程()212ax x -=-的解为__________.三、解答题23.(1)计算:()13564734-++- (2)计算:()320201342-⨯+÷- (3)x 22x 1146+--= 24.某学校组织七年级学生参加了“热爱宪法,捍卫宪法”的知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制统计图如下.请根据所给信息,回答下列问题:某校七年级部分学生成绩频数分布直方图某校七年级部分学生成绩扇形统计图(1)求出A 组、B 组人数分别占总人数的百分比; (2)求本次共抽查了多少名学生的成绩;(3)扇形统计图中,D 组对应的圆心角为a ︒,求a 的值;(4)该区共有1000名七年级学生参加了此次竞赛,若主办方想把一等奖的人数控制在150人,那么请你通过计算估计:一等奖的分值应定在多少分及以上?25.“一分钟跳绳”是重庆市中考体考项目之一,为了解初一年级学生的跳绳情况,我校体育老师从初一年级学生中随机抽取了部分学生进行一分钟跳绳测试,成绩如下:67,72,77,83,89,97,100,108,110,112,115,118,123,127,129,133,138,142,145,147,149,152,154,157,159,163,165,169,172,174,177,179,180,181,181,183,184,195,203,210,并将测试结果统计后绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题: 组别 次数x频数(人) 频率 第1组 6595x ≤< 5 0.125第2组95125x ≤<8a第3组 125155x ≤< 10 0.25第4组 155185x ≤<第5组 185215x ≤< b合计c1一分钟跳绳次数频数分布表一分钟跳绳次数频数分布直方图(1)频数分布表中,a =________,b =________,c =________; (2)请补全频数分布直方图;(3)按规定,跳绳次数x 满足125185x ≤<时,等级为“良好”.若我校初一年级共有学生1800人,则其中跳绳等级为“良好”的学生约有多少人?26.如图,是由A 、B 、E 、F 四个正方形和C 、D 两个长方形拼成的大长方形.已知正方形F 的边长为8,求拼成的大长方形周长.27.如图,线段AB 上有一点O ,AO =6㎝,BO =8㎝,圆O 的半径为1.5㎝,P 点在圆周上,且∠POB =30°.点C 从A 出发以m cm/s 的速度向B 运动,点D 从B 出发以n cm/s 的速度向A 运动,点E 从P 点出发绕O 逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C 、D 、E 三点同时开始运动.(1)若m =2,n =3,则经过多少时间点C 、D 相遇;(2)在(1)的条件下,求OE 与AB 垂直时,点C 、D 之间的距离;(3)能否出现C 、D 、E 三点重合的情形?若能,求出m 、n 的值;若不能,说明理由.28.如图,在数轴上有四个点A、B、C、D,点A在数轴上表示的数是-12,点D在数轴上表示的数是15, AB长2个单位长度,CD长1个单位长度.(1)点B在数轴上表示的数是,点C的数轴上表示的数是,线段BC=.(2)若点B以1个单位长度/秒的速度向右运动,同时点C以2个单位长度/秒的速度向左运动设运动时间为t秒,若BC长6个单位长度,求t的值;(3)若线段..AB..以1个单位长度/秒的速度向左运动,同时线段..CD..以2个单位长度/秒的速度也向左运动.设运动时间为t秒.①用含有t的式子分别表示点A、B、C、D,则A是,B是,C是,D是.②若0<t<24时,设M为AC中点,N为BD中点,试求出线段MN的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将x=-m代入方程,解出m的值即可.【详解】将x=-m代入方程可得:-4m-3m=2,解得:m=-27.故选:C.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.2.C解析:C【解析】1144(1)4414xx x x x x --=---=--+=-方程左右两边各项都要乘以4,故选C3.C解析:C 【解析】 【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项. 【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C . 【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.4.B解析:B 【解析】 【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解. 【详解】解:∵任意相邻三个数的和为常数, ∴a 1+a 2+a 3=a 2+a 3+a 4, a 2+a 3+a 4=a 3+a 4+a 5, a 3+a 4+a 5=a 4+a 5+a 6, ∴a 1=a 4,a 2=a 5,a 3=a 6, ∴原式为每三个数一个循环; ∵a 3=2020,a 7=-2018,a 98=-1, ∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1, ∴a 1+a 2+a 3=-2018-1+2020=1; ∵100333÷=…1, ∴a 100=a 1=-2018; ∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100 =133********⨯-=-; 故选择:B. 【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.5.B解析:B 【解析】 【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+ 故选B 【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.6.B解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数. 第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.8.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.9.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.10.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.11.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.二、填空题13.6【解析】40-19=21,21÷4=5.25,故应分成6组.解析:6【解析】40-19=21,21÷4=5.25,故应分成6组.14.120【解析】【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成解析:120【解析】【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成本:125÷20.0%=625万元,二月份的成本:120÷30.0%=400万元,三月份的成本:130÷26.0%=500万元,四月份的成本:2005−625−400−500=480万元,四月份的利润为:480×25.0%=120万元,故答案为:120.【点睛】考查条形统计图、折线统计图的意义和制作方法,从统计图中获取数据和数据之间的关系式正确解答的关键.15.【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=AB=×8=4cm,解析:【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=12AB=12×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为2.【点睛】本题考查的是线段,比较简单,需要熟练掌握线段的基本性质. 16.3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】解析:3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】本题主要考查了频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.17.【解析】【分析】设这个角的度数为x ,则其补角为,余角为,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为,余角为,根据题意可得:,解得,解析:80︒【解析】【分析】设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据题意可得:()1801090x x -=-,解得80x =,故答案为:80︒.【点睛】本题考查余角和补角,用方程思想解决问题是解题的关键.18.-4【解析】【分析】把x=2代入方程计算即可求出a 的值.【详解】解:把x =2代入方程得:4﹣a =8,解得:a =﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为解析:-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=解析:140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=180°﹣40°=140°.故答案为:140°.【点睛】考核知识点:余角和补角.理解定义是关键.20.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.21.-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.22.【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.三、解答题23.(1)-30;(2)-3.5;(3)-4【解析】【分析】(1)根据加法结合律和交换律即可得到结果;(2)根据含乘方的有理数的混合运算即可得到结果;(3)根据解一元一次方程的步骤即可得到结果.【详解】解:(1)原式=13+47-(56+34)=60-90=-30;(2)原式=-1×3+4÷(-8)=-3-0.5=-3.5;(3)x22x11 46+--=()() 3222112x x+--= 364212x x+-+=4x-=4x=-【点睛】本题主要考查的是含乘方的有理数的混合运算以及解一元一次方程,掌握以上知识点是解题的关键.24.(1)10%,20%;(2)300;(3)108;(4)90分及其以上【解析】【分析】(1)根据A组,B组在扇形统计图中所对应的圆心角度数即可得出结果;(2)根据题(1)A组所占总人数的百分比以及条形统计图中A组的具体人数即可得出总人数;(3)根据条形统计图中D组的具体人数再结合总人数即可;(4)先求出E组所占的百分比即可得出结果.【详解】解:(1)A组人数占总人数的:36°÷360°×100%=10%,B组人数占总人数的72°÷360°×100%=20%,故A组、B组分别占总人数的10%、20%;(2)30÷10%=300(人),故本次抽查学生总人数300人;(3)90÷300×360°=108°,D组对应的圆心角为108°,a=108;(4)(360°-90°-72°-108°-36°)÷360°×1000=150(人),所以一等奖的分值定在90分及其以上即可.【点睛】本题主要考查的是扇形统计图和条形统计图的结合,正确的理解两个统计图是解题的关键.25.(1)a=0.2,b=3;(2)见解析;(3)1080【解析】【分析】(1)由第1组的频数及频率,依据总数=频数÷频率计算可得c的值,用第2组频数除以总数c即可得出a的值,再根据题目所给具体数据可得b的值;(2)根据题目所给数据得出第4组的频数,结合b的值即可补全图形;(3)算出第3、4组频数和占总数的比例,然后用总人数乘以该比例即可.【详解】解:(1)c=5÷0.125=40,a=8÷40=0.2,由题意知185≤x<215的数据为195,203,210,∴b=3,故答案为:0.2,3,40;(2)155≤x<185的数据有157,159,163,165,169,172,174,177,179,180,181,181,183,184,共14个,补全图形如下:(3) 第3、4组频数和占总数的百分比为:(10+14)÷40×100%=60%,故1800人中,跳绳等级为“良好”的学生约有1800×60%=1080人,【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.【解析】【分析】直接表示出大长方形的周长进而计算得出答案.【详解】设A 正方形边长为a ,∵正方形F 的边长为8,∴正方形E 的边长为8-a ,正方形B 的边长为8+a ,大长方形长为8+8+a=16+ a ,宽为8+8-a=16- a ,则大长方形周长为2(16+ a+16- a)=64.【点睛】本题考查了列代数式,整式的加减,正确合并同类项是解题关键.27.(1)145;(2)9cm 或6cm ;(3)能出现三点重合的情形,95m =,195n =或1511m =,1311n = 【解析】【分析】(1)设经过x 秒C 、D 相遇,根据14AC BD AO BO +=+=列方程求解即可; (2)分OE 在线段AB 上方且垂直于AB 时和OE 在线段AB 下方且垂直于AB 时两种情况,分别运动了1秒和4秒,分别计算即可;(3)能出现三点重合的现象,分点E 运动到AB 上且在点O 左侧和点E 运动到AB 上且在点O 右侧两种情况讨论计算即可.【详解】解:(1)设经过x 秒C 、D 相遇,则有,23=14x x +, 解得:14=5x ; 答:经过145秒C 、D 相遇; (2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,1421319CD cm =-⨯-⨯=,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,1424346CD cm =-⨯-⨯=;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间18030 2.560t -==, ∴6 1.592.55m -==,8 1.5192.55n +==; ②当点E 运动到AB 上且在点O 右侧时,点E 运动时间36030 5.560t -==, ∴6 1.5155.511m +==,8 1.5135.511n -==. 【点睛】本题考查的知识点是一元一次方程的应用,读懂题意,找出题目中的已知量和未知量,明确各数量间的关系是解此题的关键.28.(1)-10;14;24;(2)6或10;(3)①-t-12,-t-10,14-2t ,15-2t ;②32. 【解析】【分析】(1)根据AB 、CD 的长度结合点A 、D 在数轴上表示的数,即可找出点B 、C 在数轴上表示的数,再根据两点间的距离公式可求出线段BC 的长度;(2)找出运动时间为t 秒时,点B 、C 在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论; (3)①找出运动时间为t 秒时,即可得到点A 、B 、C 、D 在数轴上表示的数;②由①中的代数式,进而即可找出点M 、N 在数轴上表示的数,利用两点间的距离公式,即可求出线段MN 的长.【详解】解:(1)∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10;∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14.∴BC=14-(-10)=24.故答案为:-10;14;24.(2)当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为:14-2t,∴BC=|t-10-(14-2t)|=|3t-24|.∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.∴当BC=6(单位长度)时,t的值为6或10.(3)①当运动时间为t秒时,点A在数轴上表示的数为:-t-12,点B在数轴上表示的数为:-t-10,点C在数轴上表示的数为:14-2t,点D在数轴上表示的数为:15-2t;故答案为:-t-12,-t-10,14-2t,15-2t;②∵0<t<24,∴点C一直在点B的右侧.∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为:232t-,点N在数轴上表示的数为:532t-,∴MN=53233= 222t t---.故答案为:32.【点睛】本题考查了两点间的距离、解含绝对值符号的一元一次方程以及数轴,解题的关键是:(1)根据点与点之间的位置关系找出点B、C在数轴上表示的数;(2)由两点间的距离公式结合BC=6,找出关于t的含绝对值符号的一元一次方程;(3)根据点的运动找出运动时间为t秒时,点M、N在数轴上表示的数.。

2020-2021学年广东省七年级上册数学(人教版)期末考试复习:第1章《有理数》解答题精选

第1章《有理数》解答题精选1.(2019秋•普宁市期末)已知:数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应的数为﹣3.(1)请在如图所示的数轴上表示出点A、C对应的位置;(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度/秒;点Q的速度为1个单位长度/秒,点Q运动到点C立刻原速返回,到达点B后停止运动;点P运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动时点P随之停止运动.请在备用图中画出整个运动过程两动点P、Q同时到达数轴上某点的大致示意图,并求出该点在数轴上表示的数.2.(2019秋•香洲区期末)的士司机李师傅从上午9:00~10:15在东西方向的九洲大道上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+2,﹣3,+3,﹣4,+5,+4,﹣7,﹣2.(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若的士的收费标准为:起步价10元(不超过2.5千米),超过2.5千米,超过部分每千米2.6元.则李师傅在上午9:00~10:15一共收入多少元?(精确到1元)3.(2019秋•中山市期末)如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.4.(2019秋•垦利区期末)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如数轴上数x与5两点之间的距离等于|x﹣5|,(2)如果表示数a 和﹣2的两点之间的距离是3,那么a = ;若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a 取何值时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是多少?请说明理由. 5.(2019秋•连州市期末)计算: (1)10﹣(﹣5)+(﹣9)+6 (2)﹣12018﹣6÷(﹣2)×|−13|6.(2019秋•云浮期末)计算:﹣22×(﹣9)+16÷(﹣2)3﹣|﹣4×5| 7.(2019秋•宣城期末)计算:(−1)2017+|−22+4|−(12−14+18)×(−24). 8.(2019秋•揭西县期末)计算: (1)﹣13﹣(﹣22)+(﹣28) (2)﹣22﹣|﹣12|×(23−34)9.(2019秋•恩平市期末)计算:0.25×|﹣4|﹣4÷(﹣2)2+(﹣3)×56. 10.(2018秋•福田区校级期末)计算 (1)16﹣(﹣10+3)+(﹣2) (2)(﹣4)2×18−27÷(﹣3)3 (3)﹣12﹣(12)2×(−23−13)÷7811.(2018秋•惠阳区校级期末)计算:﹣22+(﹣1)2019+27÷(﹣3)2 12.(2018秋•黄埔区期末)计算:(1)(﹣10)+(+3)+(﹣5)﹣(﹣7) (2)(﹣2)2÷4+(﹣3) (3)(﹣2)3×(12−38)﹣|﹣2|13.(2018秋•潮南区期末)计算:﹣1﹣(1+0.5)×|−13|÷(﹣4) 14.(2018秋•潮安区期末)计算:﹣32÷(﹣1)2018+6×|−12| 15.(2018秋•揭西县期末)计算:﹣32﹣|﹣20|×(1−14).16.(2018秋•普宁市期末)计算:(﹣1)2019÷{[(﹣4)×(−58)÷(−13)+(﹣3)×(+12)]×(﹣2)2+(﹣6)}17.(2018秋•普宁市期末)计算:(﹣3)2﹣112×29−6÷|−23|2﹣(﹣22).18.(2018秋•福田区期末)计算 (1)﹣12﹣(﹣9)﹣2 (2)(﹣2)3﹣(﹣3)2+1 (3)(﹣36)×(−23+34−512) 19.(2019秋•越秀区期末)计算(1)(﹣5)+(+7)﹣(﹣3)﹣(+20) (2)25÷56×(−25)+(﹣2)×(﹣1)2019 20.(2019秋•龙岗区校级期末)计算: (1)﹣10﹣8÷(﹣2)×(−12); (2)(−34+16−38)×12+(﹣1)2020. 21.(2019秋•潮州期末)计算题: (1)(﹣7)+(﹣4)﹣(﹣10); (2)(﹣113)÷(﹣214)×34;(3)(﹣7)×(﹣5)﹣90÷(﹣15)+3×(﹣1); (4)−14×(﹣2)2﹣(−12)×42.22.(2019秋•黄埔区期末)已知有理数a 、b 、c 在数轴上的位置如图所示:(1)判断正负,用“>”、“<”或“=”填空:a +b 0,a ﹣b 0,a +b +c 0; (2)化简:|a +c |﹣|a +b +c |+|a ﹣b |.23.(2019秋•江城区期末)计算:﹣0.52+14−|22﹣4|24.(2019秋•惠来县期末)计算:﹣12020+24÷(﹣4)+3×|−13|﹣(﹣6) 25.(2019秋•黄埔区期末)某市公共交通收费如下:公交票价里程(千米)票价(元) 刷卡优惠后付款(元)0﹣10 2 1 10﹣15 3 1.5 15﹣20 4 2 20﹣25 5 2.5 25﹣30 6 3 以后每增加5千米增加1元增加0.5元地铁票价里程(千米)票价(元)0﹣6 3 6﹣12 4 12﹣22 5 22﹣32 6 32﹣52 7 52﹣72 8 以后每增加20千米增加1元(公交票价10千米(含)内2元,不足10千米按10千米计算,其他里程类同;地铁票价6千米(含)内3元,不足6千米按6千米计算,其他里程类同)(1)张阿姨周日去看望父母,可是张阿姨忘了带一卡通,请你帮助张阿姨思考两个问题: ①若到父母家无论乘公交车还是地铁距离都是24千米,选择哪种公交交通工具费用较少? ①若只用10元钱乘坐公交或地铁,选择哪种公共交通工具乘坐的里程更远?(2)张阿姨下周日计划使用一卡通刷卡乘公共交通到景点游玩,若里程小于120千米,公交、地铁均可直达.请问:选择公交还是选择地铁出行更省钱?为什么? 26.(2019秋•黄埔区期末)(1)(﹣20)﹣(+3)﹣(﹣5)﹣(+7) (2)(﹣12)÷(﹣4)÷(﹣115)(3)2×(﹣3)2﹣4×(﹣32)﹣1527.(2019秋•白云区期末)点A 在数轴的﹣1处,点B 表示的有理数比点A 表示的有理数小1,将点A 向右移动8个单位得到点C ,点D 、点E 是线段BC 的两个三等分点.在所给的数轴(如图)上标出B 、C 、D 、E 各点,再写出它们各自对应的有理数.28.(2019秋•白云区期末)计算:(1)11+(﹣21)÷3+(﹣4)×(﹣2) (2)−124×(32−5)−14÷|−123|+|1−722| 29.(2019秋•揭阳期末)计算:(﹣2)3÷4﹣(﹣1)2019×|﹣3|. 30.(2019秋•光明区期末)计算 (1)﹣8+14﹣6+20 (2)(−12+34−56)×(−12)31.(2019秋•番禺区期末)计算下列各式的值: (1)(−23)+|0−516|+|−456|+(−913) (2)42×(−23)+(−34)÷(−0.25) 32.(2019秋•海珠区期末)计算: (1)﹣5﹣(﹣3)+(﹣2)+8 (2)(﹣1)2×2+(﹣2)3÷|﹣4| 33.(2019秋•五华县期末)计算: (1)﹣10﹣8÷(﹣2)×(−12)(2)﹣12﹣(1﹣0.5)×13×[19﹣(﹣5)2] 34.(2019秋•南沙区期末)计算: (1)20+(﹣7)﹣(﹣8) (2)(﹣1)2019×(13−1)÷2235.(2019秋•云浮期末)计算: (1)﹣7﹣2÷(−12)+3; (2)(﹣34)×49+(﹣16)36.(2019秋•东莞市期末)计算:(−1)3−(1−0.5)×13×(3−32) 37.(2019秋•荔湾区期末)计算: (1)﹣2.4+(﹣3.7)﹣4.6+5.7(2)﹣3×56×145×(−0.25)38.(2019秋•荔湾区期末)计算:(1)﹣4﹣12×(13−14)(2)﹣24﹣(﹣1)5×2+(﹣2)4 39.(2019秋•龙华区期末)计算(1)48×(58−56)+|−6+3|(2)−12+23÷(−4)2+3×(−1)201940.(2019秋•新会区期末)把下面未化简的数先化简,然后在数轴上表示出来,再用“<”把它们连接起来:﹣3,4.5,0,|﹣1﹣(﹣3)|,−12的倒数第1章《有理数》解答题精选参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵|a+7|+(c﹣1)2020=0,∴a+7=0或c﹣1=0,∴a=﹣7,c=1,即点A表示的数为﹣7,C点表示的数为1;如图,(2)设P、Q点运动的时间为t(s)时相遇,AB=﹣3﹣(﹣7)=4,CB=1﹣(﹣3)=4,AC=8,当P点从A点向C点运动,Q点从B点向C点运动时,如图1,3t﹣t=4,解得t=2,此时相遇点表示的数为﹣3+t=﹣3+2=﹣1;当P点从A点运动到C点,折返后再从C点向A点运动,Q点从B点向C点运动,如图2,3t﹣8+t=4,解得t=3,此时相遇点表示的数为﹣3+3t=﹣3+3=0;当P点从A点到达C点折返,再从C点运动到A点,接着折返向C点运动,Q点从B点运动到C点时,折返后向B点运动,如图3,3t﹣16+t﹣4=8,解得t=7,此时相遇点表示的数为﹣3+4﹣(t﹣4)=﹣2,综上所述,整个运动过程两动点P、Q同时到达数轴上某点表示的数为﹣2或0或﹣1.2.【解答】解:(1)(+2)+(﹣3)+(+3)+(﹣4)+(+5)+(+4)+(﹣7)+(﹣2)=﹣2答:李师傅距第一批乘客出发地的西面,距离出发地2千米.(2)(3﹣2.5)+(3﹣2.5)+(4﹣2.5)+(5﹣2.5)+(4﹣2.5)+(7﹣2.5)=11(千米)10+10+(10×6+11×2.6)=108.6≈109(元)答:李师傅上午9:00~10:15一共收入约109元.3.【解答】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40综上所述m=8或﹣40.4.【解答】解:(1)观察数轴可得:数轴上表示4和1的两点之间的距离是3;数轴上表示﹣3和2两点之间的距离是5;故答案为:3;5;(2)如果表示数a和﹣2的两点之间的距离是3,那么|a﹣(﹣2)|=3∴|a+2|=3∴a+2=3或a+2=﹣3∴a=1或a=﹣5;故答案为:1或﹣5;∵|a+4|+|a﹣2|表示数a与﹣4的距离与a和2的距离之和;若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值等于2和﹣4之间的距离,等于6∴|a+4|+|a﹣2|的值为6;(3)|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和∴当a=1时,该式的值最小,最小值为6+0+3=9.∴当a=1时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是9.5.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×1 3=﹣1+1=06.【解答】解:原式=﹣4×(﹣9)+16÷(﹣8)﹣|﹣20|=36﹣2﹣20=14.7.【解答】解:原式=﹣1+0+12﹣6+3=8.8.【解答】解:(1)﹣13﹣(﹣22)+(﹣28)=﹣13+22﹣28 =9﹣28 =﹣19(2)﹣22﹣|﹣12|×(23−34)=﹣4﹣12×(23−34)=﹣4﹣12×23+12×34=﹣4﹣8+9=﹣12+9 =﹣39.【解答】解:原式=0.25×4﹣4÷4﹣3×56=1﹣1−52=−52. 10.【解答】解:(1)原式=16﹣(﹣7)+(﹣2) =16+7﹣2 =21;(2)原式=16×18−27÷(﹣27) =2﹣(﹣1) =2+1 =3;(3)原式=﹣1−14×(﹣1)×87 =﹣1+27 =−57.11.【解答】解:﹣22+(﹣1)2019+27÷(﹣3)2 =﹣4+(﹣1)+27÷9 =﹣4+(﹣1)+3 =﹣2.12.【解答】解:(1)(﹣10)+(+3)+(﹣5)﹣(﹣7) =(﹣10)+3+(﹣5)+7=﹣5;(2)(﹣2)2÷4+(﹣3)=4÷4+(﹣3)=1+(﹣3)=﹣2;(3)(﹣2)3×(12−38)﹣|﹣2| =(﹣8)×(12−38)﹣2 =(﹣4)+3+(﹣2)=﹣3.13.【解答】解:﹣1﹣(1+0.5)×|−13|÷(﹣4)=﹣1−32×13×(−14)=﹣1+18=−78.14.【解答】解:﹣32÷(﹣1)2018+6×|−12|=﹣9÷1+6×12=﹣9+3=﹣6.15.【解答】解:原式=﹣9﹣20×34=﹣9﹣15=﹣24.16.【解答】解:原式=﹣1÷[(−152−32)×4﹣6]=﹣1÷(﹣9×4﹣6)=﹣1÷(﹣36﹣6)=﹣1÷(﹣42)=142.17.【解答】解:原式=9−13−6÷49+4=9−13−272+4 =﹣456+4=−56.18.【解答】解:(1)原式=﹣12+9﹣2=﹣5;(2)原式=﹣8﹣9+1=﹣16;(3)原式=−23×(﹣36)+34×(﹣36)−512×(﹣36) =24﹣27+15=12.19.【解答】解:(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)=﹣5+7+3﹣20=﹣25+10=﹣15;(2)25÷56×(−25)+(﹣2)×(﹣1)2019=25×65×(−25)+(﹣2)×(﹣1)=﹣12+2=﹣10.20.【解答】解:(1)−10−8÷(−2)×(−12)=−10−8×12×12=﹣10﹣2=﹣12;(2)(−34+16−38)×12+(−1)2020=−34×12+16×12−38×12+1=−9+2−92+1=−212.21.【解答】解:(1)原式=﹣7﹣4+10=﹣1;(2)原式=43×49×34=49;(3)原式=35+6﹣3=38;(4)原式=−14×4+12×16=﹣1+8=7.22.【解答】解:(1)根据数轴可知:0<a<1,﹣1<b<0,c<﹣1,且|a|<|b|,则a+b<0,a﹣b>0,a+b+c<0;故答案为:<,>,<.(2)|a+c|﹣|a+b+c|+|a﹣b|=﹣a﹣c+a+b+c+a﹣b=a.23.【解答】解:﹣0.52+14−|22﹣4|=﹣0.25+14−|4﹣4|=﹣0.25+14−0=0.24.【解答】解:﹣12020+24÷(﹣4)+3×|−13|﹣(﹣6)=﹣1﹣6+3×13+6=﹣1﹣6+1+6=0.25.【解答】解:(1)①由表格中的数据可得,乘坐公交车行驶24千米,需要车票为5元,乘坐地铁需要6元,因此选择乘坐公交车费用较少;①乘坐公交车行驶路程为:(10﹣2)×5+10=50千米,乘坐地铁行驶的路程为:(10﹣6)×20+32=112千米,因此乘坐地铁行驶路程较远;(2)根据表格中数据变化可得,行驶路程x千米,x≤85时,公交省钱;当85<x≤90时,公交费(9元)=地铁费(9元),费用一样;当90<x≤92时,公交费(9.5元)<地铁费(9元),地铁省钱;当92<x≤95时,公交费(9.5元)<地铁费(10元),公交省钱;当95<x≤100时,公交费(10元)=地铁费(10元),费用一样;当100<x≤120时,地铁省钱.26.【解答】解:(1)原式=﹣20﹣3+5﹣7=﹣23﹣2=﹣25;(2)原式=﹣12×14×56=−52;(3)原式=2×9﹣4×(﹣9)﹣15=18+36﹣15=54﹣15=39.27.【解答】解:∵点A在数轴的﹣1处,点B表示的有理数比点A表示的有理数小1,∴点B所表示的数为﹣1﹣1=﹣2,将点A向右移动8个单位得到点C,因此点C所表示的数为﹣1+8=7,∵点D、点E是线段BC的两个三等分点.BC=7﹣(﹣2)=9,∴点D所表示的数为﹣2+13×9=1,点E所表示的数为﹣2+23×9=4,因此点B、C、D、E所表示的数分别为﹣2,7,1,4.28.【解答】解:(1)11+(﹣21)÷3+(﹣4)×(﹣2)=11+(﹣7)+8=12;(2)−124×(32−5)−14÷|−123|+|1−722|=−116×(9﹣5)−14×8+|1−74|=−116×4﹣2+34=−14−2+34=−32.29.【解答】解:(﹣2)3÷4﹣(﹣1)2019×|﹣3|=(﹣8)÷4﹣(﹣1)×3=(﹣2)+3=1.30.【解答】解:(1)﹣8+14﹣6+20=6﹣6+20=20(2)(−12+34−56)×(−12)=(−12)×(﹣12)+34×(﹣12)−56×(﹣12)=6﹣9+10=731.【解答】解:(1)(−23)+|0−516|+|−456|+(−913)=(−23)+516+456+(﹣913)=0;(2)42×(−23)+(−34)÷(−0.25)=﹣28+(−34)×(﹣4)=﹣28+3=﹣25.32.【解答】解:(1)﹣5﹣(﹣3)+(﹣2)+8=﹣2﹣2+8=4(2)(﹣1)2×2+(﹣2)3÷|﹣4|=1×2﹣8÷4=2﹣2=033.【解答】解:(1)原式=﹣10﹣2 =﹣10+(﹣2)=﹣12;(2)原式=﹣1﹣0.5×13×(19﹣25) =﹣1﹣0.5×13×(﹣6)=﹣1﹣(﹣1)=0.34.【解答】解:(1)20+(﹣7)﹣(﹣8) =20+(﹣7)+8=21;(2)(﹣1)2019×(13−1)÷22 =﹣1×(−23)÷4=﹣1×(−23)×14=16.35.【解答】解:(1)原式=﹣7+4+3=0;(2)原式=﹣81×49−16=﹣36﹣16=﹣52.36.【解答】解:原式=−1−12×13×(3−9) =−1−16×(−6)=﹣1+1=0.37.【解答】解:(1)﹣2.4+(﹣3.7)﹣4.6+5.7 =(﹣2.4﹣4.6)+(﹣3.7+5.7)=﹣7+2=﹣5;(2)﹣3×56×145×(−0.25)=﹣3×56×95×(−14)=98.38.【解答】解:(1)﹣4﹣12×(13−14)=﹣4﹣4+3=﹣5;(2)﹣24﹣(﹣1)5×2+(﹣2)4=﹣16+1×2+16=﹣16+2+16=2.39.【解答】解:(1)原式=30﹣40+3=﹣7;(2)原式=−12+8÷16﹣3=−12+12−3=﹣3.40.【解答】解:|﹣1﹣(﹣3)|=2,−12的倒数是﹣2,如图:﹣3<−12的倒数<0<|﹣1﹣(﹣3)|<4.5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市南山七年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.2.﹣3的绝对值是()A.3B.﹣3C.D.3.若把﹣y看成一项,合并2(﹣y)2+3(﹣y)+5(y﹣)2+3(y﹣)得()A.7(﹣y)2B.﹣3(﹣y)2C.﹣3(+y)2+6(﹣y)D.(y﹣)24.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人5.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大6.在数轴上与原点的距离小于8的点对应的满足()A.﹣8<<8B.<﹣8或>8C.<8D.>87.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩8.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a9.下列说法错误的是()A.22﹣3y﹣1是二次三项式B.﹣+1不是单项式C.﹣22ab2的次数是6D.﹣的系数是10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场11.某工程甲独做需12天完成,乙独做需8天完成.现由甲先做3天,乙再合做共同完成.若设完成此项工程共需天,则下列方程正确的是()A. +=1B. +=1C. +=1D. +=112.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110B.158C.168D.178二.填空题(共4小题,满分12分,每小题3分)13.在下午的2点30分时,时针与分针的夹角为度.14.若|2a+3|+(3b﹣1)2=0,则ab=.15.如果方程(m﹣1)|m|+2=0是表示关于的一元一次方程,那么m的取值是.16.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有白色纸片,第n个图案中有个白色纸片.三.解答题(共7小题,满分53分)17.(6分)计算:|4﹣4|+()﹣(+5).18.(6分)先化简,再求值.﹣2(﹣y2)+(﹣+y2),其中=﹣2,y=.19.(12分)解方程(1)3﹣7(﹣1)=3﹣2(+3)(2)=﹣120.(5分)如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.21.(7分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.22.(8分)为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.23.(9分)如图1,线段AB=60厘米.(1)点P 沿线段AB 自A 点向B 点以4厘米/分的速度运动,同时点Q 沿直线自B 点向A 点以6厘米/分的速度运动,几分钟后,P 、Q 两点相遇?(2)几分钟后,P 、Q 两点相距20厘米?(3)如图2,AO=PO=8厘米,∠POB=40°,现将点P 绕着点O 以20度/分的速度顺时针旋转一周后停止,同时点Q 沿直线BA 沿B 点向A 点运动,假若P 、Q 两点也能相遇,求点Q 的速度.广东省深圳市南山外国语学校七年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.2.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.若把﹣y看成一项,合并2(﹣y)2+3(﹣y)+5(y﹣)2+3(y﹣)得()A.7(﹣y)2B.﹣3(﹣y)2C.﹣3(+y)2+6(﹣y)D.(y﹣)2【分析】把﹣y看作整体,根据合并同类项的法则,系数相加字母和字母的指数不变,进行选择.【解答】解:2(﹣y)2+3(﹣y)+5(y﹣)2+3(y﹣),=[2(﹣y)2+5(y﹣)2]+[3(y﹣)+3(﹣y)],=7(﹣y)2.故选:A.【点评】本题考查了合并同类项的法则,是基础知识比较简单.4.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.5.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.6.在数轴上与原点的距离小于8的点对应的满足()A.﹣8<<8B.<﹣8或>8C.<8D.>8【分析】根据到原点的距离小于8,即绝对值小于8.显然是介于﹣8和8之间.【解答】解:依题意得:||<8∴﹣8<<8故选:A.【点评】本题考查的是数轴的对称性,在数轴上以原点为中心,两边关于原点对称.7.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、某校要对七年级学生的身高进行调查,调查范围小,适合抽样普查,故A 错误;B、卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故B正确;C、班主任了解每位学生的家庭情况,适合普查,故B错误;D、了解九年级一班全体学生立定跳远的成绩适合普查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般说,对于具有坏的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a【分析】根据M是线段AB的中点可知,MB=,再由NB为MB的可知,MN=MB=a,再把两式相乘即可得出答案.【解答】解:∵M是线段AB的中点,∴MB=,∵NB为MB的,∴MN=MB=a,∴×=a,∴AB=.故选:A.【点评】本题考查的是线段上两点间的距离,比较简单.9.下列说法错误的是()A.22﹣3y﹣1是二次三项式B.﹣+1不是单项式C.﹣22ab2的次数是6D.﹣的系数是【分析】根据单项式的定义、单项式的次数,多项式的項,可得答案.【解答】解:A、22﹣3y﹣1是二次三项式,故A不符合题意;B、﹣+1是二项式,不是单项式,故B不符合题意;C、﹣22ab2的次数是4,故C符合题意;D、﹣πy2的系数是﹣π,故D不符合题意;故选:C.【点评】本题考查了单项式、多项式,注意多项式的项包括项的符号.10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场【分析】设共胜了场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【解答】解:设共胜了场,则平了(14﹣5﹣)场,由题意得:3+(14﹣5﹣)=19,解得:=5,即这个队胜了5场.故选:C.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.11.某工程甲独做需12天完成,乙独做需8天完成.现由甲先做3天,乙再合做共同完成.若设完成此项工程共需天,则下列方程正确的是()A. +=1B. +=1C. +=1D. +=1【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110B.158C.168D.178【分析】观察不难发现,左上角、左下角、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列式进行计算即可得解.【解答】解:根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4﹣0,22=4×6﹣2,44=6×8﹣4,∴m=12×14﹣10=158.故选:B.【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.在下午的2点30分时,时针与分针的夹角为105度.【分析】画出草图,利用钟表表盘的特征解答.【解答】解:2点30分时,时针和分针中间相差3.5大格.∵钟表12个数,每相邻两个数字之间的夹角为30°,∴2点30分时分针与时针的夹角是3.5×30°=105°.【点评】用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.14.若|2a+3|+(3b﹣1)2=0,则ab=﹣.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,2a+3=0,3b﹣1=0,解得a=﹣,b=,所以,ab=(﹣)×=﹣.故答案为:﹣.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如果方程(m﹣1)|m|+2=0是表示关于的一元一次方程,那么m的取值是﹣1.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是a+b=0(a,b是常数且a≠0),高于一次的项系数是0.据此可得出关于m的方程,继而可求出m的值.【解答】解:由一元一次方程的特点得,解得m=﹣1.故填:﹣1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有13白色纸片,第n个图案中有(3n+1)个白色纸片.【分析】观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.【解答】解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第4个图案中有白色纸片3×4+1=13张第n个图案中有白色纸片(3n+1)张,故答案为:13、(3n+1).【点评】此题主要考查图形的变化规律,此题的关键是注意发现前后图形中的数量之间的关系.三.解答题(共7小题,满分53分)17.(6分)计算:|4﹣4|+()﹣(+5).【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=|﹣|+(﹣+﹣)×12﹣4﹣5=﹣6+8﹣2﹣4﹣5=﹣8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)先化简,再求值.﹣2(﹣y2)+(﹣+y2),其中=﹣2,y=.【分析】原式去括号合并得到最简结果,把与y的值代入计算即可求出值.【解答】解:原式=﹣2+y2﹣+y2=﹣3+y2,当=﹣2,y=时,原式=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(12分)解方程(1)3﹣7(﹣1)=3﹣2(+3)(2)=﹣1【分析】(1)方程去括号,移项合并,把系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把系数化为1,即可求出解.【解答】解:(1)去括号得:3﹣7+7=3﹣2﹣6,移项合并得:﹣2=﹣10,解得:=5;(2)去分母得:3﹣3=8﹣2﹣6,移项合并得:﹣11=﹣11,解得:=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.(5分)如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.【分析】所求角和∠1有关,∠1较小,应设∠1为未知量.根据∠COE的度数,可表示出∠3,也就表示出了∠4,而这4个角组成一个平角.【解答】解:设∠1=,则∠2=3∠1=3,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣)(2分)∵OC平分∠AOD,∴∠4=∠3=(70﹣)∵∠1+∠2+∠3+∠4=180°∴+3+(70﹣)+(70﹣)=180°(4分)解得:=20(5分)∴∠2=3=60°(6分)答:∠2的度数为60°.(7分)【点评】本题隐含的知识点为:这4个角组成一个平角.应设出和所求角有关的较小的量为未知数.21.(7分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了1500人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是108°;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.【分析】(1)根据30﹣35岁的人数除以所占的百分比,可得调查的人数;(2)根据有理数的减法,可得12﹣17岁的人数,根据12﹣17岁的人数,可得答案;(3)根据18﹣23岁的人数除以抽查的人数乘以360°,可得答案;(4)根据总人数乘以12﹣23岁的人数所占的百分比,可得答案.【解答】解:(1)这次抽样调查中共调查了330÷22%=1500(人);(2)12﹣17岁的人数为1500﹣450﹣420﹣330=300(人)补充完整,如图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是×360°=108°;(4)其中12﹣23岁的人数2000×50%=1000(万人).【点评】本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.【分析】(1)甲校的人数多于乙校的人数,可得甲校服装的单价为50,乙校服装的单价为60元,等量关系为:甲校服装的总价+乙校服装的总价=5000,把相关数值代入求解即可;(2)比较2校合买服装的总价钱以及按照单价40元买时的总价钱即可得到最省钱的方案.【解答】解:(1)设甲校人,则乙校(92﹣)人,依题意得50+60(92﹣)=5000,=52,∴92﹣=40,答:甲校有52人参加演出,乙校有40人参加演出.(2)乙:92﹣52=40人,甲:52﹣10=42人,两校联合:50×(40+42)=4100元,而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元,此时又比联合购买每套节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装,即比实际人数多买91﹣(40+42)=9套.【点评】考查一元一次方程的应用及方案选择问题;得到总价的等量关系是解决本题的关键;选择相应单价是解决本题的易错点,选择最便宜的单价往往是这类题的最佳方案.23.(9分)如图1,线段AB=60厘米.(1)点P沿线段AB自A点向B点以4厘米/分的速度运动,同时点Q沿直线自B点向A点以6厘米/分的速度运动,几分钟后,P、Q两点相遇?(2)几分钟后,P、Q两点相距20厘米?(3)如图2,AO=PO=8厘米,∠POB=40°,现将点P绕着点O以20度/分的速度顺时针旋转一周后停止,同时点Q沿直线BA沿B点向A点运动,假若P、Q两点也能相遇,求点Q 的速度.【分析】(1)由路程=速度×时间,结合题意列出方程,解方程即可得出结论;(2)由路程=速度×时间,结合题意列出方程,解方程即可得出结论;(3)若P、Q两点相遇,则相遇时点P在直线上,由P点的旋转速度可找出当P在直线上时的时间,再由路程=速度×时间,列出一元一次方程,解方程即可得出结论.【解答】解:(1)设经过分钟后,P、Q两点相遇,依题意得:4+6=60,解得:=6.答:经过6分钟后,P、Q两点相遇.(2)设经过y分钟后,P、Q两点相距20厘米,依题意得:①4y+6y+20=60,解得:y=4;②4y+6y﹣20=60,解得:y=8.答:经过4或8分钟后,P、Q两点相距20厘米.(3)由题意知,点P、Q只能在直线AB上相遇,则点P旋转到直线上的时间为2分钟或11分钟.设点Q的速度为t厘米/分,依题意得:①2t=60﹣16,解得:t=22;②11t=60,解得:t=.答:点Q的速度为22厘米/分或厘米/分.【点评】本题考查了一元一次方程的应用,解题的关键是结合路程=速度×时间与题意,列出一元一次方程.本题属于基础题,难度不大,解决该类问题时,理清各数量之间的关系式关键.。

相关文档
最新文档