2019年高三数学(文科)人教A版一轮重点强化训练4直线与圆Word版含解析
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析

2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
高中数学人教A版必修二 章末综合测评4 Word版含答案

圆与方程一、选择题1.(2016·葫芦岛高一检测)过点(21)的直线中被圆x 2+y 2-2x +4y =0截得的最长弦所在的直线方程为( )A .3x -y -5=0B .3x +y -7=0C .x +3y -5=0D .x -3y +1=0【解析】 依题意知所求直线通过圆心(1-2)由直线的两点式方程得y +21+2=x -12-1即3x -y -5=0故选A 【答案】 A2.已知点M (ab )在圆O :x 2+y 2=1外则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定【解析】 由题意知点在圆外则a 2+b 2>1圆心到直线的距离d =1a 2+b2<1故直线与圆相交.【答案】 B3.若P (2-1)为圆C :(x -1)2+y 2=25的弦AB 的中点则直线AB 的方程是( ) A .2x -y -5=0 B .2x +y -3=0 C .x +y -1=0D .x -y -3=0【解析】 圆心C (10)k PC =0-(-1)1-2=-1则k AB =1AB 的方程为y +1=x -2 即x -y -3=0故选D 【答案】 D4.圆心在x 轴上半径为1且过点(21)的圆的方程是( ) A .(x -2)2+y 2=1 B .(x +2)2+y 2=1C.(x-1)2+(y-3)2=1D.x2+(y-2)2=1【解析】设圆心坐标为(a0)则由题意可知(a-2)2+(1-0)2=1解得a=2故所求圆的方程是(x-2)2+y2=1【答案】 A8.(2016·泰安高一检测)圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是()【09960151】A.36 B.18C.6 2 D.5 2【解析】圆x2+y2-4x-4y-10=0的圆心为(22)半径为32圆心到直线x+y-14=0的距离为|2+2-14|2=52>32圆上的点到直线的最大距离与最小距离的差是2R=6 2【答案】 C9.过点P(-24)作圆O:(x-2)2+(y-1)2=25的切线l直线m:ax-3y=0与直线l平行则直线l与m的距离为()A.4 B.2C 85D125【解析】P为圆上一点则有k OP·k l=-1而k OP=4-1-2-2=-34∴k l=43∴a=4∴m:4x-3y=0l:4x-3y+20=0∴l与m的距离为|20|42+(-3)2=4【答案】 A10.一个几何体的三视图如图1所示正视图和侧视图都是等边三角形该几何体的四个顶点在空间直角坐标系Oxyz中的坐标分别是(000)(200)(220)(020)则第五个顶点的坐标可能是()图1A .(111)B .(112)C .(113)D .(223)【解析】 由三视图知该几何体为正四棱锥正四棱锥的顶点在底面的射影是底面正方形的中心高为3则第五个顶点的坐标为(113).故选C【答案】 C11.已知圆C 1:(x +2)2+(y -2)2=2圆C 2与圆C 1关于直线x -y -1=0对称则圆C 2的方程为( )A .(x +3)2+(y -3)2=2B .(x -1)2+(y +1)2=2C .(x -2)2+(y +2)2=2D .(x -3)2+(y +3)2=2【解析】 设点(-22)关于直线x -y -1=0的对称点为Q (mn )则⎩⎪⎨⎪⎧n -2m +2×1=-1,m -22-n +22-1=0,解得m =3n =-3所以圆C 2的圆心坐标为(3-3)所以圆C 2的方程为(x -3)2+(y +3)2=2故选D【答案】 D12.(2016·台州高二检测)已知圆O :x 2+y 2-4=0圆C :x 2+y 2+2x -15=0若圆O 的切线l 交圆C 于AB 两点则△OAB 面积的取值范围是( )图2 A.[27215] B.[278] C.[23215] D.[238]【解析】S△OAB =12|AB|·2=|AB|设C到AB的距离为d则|AB|=242-d2又d∈[13]7≤42-d2≤15所以S△OAB=|AB|∈[27215].【答案】 A二、填空题(本大题共4小题每小题5分共20分将答案填在题中的横线上) 13.已知A(123)B(56-7)则线段AB中点D的坐标为________.【解析】设D(xyz)由中点坐标公式可得x=1+52=3y=2+62=4z=3-72=-2所以D(34-2).【答案】(34-2)14.以原点O为圆心且截直线3x+4y+15=0所得弦长为8的圆的方程是________.【解析】原点O到直线的距离d=1532+42=3设圆的半径为r∴r2=32+42=25∴圆的方程是x2+y2=25【答案】x2+y2=2515.(2015·重庆高考)若点P(12)在以坐标原点为圆心的圆上则该圆在点P处的切线方程为________.【解析】∵以原点O为圆心的圆过点P(12)∴圆的方程为x2+y2=5∵k OP=2∴切线的斜率k=-1 2由点斜式可得切线方程为y -2=-12(x -1) 即x +2y -5=0 【答案】 x +2y -5=016.若xy ∈R 且x =1-y 2则y +2x +1的取值范围是________.【解析】x =1-y 2⇔x 2+y 2=1(x ≥0)此方程表示半圆如图设P (xy )是半圆上的点则y +2x +1表示过点P (xy )Q (-1-2)两点直线的斜率.设切线QA 的斜率为k 则它的方程为y +2=k (x +1).从而由|k -2|k 2+1=1解得k =34又k BQ=3∴所求范围是⎣⎢⎡⎦⎥⎤34,3 【答案】 ⎣⎢⎡⎦⎥⎤34,3三、解答题(本大题共6小题共70分.解答应写出文字说明证明过程或演算步骤)17.(本小题满分10分)求经过两点A (-14)B (32)且圆心在y 轴上的圆的方程. 【解】 法一:∵圆心在y 轴上 设圆的标准方程是x 2+(y -b )2=r 2 ∵该圆经过A 、B 两点∴⎩⎨⎧ (-1)2+(4-b )2=r 2,32+(2-b )2=r 2,∴⎩⎨⎧b =1,r 2=10. 所以圆的方程是x 2+(y -1)2=10 法二:线段AB 的中点为(13) k AB =2-43-(-1)=-12∴弦AB 的垂直平分线方程为y -3=2(x -1) 即y =2x +1由⎩⎨⎧y =2x +1,x =0,得(01)为所求圆的圆心. 由两点间距离公式得圆半径r 为 (0+1)2+(1-4)2=10∴所求圆的方程为x 2+(y -1)2=1018.(本小题满分12分)如图3所示BC =4原点O 是BC 的中点点A 的坐标是⎝ ⎛⎭⎪⎫32,12,0点D 在平面yOz 上且∠BDC =90°∠DCB =30°求AD 的长度.图3【解】 由题意得B (0-20)C (020)设D (0yz )在Rt △BDC 中∠DCB =30° ∴|BD |=2|CD |=23∴z =32-y =3 ∴y =-1∴D (0-13). 又∵A ⎝ ⎛⎭⎪⎫32,12,0∴|AD |=⎝ ⎛⎭⎪⎫322+⎝⎛⎭⎪⎫12+12+()-32= 619.(本小题满分12分)已知圆C :(x -1)2+(y -2)2=25直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 为何值时直线和圆恒相交于两点; (2)求直线l 被圆C 截得的弦长最小时的方程. 【解】 (1)证明:由(2m +1)x +(m +1)y -7m -4=0 得(2x +y -7)m +x +y -4=0 解⎩⎨⎧ 2x +y -7=0,x +y -4=0,得⎩⎨⎧x =3,y =1,∴直线l 恒过定点A (31).又∵(3-1)2+(1-2)2=5<25 ∴(31)在圆C 的内部故直线l 与圆C 恒有两个公共点.(2)当直线l被圆C截得的弦长最小时有l⊥AC由k AC=-12得l的方程为y-1=2(x-3)即2x-y-5=020.(本小题满分12分)点A(02)是圆x2+y2=16内的定点BC是这个圆上的两个动点若BA⊥CA求BC中点M的轨迹方程并说明它的轨迹是什么曲线.【解】设点M(xy)因为M是弦BC的中点故OM⊥BC又∵∠BAC=90°∴|MA|=12|BC|=|MB|∵|MB|2=|OB|2-|OM|2∴|OB|2=|MO|2+|MA|2即42=(x2+y2)+[(x-0)2+(y-2)2]化简为x2+y2-2y-6=0即x2+(y-1)2=7∴所求轨迹为以(01)为圆心以7为半径的圆.21.(本小题满分12分)如图4所示平行四边形ABCD的对角线AC与BD交于E点定点AC的坐标分别是A(-23)C(21).图4(1)求以线段AC为直径的圆E的方程;(2)若B点的坐标为(-2-2)求直线BC截圆E所得的弦长.【解】(1)AC的中点E(02)即为圆心半径r=12|AC|=1242+(-2)2= 5所以圆E的方程为x2+(y-2)2=5(2)直线BC的斜率k=1-(-2)2-(-2)=34其方程为y-1=34(x-2)即3x-4y-2=0点E到直线BC的距离为d=|-8-2|5=2所以BC截圆E所得的弦长为25-22=222(本小题满分12分)如图5已知圆C:x2+y2+10x+10y=0点A(06).(1)求圆心在直线y=x上经过点A且与圆C相外切的圆N的方程;(2)若过点A的直线m与圆C交于PQ两点且圆弧PQ恰为圆C周长的14求直线m的方程.【09960152】图5【解】(1)由x2+y2+10x+10y=0化为标准方程:(x+5)2+(y+5)2=50所以圆C的圆心坐标为C(-5-5)又圆N的圆心在直线y=x上所以当两圆外切时切点为O设圆N的圆心坐标为(aa) 则有(a-0)2+(a-6)2=(a-0)2+(a-0)2解得a=3所以圆N的圆心坐标为(33)半径r=3 2故圆N的方程为(x-3)2+(y-3)2=18(2)因为圆弧PQ恰为圆C周长的14所以CP⊥CQ所以点C到直线m的距离为5当直线m的斜率不存在时点C到y轴的距离为5直线m即为y轴所以此时直线m的方程为x=0当直线m的斜率存在时设直线m的方程为y=kx+6即kx-y+6=0所以|-5k+5+6|1+k2=5解得k=4855所以此时直线m的方程为4855x-y+6=0即48x-55y+330=0故所求直线m的方程为x=0或48x-55y+330=0。
高中数学人教A版选修4-1学案第2讲 4 弦切角的性质 Word版含解析

四弦切角的性质
.掌握弦切角定理,并能利用它解决有关问题.(重点)
.体会分类思想,运动变化思想和化归思想.(难点)
[基础·初探]
教材整理弦切角定理
阅读教材~,完成下列问题.
.弦切角
顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角..弦切角定理
()文字语言叙述:
弦切角等于它所夹的弧所对的圆周角.
()图形语言叙述:
如图--,与⊙切于点,则∠=∠.
图--
.在⊙外,切⊙于,交⊙于,,则( )
.∠=∠.∠=∠
.∠=∠.∠=∠
【解析】由弦切角定理知∠=∠.
【答案】
.如图--所示,与⊙相切于点,和是⊙上两点,∠=°,则∠等于( )
图--
.°.°
.°.°
【解析】根据弦切角定理:∠=∠=°.
【答案】
[质疑·手记]
预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:
疑问:
解惑:
疑问:
解惑:
疑问:
解惑:
[小组合作型]
如图--,是半圆的直径,是圆周上一点(异于,),过作圆的切线,过作直线的垂线,垂足为,交半圆于点,求证:=.。
【精准解析】高中数学人教A版必修2一课三测:4.1.1+圆的标准方程+Word版含解析byde

答案:(x-2)2+(y+3)2=25
9.已知半径为 3 的圆的圆心到 y 轴的距离等于半径,圆心在直线 x-3y=0 上,则此圆
的方程为________. 解析:依题意设圆心为(3b,b),半径为 r,由已知得 r=|3b|=3,所以 b=±1.所以圆的方
程为(x-3)2+(y-1)2=9 或(x+3)2+(y+1)2=9.
解得 a=3,r2=25,所以圆 E 的方程为
x-3 4
2+y2=25.故选
C.
4
16
16
答案:C
7.如果实数 x,y 满足 x2+(y-3)2=1,那么y的取值范围是( ) x
只要坚持 梦想终会实现
-5-
高中学习讲义
A.[2 2 2,2 2 ]
D.(-∞,-2 2 ]∪[2 2,+∞)
4.1.1 圆的标准方程
高中学习讲义
填一填 1.圆的定义 平面内到定点的距离等于定长的点的集合叫做圆.其中定点是圆的圆心;定长是圆的半 径. 2.圆的标准方程
3.点与圆的位置关系 点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与圆的位置关系有 两种方法: (1)几何法:将所给的点 M 与圆心 C 的距离跟半径 r 比较: 若|CM|=r,则点 M 在圆上; 若|CM|>r,则点 M 在圆外; 若|CM|<r,则点 M 在圆内. (2)代数法:可利用圆 C 的标准方程(x-a)2+(y-b)2=r2 来确定: 点 M(m,n)在圆 C 上⇔(m-a)2+(n-b)2=r2; 点 M(m,n)在圆 C 外⇔(m-a)2+(n-b)2>r2; 点 M(m,n)在圆 C 内⇔(m-a)2+(n-b)2<r2.
知识点一
点与圆的位置关系
人教版高中数学必修二第三章直线与圆课后提升作业二十一 3.2.3 含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课后提升作业二十一直线的一般式方程(30分钟60分)一、选择题(每小题5分,共40分)1.直线2x+ay+3=0的倾斜角为120°,则a的值是( )A. B.- C.2 D.-2【解析】选A.因为直线的倾斜角为120°,所以直线的斜率k=-,即-=-,所以a=.【补偿训练】平面直角坐标系中,直线x+y+2=0的斜率为( ) A. B.- C. D.-【解析】选B.将直线化为斜截式y=-x-.故斜率为-.2.(2016·海淀高一检测)已知直线l经过点P(2,1),且与直线2x-y+2=0平行,那么直线l的方程是( )A.2x-y-3=0B.x+2y-4=0C.2x-y-4=0D.x-2y-4=0【解析】选A.由题意可设所求的方程为2x-y+c=0,代入已知点 (2,1),可得4-1+c=0,即c=-3,故所求直线的方程为2x-y-3=0.3.直线3x+4y+5=0的斜率和它在y轴上的截距分别为( )A.,B.-,-C.-,-D.,【解析】选C.根据斜率公式k=-=-,令x=0,则y=-,即在y轴上的截距为-.4.若三直线l1:2x+3y+8=0,l2:x-y-1=0,l3:x+ky+k+=0能围成三角形,则k不等于( )A. B.-2C.,-1D.,-1,-【解析】选 D.由得交点P(-1,-2),若P在直线x+ky+k+=0上,则k=-,此时三条直线交于一点;k=时,直线l1与l3平行;k=-1时,直线l2与l3平行,综上知,要使三条直线能围成三角形,应有k≠-,和-1.5.(2016·杭州高一检测)已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( )A.1B.-1C.-2或-1D.-2或1【解析】选D.当截距都为0时,-2-a=0即a=-2;当截距都不为0即a ≠-2时,直线方程可变形为:+=1,由已知有=a+2,得a=1.6.(2016·北京高一检测)已知直线ax+by+c=0的图象如图,则( )A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>0【解析】选D.由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如题图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0.7.(2016·威海高一检测)直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是( )A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+5=0D.2x-3y+8=0【解析】选A.由直线l与直线2x-3y+4=0垂直,可知直线l的斜率是-,由点斜式可得直线l的方程为y-2=-(x+1),即3x+2y-1=0.【补偿训练】过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0【解析】选A.设所求直线的方程为x-2y+m=0,把点(1,0)代入,得m=-1,故选A.8.已知m≠0,直线ax+3my+2a=0在y轴上的截距为2,则直线的斜率为( )A.1B.-C.-D.2【解析】选A.令x=0,得y=-,因为直线在y轴上的截距为2,所以-=2,所以a=-3m,原直线化为-3mx+3my-6m=0,所以k=1.【延伸探究】把题中的“在y轴上的截距为2”改为“在两坐标轴上的截距之和为2”,则直线的斜率为( )A.1B.-C.-D.2【解析】选D.令x=0,得y=-,令y=0,得x=-2,因为在两坐标轴上的截距之和为2,所以-+(-2)=2,所以a=-6m,原直线化为-6mx+3my-12m=0,所以k=2.二、填空题(每小题5分,共10分)9.(2016·广州高一检测)垂直于直线3x-4y-7=0,且与两坐标轴围成的三角形的面积为6的直线在x轴上的截距是________.【解析】设直线方程是4x+3y+d=0,分别令x=0和y=0,得直线在两坐标轴上的截距分别是-,-.所以6=××=.所以d=±12,则直线在x轴上的截距为3或-3.答案:3或-310.若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m的取值范围是______________.【解题指南】求x,y的系数不同时为0的m值即可,即先求出x与y 的系数均为零时m的值,再取补集即可.【解析】由得m=1,故要使方程表示一条直线,需2m2+m-3与m2-m不同时为0,故m≠1.答案:m≠1三、解答题11.(10分)求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.【解析】方法一:由题意知:可设l的方程为3x-4y+m=0,则l在x轴,y轴上的截距分别为-,.由-+=1知,m=-12.所以直线l的方程为:3x-4y-12=0.方法二:设直线方程为+=1,由题意得解得所以直线l的方程为:+=1.即3x-4y-12=0.【补偿训练】(2016·大连高一检测)已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值.(1)过点(1,1).(2)直线在y轴上的截距为-3.【解析】(1)因为直线2x+(t-2)y+3-2t=0过点(1,1),所以2+(t-2)+3-2t=0,即t=3.(2)令x=0,得y==-3,解得t=.关闭Word文档返回原板块附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。
备战2020年高考高三一轮单元训练金卷+数学+第13单元++算法、推理证明与复数+A卷++Word版含答案

单元训练金卷▪高三▪数学卷(A )第13单元 算法、推理证明与复数注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复平面内,复数z i i 为虚数单位),则复数z 对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.某种树的分枝生长规律如图所示,则预计到第6年树的分枝数为( )A .5B .6C .7D .83.定义x x f sin )(0=,()()10cos f x f x x '==,()()1n n f x f x +'=,则=)(2017x f ( )A .x sinB .x cosC .x sin -D .x cos -4.观察图示图形规律,在其右下角的空格内画上合适的图形为( )A .B .C .D .5.已知复数512z =+i ,则复数z z -2的虚部为( ) A .-i B .1- C .2-i D .2-6.对任意非零实数a ,b ,若a b ⊗的运算原理如右图程序框图所示,则(32)4⊗⊗的值是( )A .0B .12C .32D .97.关于复数()211z +=-i i ,下列说法中正确的是( )A .在复平面内复数z 对应的点在第一象限B .复数z 的共轭复数1z =-iC .若复数()1z z b b =+∈R 为纯虚数,则1b =D .设a ,b 为复数z 的实部和虚部,则点(),a b 在以原点为圆心,半径为1的圆上8.已知某程序框图如图所示,则执行该程序后输出的结果是( )A .21B .1-C .2D .19.已知222433+=⨯,333988+=⨯,444161515+=⨯,……,观察以上等式,若999k m n+=⨯(m ,n ,k 均为实数),则m n k +-=( )A .76B .77C .78D .7910.阅读如图所示的程序框图,若输入919a =,则输出的k 值是( )A .9B .10C .11D .1211.网络工作者经常用网络蛇形图来解释网络的运作模式,如图所示,数字1出现在第一行;数字2,3出现在第二行;数字6,5,4(从左至右)出现在第三行;数字7,8,9,10出现在第四行;以此类推,则按网络运作顺序第63行从左到右的第2个数字(如第2行第1个数字为2,第3行第1个数字为4,…,)是( )A .2014B .2015C .2016D .201712.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{}()n a n *∈N 的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则=++201720162015a a a ( )A .1008B .1009C .2017D .2018第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若复数z 与2(2)4z -+i 都是纯虚数,则=-+22z z ________. 14.若程序框图如图所示,则该程序运行后输出k 的值是______.15.我国的刺绣有着悠久的历史,如图所示的()()()()1234为刺绣中最简单的四个图案,这些图案都是有相同的小正方形构成,小正方形越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图案包含)(n f 个小正方形,则)(n f 的表达式为 .16.在计算“)1(3221-++⨯+⨯n n ”时,某位数学教师采用了以下方法: 构造等式:)]1()1()2)(1([31)1(+--++=+k k k k k k k k ,以此类推得:)210321(3121⨯⨯-⨯⨯=⨯,)321432(3132⨯⨯-⨯⨯=⨯, )432543(3143⨯⨯-⨯⨯=⨯,…,…, )]1()1()2)(1([31)1(+--++=-⨯n n n n n n n n , 相加得11223(1)(1)(2)3n n n n n ⨯+⨯++-=++. 类比上述计算方法,可以得到=+++⨯+⨯)2(4231n n .三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)设复数1z =+i ,若实数a ,b 满足2)2(2z a z b az +=+,其中z 为z 的共轭复数.求实数a ,b 的值.18.(12分)如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x <<π时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式;(2)若输出的y 值为12,求点Q 的坐标.19.(12分)已知函数)()0,1f x a a =>≠且.(1)证明:函数)(x f y =的图象关于点11,22⎛⎫- ⎪⎝⎭对称; (2)求(2014)(2013)(1)(0)(1)(2014)(2015)f f f f f f f -+-++-+++++.20.(12分)已知数列{}n a 满足:211=a ,111)1(21)1(3++-+=-+n n n n a a a a ,()101n n a a n +<≥,数列{}n b 满足:()2211n n n b a a n +=-≥. (1)求数列{}n a 、{}n b 的通项公式;(2)证明:数列{}n b 中的任意三项不可能成等差数列.21.(12分)下面四个图案,都是由小正三角形构成,设第n 个图形中所有小正三角形边上黑点的总数为)(n f .(1)求出(2)f ,(3)f ,(4)f ,(5)f ;(2)找出)(n f 与)1(+n f 的关系,并求出)(n f 的表达式;(3)求证()111125111136(1)3(2)5(3)7()213333n f f f f n n *++++<∈+++++N .22.(12分)将数列{}n a 中的所有项按每一行比上一行多两项的规则排成如下数表:已知数表中每一行的第一个数1a ,2a ,5a ,…构成一个等差数列,记为{}n b ,且42=b ,105=b .数表中每一行正中间一个数1a ,3a ,7a ,…构成数列{}n c ,其前n 项和为n S .(1)求数列{}n b 的通项公式;(2)若数表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数且113=a ,求数列{}n c 的前n 项和n S ;(3)在满足(2)的条件下,记{}(1),n M n n c n λ*=+≥∈N ,若集合M 的元素个数为3,求实数λ的取值范围.单元训练金卷▪高三▪数学卷(A ) 第13单元 算法、推理证明与复数 答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C【解析】∵z ===i ,∴z ,故选C . 2.【答案】D【解析】由题意得,这种树的从第一年的分枝数分别是1,1,2,3,5,,则112+=,213+=,325+=,即从第三项起每一项都等于前两项的和, 所以第6年树的分枝数是853=+,故选D . 3.【答案】B【解析】()()10cos f x f x x '==,x x x f x f sin )(cos )()(''12-===,'3()(sin )cos f x x x =-=-,'40()(cos )sin ()f x x x f x =-==,'51()(sin )cos ()f x x x f x ===,同理)()(26x f x f =,)()(37x f x f =,)()(48x f x f =,周期为4, ∴20171()()cos f x f x x ==,故选B . 4.【答案】A【解析】由所给图形的规律看出,空心的矩形、三角形、圆形都是一个,实心的图形应均为两个,∴空白处应填实心的矩形,故选A . 5.【答案】D 【解析】55(12)5(12)1212(12)(12)5z --====-++⋅-i i i i i i , ∴22(12)(12)42z z -=---=--i i i ,∴复数z z -2的虚部为2-,故选D .6.【答案】C【解析】根据程序框图知221323=+=⊗,∴413(32)42422-⊗⊗=⊗==,故选C .7.【答案】C【解析】由题意可知()212111z +===-+--i ii ii,若()1z z b b =+∈R 为纯虚数,则1b =, 故选C . 8.【答案】B【解析】设每次循环所得到的a 的值构成数列{}n a , 由框图可111n n a a +=-,02a =,112a =,21a =-,32a =,412a =,…, 所以{a n }的取值具有周期性,且周期为T =3. 又由框图可知输出的122012-===a a a ,故选B . 9.【答案】D【解析】观察以上等式,类比出等式2(1)(1)(1)(1)x xx x x x x x +=⨯-+-+, 当9x =时,可得999818080+=⨯,所以80m =,80n =,81k =, 所以80808179m n k +-=+-=.故选D . 10.【答案】C 【解析】当111119(1)1335171921919S =+++=-=⨯⨯⨯时,10=k ,若199>S ,则输出的k 值是11,故选C . 11.【答案】B【解析】网络蛇形图中每一行的第一个数1,2,4,7,11,,按原来的顺序构成数列{}n a ,易知n a a n n =-+1,且11=a , ∴22132121()()()1123(1)2n n n n n a a a a a a a n --+=+-+-++-=+++++-=. ∴第63行的第一个数字为19542263632=+-, 而偶数行的顺序为从左到右,奇数行的顺序为从右到左, ∴第63行从左到右的第2个数字就是从右到左的第62个数字, 这个数为2015611954=+.故选B . 12.【答案】B【解析】观察点的坐标,写出数列{}n a 的前12项:1,1,1-,2,2,3,2-,4,3,5,3-,6.可提炼出规律,偶数项的值等于其序号的一半,奇数项的值有正负之分, 且n a n =-34,n a n -=-14,n a n =2,∴505350542017==-⨯a a ,504150442015-==-⨯a a ,10082016=a , ∴2015201620171009a a a ++=,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】i 或-i【解析】由已知可设(),0z b b b =∈≠R i ,则222(2)4(2)44(44)z b b b -+=-+=-+-i i i i ,∴240440b b ⎧-=⎨-≠⎩,∴2b =±,∴2z =-i 或2z =i ,∴当2z =-i 时,2221(1)(1)22221(1)(1)2z z +--+-+⋅-=====---++⋅-i i i i ii i i i i ; 当2z =i 时,()()()222222222z z ++=====---+⋅-i+1i i+1i i i i-1i+1i-1. 14.【答案】5【解析】5=n ,16=n ,1=k ;8=n ,2=k ;4=n ,3=k ;2=n ,4=k ;1=n ,5=k ,输出5.15.【答案】1222+-n n【解析】我们考虑,4)1()2(=-f f ,42)2()3(⨯=-f f ,43)3()4(⨯=-f f ,…, 归纳得出)1(4)()1(-⨯=-+n n f n f , ∴()(1)[(2)(1)][(3)(2)][()(1)]f n f f f f f f n f n =++-+-++--21424344(1)14[123(1)]221n n n n =++⨯+⨯++-=+++++-=-+.16.【答案】)72)(1(61++n n n 【解析】构造等式:)]2()2()4)(2([61)2(+--++=+n n n n n n n n , ∴]31)1(531[6131⨯⨯--⨯⨯=⨯,)420642(6142⨯⨯-⨯⨯=⨯,)531753(6153⨯⨯-⨯⨯=⨯,……,)]1)(1)(3()3)(1)(1[(61)1()1(+---++-=+⨯-n n n n n n n n ,)]2()2()4)(2([61)2(+--++=+⨯n n n n n n n n ,相加得11324(2)[(1)13024(1)(1)(3)(2)(4)]6n n n n n n n n ⨯+⨯+++=--⨯⨯-⨯⨯+-+++++)72)(1(61++=n n n .三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】42a b =-⎧⎨=⎩或21a b =-⎧⎨=-⎩.【解析】由1z =+i ,可知i z -=1,代入2)2(2z a z b az +=+得2(1)2(1)[2(1)]a b a ++-=++i i i ,即22(2)(2)44(2)a b a b a a ++-=+-++i i ,∴22(2)424(2)a b a a b a ⎧+=+-⎨-=+⎩,解得42a b =-⎧⎨=⎩或21a b =-⎧⎨=-⎩.18.【答案】(1)①②的式子分别为cos 2xy =,cos 2x y =-;(2)当0x <≤π时,此时点Q 的坐标为12⎛- ⎝⎭;当2x π<<π时,此时点Q的坐标为12⎛- ⎝⎭,. 【解析】(1)当0x <≤π时,cos 2x y =;当2x π<<π时,cos cos 22x x y ⎛⎫=π-=- ⎪⎝⎭;综上可知,函数解析式为()(]()cos ,0,2cos ,,22x x f x x x ⎧∈π⎪⎪=⎨⎪-∈ππ⎪⎩,所以框图中①②处应填充的式子分别为cos 2xy =,cos 2x y =-.(2)若输出的y 值为12,则0x <≤π时,1cos22x =,得23x π=,此时点Q的坐标为12⎛- ⎝⎭; 当2x π<<π时,1cos 22x -=,得43x π=,此时点Q的坐标为12⎛- ⎝⎭,. 19.【答案】(1)见解析;(2)2015-.【解析】(1)函数aa a x f x+-=)(的定义域为R ,在函数)(x f 的图象上任取一点),(00y x ,它关于点11,22⎛⎫- ⎪⎝⎭的对称点为)1,1(00y x ---,则aa a x f y x +-==0)(00,∴00(1)1f x y -====--,∴函数)(x f 图象上任意一点),(00y x 关于点11,22⎛⎫- ⎪⎝⎭的对称点)1,1(00y x ---仍在函数)(x f y =的图象上.即函数)(x f y =的图象关于点11,22⎛⎫- ⎪⎝⎭对称.(2)由(1)得1)1()(00-=-+x f x f ,∴1)2015()2014(-=+-f f ;1)2014()2013(-=+-f f ;1)2013()2012(-=+-f f ;……;1)2()1(-=+-f f ;1)1()0(-=+f f .∴(2014)(2013)(1)(0)(1)(2014)(2015)2015f f f f f f f -+-++-+++++=-.20.【答案】(1)(1)n n a -=-11243n n b -⎛⎫=⋅ ⎪⎝⎭;(2)见解析.【解析】(1)由题意可知,)1(321221n n a a -=-+,令21n n a c -=,则2111++-=n n a c ,n n c c 321=+.又431211=-=a c ,则数列{}n c 是首项为431=c ,公比为32的等比数列,即13243n n c -⎛⎫=⋅ ⎪⎝⎭,故1232143n na -⎛⎫-=⋅ ⎪⎝⎭,∴1232143n na -⎛⎫=-⋅ ⎪⎝⎭.又0211>=a ,01<+n n a a ,故(1)n n a -=-,1122132321211434343n n n n n nb a a --+⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-⋅--⋅=⋅⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.(2)反证法:假设数列{}n b 存在三项r b ,s b ,t b ()r s t <<按某种顺序成等差数列, 由于数列{}n b 是首项为41,公比为32的等比数列,于是有r s t b b b >>, 则只能有t r s b b b +=2成立.∴1111212122434343s r t ---⎛⎫⎛⎫⎛⎫⋅⋅=⋅+⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,两边同乘以r t --1123,化简得s t r s r t r t ----⋅=+32223. 由于t s r <<,∴上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.21.【答案】(1)(2)12f =,(3)27f =,(4)48f =,(5)75f =;(2)36)()1(+=-+n n f n f ,2()3f n n =;(3)见解析.【解析】(1)由题意有:3)1(=f ,12233)1()2(=⨯++=f f ,27433)2()3(=⨯++=f f , 48633)3()4(=⨯++=f f ,75833)4()5(=⨯++=f f .(2)由题意及(1)知,36)(233)()1(++=⨯++=+n n f n n f n f , 即36)()1(+=-+n n f n f .∴()(1)[(2)(1)][(3)(2)][()(1)]f n f f f f f f n f n =+-+-++--3(613)(623)[6(1)3]36[123(1)]n n n =+⨯++⨯+++-+=+++++-2(1)3633(1)32n nn n n n n -=+⨯=+-=. (3)∵23)(n n f =,∴2111111(1)(1)1()213n n n n n f n n =<=-+++++, ∴11111111(1)3(2)5(3)7()213333f f f f n n ++++<+++++11111111111111125()()()4934451493149336n n n ++-+-++-=++-<++=++, 所以对于任意n *∈N ,原不等式成立.22.【答案】(1)2n b n =;(2)2282n n n S -+=-;(3)(]4,5. 【解析】(1)设数列{}n b 的公差为d ,则114410b d b d +=⎧⎨+=⎩解得122b d =⎧⎨=⎩,所以n b n 2=.(2)设每一行组成的等比数列的公比为q ,由于前n 行共有2)12(531n n =-++++ 个数,且224133<<,又8410==b a ,所以18331013===q q a a ,解得21=q .因此121222n n n n c n --⎛⎫== ⎪⎝⎭.所以12110121232222n n n n n S c c c c ---=++++=++++,0121112122222n n n n nS ---=++++,所以10121111211111122412222222212nn n n n n n n n S -----⎛⎫- ⎪+⎝⎭=++++-=-=--,即2228-+-=n nn S .(3)由(1)知22-=n n n c ,不等式λ≥+n c n )1(,可化为λ≥+-22)1(n n n .设22)1()(-+=n n n n f , 计算得4)1(=f ,6)3()2(==f f ,5)4(=f ,415)5(=f , 因为121(1)(2)(1)(2)(1)(1)()222n n n n n n n n n f n f n ---+++-++-=-=, 所以当3≥n 时,)()1(n f n f <+.因为集合M 的元素的个数为3,所以λ的取值范围是(]4,5.。
2018-2019数学同步新课标导学人教A版必修二通用版练习:第四章 圆与方程4.1.2 Word版含解析

第四章 4.14.1.2A 级基础巩固一、选择题1.圆x 2+y 2-4x +6y =0的圆心坐标是导学号09024937( D ) A .(2,3) B .(-2,3) C .(-2,-3)D .(2,-3)[解析]圆的一般程化成标准方程为(x -2)2+(y +3)2=13,可知圆心坐标为(2,-3).2.(2018·本溪市高一期中)若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为导学号09025184( A )A .12,-4B .-12,4C .12,4D .-12,-4[解析]由题意知直线y =kx 与2x +y +b =0垂直,且直线2x +y +b =0过圆心 ∴错误!,解得错误!.3.(2016~2017·长沙高一检测)已知圆C 过点M (1,1),N (5,1),且圆心在直线y =x -2上,则圆C 的方程为导学号09024939( A )A .x 2+y 2-6x -2y +6=0B .x 2+y 2+6x -2y +6=0C .x 2+y 2+6x +2y +6=0D .x 2+y 2-2x -6y +6=0[解析]由条件知,圆心C 在线段MN 的中垂线x =3上,又在直线y =x -2上,∴圆心C (3,1),半径r =|MC |=2.方程为(x -3)2+(y -1)2=4,即x 2+y 2-6x -2y +6=0. 故选A . 4.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是导学号09024940( B )A .在圆上B .在圆外C .在圆内D .不确定[解析]将原点坐标(0,0)代入圆的方程得(a -1)2 ∵0<a <1,∴(a -1)2>0,∴原点在圆外.5.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为导学号09024941( C )A .-2或2B .12或32C .2或0D .-2或0[解析]化圆的标准方程为(x -1)2+(y -2)2=5,则由圆心(1,2)到直线x -y +a =0距离为22,得|1-2+a|2=22,∴a =2或0.6.圆x 2+y 2-2y -1=0关于直线y =x 对称的圆的方程是导学号09024942( A ) A .(x -1)2+y 2=2 B .(x +1)2+y 2=2 C .(x -1)2+y 2=4D .(x +1)2+y 2=4[解析]圆x 2+y 2-2y -1=0的圆心坐标为(0,1),半径r =2,圆心(0,1)关于直线y =x 对称的点的坐标为(1,0),故所求圆的方程为(x -1)2+y 2=2.二、填空题7.圆心是(-3,4),经过点M (5,1)的圆的一般方程为__x 2+y 2+6x -8y -48=0__.导学号09024943 [解析]只要求出圆的半径即得圆的标准方程,再展开化为一般式方程.8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是__x 2+y 2-4x +2y +1=0__.导学号09024944[解析]设M (x ,y ),A (2,-1),则P (2x -2,2y +1),将P 代入圆方程得:(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即为:x 2+y 2-4x +2y +1=0.三、解答题9.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.导学号09024945[解析]解法一:由方程x 2+y 2-4mx +2my +20m -20=0 可知D =-4m ,E =2m ,F =20m -20∴D 2+E 2-4F =16m 2+4m 2-80m +80=20(m -2)2,因此,当m =2时,D 2+E 2-4F =0,它表示一个点,当m ≠2时,D 2+E 2-4F >0,原方程表示圆的方程,此时,圆的圆心为(2m ,-m ),半径为r =12D2+E2-4F =5|m -2|.解法二:原方程可化为(x -2m )2+(y +m )2=5(m -2)2,因此,当m =2时,它表示一个点 当m ≠2时,原方程表示圆的方程. 此时,圆的圆心为(2m ,-m ),半径为r =5|m -2|.10.求过点A (-1,0)、B (3,0)和C (0,1)的圆的方程.导学号09024946 [解析]解法一:设圆的方程为 x 2+y 2+Dx +Ey +F =0(*)把A 、B 、C 三点坐标代入方程(*)得⎩⎪⎨⎪⎧1-D +F =09+3D +F =01+E +F =0,∴⎩⎪⎨⎪⎧D =-2E =2F =-3.故所求圆的方程为x 2+y 2-2x +2y -3=0解法二:线段AB 的中垂线方程为x =1,线段AC 的中垂线方程为x +y =0由⎩⎪⎨⎪⎧x =1x +y =0,得圆心坐标为M (1,-1) 半径r =|MA |=5∴圆的方程为(x -1)2+(y +1)2=5.B 级素养提升一、选择题1.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过导学号09024947( D )A .第一象限B .第二象限C .第三象限D .第四象限[解析]圆x 2+y 2-2ax +3by =0的圆心为(a ,-32b )则a <0,b >0.直线y =-1a x -b a ,其斜率k =-1a >0,在y 轴上的截距为-ba >0,所以直线不经过第四象限,故选D .2.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为导学号09024948( B )A .52B .102C .152D .202[解析]圆x 2+y 2-2x -6y =0化成标准方程为(x -1)2+(y -3)2=10,则圆心坐标为M (1,3),半径长为10.由圆的几何性质可知:过点E 的最长弦AC 为点E 所在的直径,则|AC |=210.BD 是过点E 的最短弦,则点E 为线段BD 的中点,且AC ⊥BD ,E 为AC 与BD 的交点,则由垂径定理可是|BD |=2|BM|2-|ME|2=2错误!=2错误!.从而四边形ABCD 的面积为错误!|AC ||BD |=错误!×2错误!×2错误!=10错误!.3.若点(2a ,a -1)在圆x 2+y 2-2y -5a 2=0的内部,则a 的取值范围是导学号09024949( D ) A .(-∞,45]B .(-43,43)C .(-34,+∞)D .(34,+∞)[解析]化圆的标准方程为x 2+(y -1)2=5a 2+1,点(2a ,a -1)的圆的内部,则(2a )2+(a -1-1)2<5a 2+1,解得a >34.4.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为导学号09024950( B )A .5B .5C .25D .10[解析]由题意,得直线l 过圆心M (-2,-1) 则-2a -b +1=0,则b =-2a +1所以(a -2)2+(b -2)2=(a -2)2+(-2a +1-2)2=5a 2+5≥5 所以(a -2)2+(b -2)2的最小值为5. 二、填空题5.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =__-2__.导学号09024951[解析]由题意可知直线l :x -y +2=0过圆心∴-1+a2+2=0,∴a =-2.6.若实数x 、y 满足x 2+y 2+4x -2y -4=0,则x2+y2的最大值是导学号09024952[解析]关键是搞清式子x2+y2的意义.实数x ,y 满足方程x 2+y 2+4x -2y -4=0,所以(x ,y )为方程所表示的曲线上的动点.x2+y2=错误!,表示动点(x ,y )到原点(0,0)的距离.对方程进行配方,得(x +2)2+(y -1)2=9,它表示以C (-2,1)为圆心,3为半径的圆,而原点的圆内.连接CO 交圆于点M ,N ,由圆的几何性质可知,MO 的长即为所求的最大值.C 级能力拔高1.设圆的方程为x 2+y 2=4,过点M (0,1)的直线l 交圆于点A 、B ,O 是坐标原点,点P 为AB 的中点,当l 绕点M 旋转时,求动点P 的轨迹方程.导学号09024953[解析]设点P 的坐标为(x ,y )、A (x 1,y 1)、B (x 2,y 2). 因为A 、B 在圆上,所以x 21+y 21=4,x 2+y 2=4 两式相减得x 21-x 2+y 21-y 2=0所以(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0. 当x 1≠x 2时,有x 1+x 2+(y 1+y 2)·y1-y2x1-x2=0,①并且⎩⎪⎨⎪⎧x =x1+x22,y =y1+y22,y -1x =y1-y2x1-x2,②将②代入①并整理得x 2+(y -12)2=14.③当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0)也满足③. 所以点P 的轨迹方程为x 2+(y -12)2=14.2.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆.导学号09024954 (1)求实数m 的取值范围; (2)求该圆的半径r 的取值范围; (3)求圆心C 的轨迹方程. [解析](1)要使方程表示圆,则 4(m +3)2+4(1-4m 2)2-4(16m 4+9)>0即4m 2+24m +36+4-32m 2+64m 4-64m 4-36>0 整理得7m 2-6m -1<0,解得-17<m <1.(2)r =12错误!=-7m2+6m +1=错误!.∴0<r ≤477.(3)设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =m +3y =4m2-1.消去m 可得(x -3)2=14(y +1).∵-17<m <1,∴207<x <4.故圆心C 的轨迹方程为(x -3)2=14(y +1)(207<x <4).。
【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)

直线与圆的方程一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点强化训练(四) 直线与圆
(对应学生用书第291页)
A组 基础达标
(建议用时:30分钟)
一、选择题
1.(2018·西安五校联考)命题p:“a=-2”是命题q:“直线ax+3y-1=0与
直线6x+4y-3=0垂直”成立的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
A [两直线垂直的充要条件是6a+3×4=0,解得a=-2,命题p是命题q
成立的充要条件.]
2.(2018·深圳模拟)已知直线l:x+my+4=0,若曲线x2+y2+2x-6y+1=0上
存在两点P,Q关于直线l对称,则m的值为( ) 【导学号:79170287】
A.2 B.-2
C.1 D.-1
D [因为曲线x2+y2+2x-6y+1=0是圆(x+1)2+(y-3)2=9,若圆(x+1)
2
+(y-3)2=9上存在两点P,Q关于直线l对称,则直线l:x+my+4=0过
圆心(-1,3),所以-1+3m+4=0,解得m=-1.]
3.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有( )
A.1个 B.2个
C.3个 D.4个
C [圆的方程化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线距离d=
|-1-2+1|
2
=2,半径是22,结合图形可知有3个符合条件的点.]
4.过点P(-3,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取
值范围是( )
A.0,π6 B.0,π3
C.0,π6 D.0,π3
D [因为l与圆x2+y2=1有公共点,则l的斜率存在,设斜率为k,所以直
线l的方程为y+1=k(x+3),
即kx-y+3k-1=0,
则圆心到l的距离d=|3k-1|1+k2.
依题意,得|3k-1|1+k2≤1,解得0≤k≤3.
故直线l的倾斜角的取值范围是0,π3.]
5.(2017·重庆一中模拟)已知圆C:(x-1)2+(y-2)2=2,y轴被圆C截得的弦长
与直线y=2x+b被圆C截得的弦长相等,则b=( )
A.-6 B.±6
C.-5 D.±5
D [在(x-1)2+(y-2)2=2中,令x=0,得(y-2)2=1,解得y1=3,y2=1,
则y轴被圆C截得的弦长为2,所以直线y=2x+b被圆C截得的弦长为2,
所以圆心C(1,2)到直线y=2x+b的距离为1,
即|2×1-2+b|5=1,解得b=±5.]
二、填空题
6.经过两条直线3x+4y-5=0和3x-4y-13=0的交点,且斜率为2的直线方
程是__________.
2x-y-7=0 [由 3x+4y-5=0,3x-4y-13=0,得 x=3,y=-1,即两直线的交点坐标为
(3,-1),又所求直线的斜率k=2.
则所求直线的方程为y+1=2(x-3),即2x-y-7=0.]
7.已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,
则a=__________.
【导学号:79170288】
2 [因为点P(2,2)为圆(x-1)2+y2=5上的点,
由圆的切线性质可知,圆心(1,0)与点P(2,2)的连线与过点P(2,2)的切线垂直.
因为圆心(1,0)与点P(2,2)的连线的斜率k=2,故过点P(2,2)的切线斜率为-12,
所以直线ax-y+1=0的斜率为2,因此a=2.]
8.已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两
点,且AC⊥BC,则实数a的值为__________.
0或6 [由x2+y2+2x-4y-4=0得(x+1)2+(y-2)2=9,所以圆C的圆心坐
标为C(-1,2),半径为3,由AC⊥BC可知△ABC是直角边长为3的等腰直
角三角形.故可得圆心C到直线x-y+a=0的距离为322.由点到直线的距离
得|-1-2+a|2=322,
解得a=0或a=6.]
三、解答题
9.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A,B两点,且|AB|=22时,求直线l的方程.
【导学号:79170289】
[解] 将圆C的方程x2+y2-8y+12=0配方得标准方程为x2+(y-4)2=4,
则此圆的圆心为(0,4),半径为2. 2分
(1)若直线l与圆C相切,则有|4+2a|a2+1=2,解得a=-34. 5分
(2)过圆心C作CD⊥AB,则根据题意和圆的性质,
得 |CD|=|4+2a|a2+1,|CD|2+|DA|2=|AC|2=22,|DA|=12|AB|=2, 8分
解得a=-7或a=-1.
故所求直线方程为7x-y+14=0或x-y+2=0. 12分
10.在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上,
求圆C的方程.
[解] 曲线y=x2-6x+1与y轴的交点为(0,1),与x轴的交点为(3+22,0),
(3,-22,0), 2分
设圆的方程是x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
则有 1+E+F=0,3+222+D3+22+F=0,3-222+D3-22+F=0,
解得 D=-6,E=-2,F=1,
故圆的方程是x2+y2-6x-2y+1=0. 6分
所以x2=x0-32,y2=y0+42,
整理得 x0=x+3,y0=y-4.
又点N(x+3,y-4)在圆x2+y2=4上, 10分
所以(x+3)2+(y-4)2=4.
所以点P的轨迹是以(-3,4)为圆心,2为半径的圆(因为O,M,P三点不共
线,所以应除去两点-95,125和-215,285. 12分
B组 能力提升
(建议用时:15分钟)
1.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△
OAB的面积为12”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
A [将直线l的方程化为一般式得kx-y+1=0,
所以圆O:x2+y2=1的圆心到该直线的距离d=1k2+1.
又弦长为21-1k2+1=2|k|k2+1,
所以S△OAB=12·1k2+1·2|k|k2+1=|k|k2+1=12,
解得k=±1.
因此可知“k=1”是“△OAB的面积为12”的充分不必要条件.]
2.过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的
面积之差最大,则该直线的方程为__________.
x+y-2=0 [设过P点的直线为l,当OP⊥l时,过P点的弦最短,所对的
劣弧最短,此时,得到的两部分的面积之差最大.
由点P(1,1)知kOP=1,
所以所求直线的斜率k=-1.
由点斜式得,所求直线方程为y-1=-(x-1),即x+y-2=0.]
3.已知圆C:x2+y2-6x-4y+4=0,直线l1被圆所截得的弦的中点为P(5,3).
(1)求直线l1的方程;
(2)若直线l2:x+y+b=0与圆C相交,求b的取值范围;
(3)是否存在常数b,使得直线l2被圆C所截得的弦的中点落在直线l1上?若
存在,求出b的值;若不存在,说明理由.
[解] (1)圆C的方程化为标准方程为(x-3)2+(y-2)2=9,于是圆心C(3,2),
半径r=3. 1分
若设直线l1的斜率为k,则k=-1kPC=-112=-2.
所以直线l1的方程为y-3=-2(x-5),即2x+y-13=0. 3分
(2)因为圆的半径r=3,所以要使直线l2与圆C相交,则有|3+2+b|2<3,5分
所以|b+5|<32,
于是b的取值范围是-32-5