汽轮机的工作原理和结构-附图

合集下载

汽轮机原理第四章

汽轮机原理第四章

(2)海勒式间接空冷系统
缺点:系统结构 复杂,设备多, 投资大;系统容 易发生冰冻;化 学水耗水大。
海勒式间接空冷机组
第一节
凝汽设备的工作原理、任务和类型
(3)哈蒙式间接空冷系统
优点:节约厂用 电、设备少、冷 却水系统与汽水 系统分开,两者 水质均可保证、 冷却水系统防冻 性能好。
缺点:空冷塔占 地大,基建投资 多;系统中要进 行两次表面式换 热,使全厂热效 率有所降低。
多区域汽向侧流动
凝汽设备的结构模型
600MW凝汽器三维结构图
600MW凝汽器三维结构图
600MW凝汽器三维结构图
凝汽器冷却管束隔板
凝汽器冷却管束隔板
凝汽器冷却管的安装
第一节
凝汽设备的工作原理、任务和类型
(2)表面式凝汽器的类型
汽流向下式 汽流方向 单流程 冷却水流程 双流程
汽流向上式
1000Dwcp (tw2 tw1 )
第二节
凝汽设备的真空与传热
循环水泵容量
循环倍率m:m Dw Dc 冷却水量与被凝结蒸汽量之比。 初投资 m
t 真空
循环水管路阻力
末级叶片长度
m=50~120
循环水泵电耗 双流程(水阻大)
开启台数
单流程(水阻小) m取较 m取较 (4.2.3) 大值 小值 直流(开式)供水 循环(闭式)供水
第二节
凝汽设备的真空与传热 A.由新蒸汽带入汽轮机
三、空气对凝汽器工作的影响
1.凝汽器的空气来源:
B.由设备不严密处漏入 管表面附近聚积形成气膜阻碍了蒸汽的凝结放热 2.危害: 凝结水过冷度增大
过冷现象:凝水温度低于凝汽器入口蒸汽温度的现象。 所低的度数称为过冷度

汽轮机原理 第二章 汽轮机级内能量转换过程

汽轮机原理 第二章 汽轮机级内能量转换过程

2.1 蒸汽在喷嘴中的流动过程

Gn Gnc
2 k 1 2 k k n n k 1

Gn Gnc
An An
2 k 1 2k 0 0 k p0 0 n n k k 1
2 k k 1
k 1 k 1
m 0.05 ~ 0.30
反动级: 反动度 m 0.5 的级称反动级 复速级: 由固定的喷嘴、导叶和安装在同一叶轮上的两列动叶组成的 级称为复速级
第一节 汽轮机级的基本概念 纯冲动级 反动度 m 0 级称纯冲动级
1.3 级的类型和特点
特点:
①只在喷嘴中膨胀,在动叶中不膨 胀,转换过程
第二章 汽轮机级内能量转换过程
•第一节 汽轮机级的基本概念 •第二节 蒸汽在喷嘴和动叶通道中的流动过程
•第三节 级的轮周功率和轮周效率
•第四节 叶栅的气动特性 •第五节 级内损失和级的相对内效率
•第六节 级的热力设计原理
•第七节 扭叶片级
第二章 汽轮机级内能量转换过程
度 c 上升, p 下降,在某一截面上汽流速度 c=a , Ma=1 ,此状态叫临
界状态,此截面叫喉部。临界压力p1c,临界速度c1c。 临界压力p1c与滞止压力p00之比,叫临界压比ε
p1c 2 kk nc 0 ( ) 1 p0 k 1
nc

p0 c0
喉部 p1 p1c c1c Y 临界状态
一、蒸汽在喷嘴中的流动过程 蒸汽在喷嘴(静叶)中的流动过程的特点:
(1)蒸汽在喷嘴中把热能转换成动能,并获得一定的方向;
(2)喷嘴固定在汽缸上,是静止的,不对外做功,w=0。
第二节 蒸汽在喷嘴和动叶通道中的流动过程 (一)喷嘴出口汽流速度 由能量方程:

汽轮机原理——精选推荐

汽轮机原理——精选推荐

一.汽轮机工作原理来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机。

由于汽轮机排汽口的压力大大低于进汽压力,蒸汽在这个压差作用下向排汽口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。

作完功的蒸汽称为乏汽,从排汽口排入凝汽器,在较低的温度下凝结成水,此凝结水由凝结水泵抽出送往蒸汽发生器构成封闭的热力循环。

为了吸收乏汽在凝汽器放出的凝结热,并保持较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。

由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧。

若任空气在凝汽器内积累,必使凝汽器内压力升高,导致乏汽压力升高,减少蒸汽对汽轮机作的有用功,同时积累的空气还会带来乏汽凝结放热的恶化,这两者都会导致热循环效率的下降,因而必须将凝汽器壳侧的空气抽出。

凝汽设备由凝汽器、凝结水泵、循环水泵和抽气器组成,它的作用是建立并保持凝汽器的真空,以使汽轮机保持较低的排汽压力,同时回收凝结水循环使用,以减少冷源损失,提高汽轮机设备运行的经济性。

如6.4节所述,为减少冷源损失,提高循环热效率,汽轮机都配置有回热加热设备。

凝结水泵出口的主凝结水经几级低压加热器加热后送往除氧器。

除氧器是一种混合式加热器,同时承担除去水中溶解的氧的任务,经除氧的水由给水泵升压后,再经几级高压加热器加热送往蒸汽发生器。

为了保证满足用户的电力需求,汽轮机的功率和转速必须进行调节。

因此,每台汽轮机有一套由调节装置组成的调节系统。

另外,汽轮机是高速旋转设备,它的转子和定子间隙很小,是既庞大又精密的设备。

为保证汽轮机安全运行,配有一套自动保护装置,以便在异常情况下发出警报;在危急情况下自动关闭主汽阀,使之停运。

调节系统和保护装置常用压力油来传递信号和操纵有关部件。

汽轮机的各个轴承也需要油润滑和冷却,因而每台汽轮机都配有一套油系统。

总之,汽轮机设备是以汽轮机为核心,包括凝汽设备、回热加热设备、调节和保护装置及供油系统等附属设备在内的一系列动力设备组合。

第一章 汽轮机级的工作原理-第五节 级内损失和级的相对内效率

第一章 汽轮机级的工作原理-第五节  级内损失和级的相对内效率

第五节 级内损失和级的相对内效率一、级内损失除前面讨论的级内轮周损失即喷嘴损失n h δ、动叶损失b h δ和余速损失2c h δ之外,级内还有叶高损失l h δ、扇形损失h θδ、叶轮摩擦损失f h δ、部分进汽损失e h δ、漏汽损失h δδ和湿汽损失x h δ。

必须指出,并非各级都同时存在以上各项损失,如全周进汽的级中就没有部分进汽损失;采用转鼓的反动式汽轮机就不考虑叶轮摩擦损失;在过热蒸汽区域工作的级就没有湿汽损失;采用扭叶片的级就不存在扇形损失。

本节所讨论的各项级内损失,目前尚难以完全用分析法计算,多数是采用在静态和动态试验的基础上建立的经验公式计算。

随试验条件的不同,计算损失的公式也不同。

下面主要介绍国内计算级内损失的常用公式。

1.叶高损失l h δ叶高损失又称为端部损失,其产生的物理原因及影响因素在上节已经分析过。

它实质上是属于喷嘴和动叶的流动损失。

工程上为了方便.把它单独分出来计算。

叶高损失l h δ主要决定于叶高l 。

当叶片高度很高时,l h δ可以忽略不计。

叶高必须大于相对极限高度,否则l h δ将急剧增加。

叶高损失常用下列半经验公式计算:l h δ=u ah l ∆ (1.5.1)式中 a ——试验系数,单列级a =1.2(未包括扇形损失)或a =1.6(包括扇形损失),双列级a =2;u h ∆——不包括叶高损失的轮周有效比焓降,即u h ∆=0th ∆—n h δ—b h δ—2c h δ,/kJ kg ;l ——叶栅高度,单列级为喷嘴高度,双列级为各列叶栅的平均高度,mm 。

叶高损失也可以用以下半经验公式计算: l ξ=21ana x l (1.5.2)即 l h δ= l ξ0E (1.5.3) 式中 1a ——试验系数,单列级1a =9.9,双列级1a =27.6; n l ——喷嘴高度,mm 。

2.扇形损失h θδ汽轮机级中实际应用的是环列叶栅,如图1.5.1(a)所示。

第六章 汽轮机主要零件结构与振动

第六章 汽轮机主要零件结构与振动

图6-48 叶片组的切向A型振动
图6-49叶片组的切向 B0型振动
(2)轴向振动 叶片组的轴向振动往往 与叶轮的轴向振动耦合在 一起,必然伴随这叶片的 扭转振动。 2.叶片组的扭转振动 在叶片扭转振动发生时, 围带与叶片保持便捷连续, 围带必然产生弯曲振动。 所以叶片组的扭转振动分 为组内各叶片的牛转子振 动和叶片组的扭转振动。
图6-15 铸造隔板
1—外缘;2—静叶片;3—隔板体
2、隔板套 隔板套用于固定隔板。现代高参数大功率汽轮机往往将 相邻的几级隔板状在同一隔板套中,隔板套在固定于汽缸 上。隔板套结构的分级基本上是由汽轮机抽汽情况决定的, 相邻隔板套之间有抽汽,这样可充分利用隔板套之间的环 状汽流通道,而无须借加大轴向尺寸的办法取得必要的抽 汽通流面积。 隔板套分为上下两半,而只通过中分面法兰用螺栓和定 位螺栓连接在一起。隔板套在汽缸内的支承和定位采用悬 挂销(搭子)和键的结构。隔板套通过其下半部分两侧的 搭子支承在下汽缸上,其上下中心位置由其底部的定位销 或平键定位。为保证隔板套的自由膨胀,装配时隔板套与 汽缸凹槽之间留有1~2mm的间隙。
图6—18 油膜的工作原理
(a)有相对运动,无施加垂直方向载荷作态; (b)无相对运动,有垂直方向荷载状态; (c)既有相对运动,也有垂直方向载荷状态; (d)两平面间构成楔形,有相对运动和垂直方向的载荷状态
(二)径向支承轴承 1及油楔中的压力分布(周向) (b)油楔中的压力分布(轴向) l—轴承长度;d—轴颈直径
2π n fd = = in 2π / i
2、高频激振力:(由喷嘴的尾迹扰动产生)
2π n fg = = Zn 2π / Z
对于部分进汽的 级,激振力的频率为 Z fg = n e

电厂汽轮机原理-第六章、转动部分

电厂汽轮机原理-第六章、转动部分

汽轮机转子


整锻转子的中心通常打 有ф100mm的中心孔,其目的主 要是便于检查锻件质量,同时也 可以将锻件中心材质差的部分去 掉,防止缺陷扩展,以保证转子 强度。
汽轮机转子
套装转子
叶轮与主轴分别制造,然后热套在轴 上。这种转子加工方便、材料利用合理,叶 轮和主轴的锻件质量容易保证,但是它不宜 在高温条件下工作,快速启动适应性差。因 为材料的高温蠕变和过大的温差会使叶轮与 主轴间的过盈配合消失,发生松动。因此它 使用于中低压汽轮机或高压汽轮机的低压段。
汽轮机转子
转子的结构
汽轮机转子可分为:轮式转子、鼓式转子
轮式转子:装有安装动叶轮的叶轮,多用
转子
于冲动式汽轮机。 鼓式转子:没有叶轮,动叶片直接装在轮 鼓上,多用于反动式汽轮机。
汽轮机转子
轮式转子又分为:
套装转子 整锻转子 组合转子
焊接转子
汽轮机转子
整锻转子
整锻转子由整体锻件加工而成。它 的叶轮、联轴器、推力盘与主轴为一整 体,因而不会出现叶轮等零件高温下可 能松动的现象。此外,它的结构紧凑, 强度和刚度都比同一外形尺寸的套装转 子高。但是,整锻转子的生产需要大型 锻压设备,而且加工要求很高,贵重材 料消耗量很大。使用于高温区工作的转 子。
汽轮机的盘车装置分为:低速盘车(3~5转/分)
高速盘车(40~70转/分)
盘车装置
汽轮机采用高速盘车的优缺点优源自是: 高速盘车的鼓风作用,可使机内各
部分金属温差减少;
高速盘车可使轴瓦形成油膜,减
少 轴瓦干摩擦。 缺点是:盘车装置结构复杂,并且必须装配高压 油顶轴装置,且容易发生故障。因此,大型机组 又有改向采用低速盘车的趋势。
联轴器

汽轮机结构 汽缸

汽轮机结构 汽缸

(5)根据每个汽缸的工作条件不同,汽缸 可以设计成单层缸(大机组还要有隔板套, 主要用于中压缸)、双层缸(反动式汽轮机 还可以有静叶持环,高、中、低压缸都可以 采用)和三层缸(主要是低压缸)。
(6)汽缸的形状大体上可分为圆筒形、圆 锥形和阶梯圆筒形。
(三)汽缸的受力与要求
受力: (1)承受本身和装在其内部零部件的重量。 (2)承受内外压差的作用力。 (3)承受沿汽缸轴向和径向温度分布不均 匀而产生的热应力。 (4)承受隔板前后压差的作用力和蒸汽通 过喷嘴时的反作用力。
缺点:增加了安装、检修工作量。
冲动式汽轮机——高压缸结构
中压缸结构
冲动式——高、中压合缸结构
(五)低压缸
包括:低压通流部分和排汽室。
1、低压缸的工作特点 (1)尺寸:大功率汽轮机低压缸的工作压力低, 但排汽容积流量很大,使低压缸的尺寸很大。 (2)排汽口:为了增大汽轮机的功率,排汽口 数目多。 (3)强度、刚度:低压缸内蒸汽的压力比较低, 但进出口温度差比较大,缸体强度一般没有什么 问题。其结构设计时的重要问题是保证刚度。 (4)流动性:保持良好的流动性,以减小排汽 损失;并将排汽动能转换成为压力能,降低排汽 压力,提高蒸汽作功能力。 (5)热膨胀:低压缸进排汽温差大,体积庞大, 热膨胀也是一个主要问题。
立销——引导汽缸沿垂直方向膨胀,并与 纵销共同保持机组的轴向中心不变。安装 在汽缸与轴承座之间及低压缸尾部与台板 之间(低压轴承座与低压外下缸分离时)。
死点——纵销中心线与横销中心线的交点 为汽缸膨胀的固定点------死点。凝汽式汽 轮机的死点多布置在低压排汽口的中心或 附近。死点可以是一个、两个或三个等。
5、低压缸的喷水装置
设置原因:
汽轮机启动、空负荷及低负荷运行时, 由于蒸汽流量小,不能带走鼓风摩擦所 产生的热量,使排汽缸温度升高、汽缸 变形,引起机组振动或发生事故。

汽轮机本体详细结构课件

汽轮机本体详细结构课件

THANKS
腐蚀等情况。
维修与更换
对磨损、腐蚀严重的部件进行维修 或更换,确保汽轮机性能稳定。
油样分析
定期采集润滑油样本进行化验分析, 了解油质状况,及时更换不合格的 润滑油。
常见故障与排除方法
轴承温度过高
蒸汽通流部分结垢
检查轴承润滑状况,清理轴承箱,调 整轴承间隙;若无法排除故障,需更 换轴承。
停机清洗蒸汽通流部分,清除结垢; 加强水质管理,防止结垢再次发生。
叶片部分
总结词
叶片是汽轮机的重要部件,主要作用是将蒸汽的热能转换为转子的旋转机械能。
详细描述
叶片通常由高强度钢材制成,其结构形式根据工作原理和用途的不同而不同。叶 片的形状和尺寸对汽轮机的性能和效率有重要影响。
喷嘴部分
总结词
喷嘴是汽轮机的重要部件,主要作用是将蒸汽引入适当的工 作室,并在适当的时间将其导向叶片。
汽轮机的分类与用途
按照工作原理分类
冲动式汽轮机和反动式汽轮机。
按照热力特性分类
凝汽式汽轮机、背压式汽轮机、抽气式汽轮机和中间再热式汽轮机等。
按照用途分类
发电用汽轮机、化工用汽轮机、船舶用汽轮机等。
02
汽轮机本体结构
汽缸部分
总结词
汽缸是汽轮机的外壳,主要作用是封闭汽轮机的内部空间,形成一定的工作室, 使蒸汽在其中做功。
汽轮机在长期的应用和发展过程 中,技术已经相当成熟,可靠性 高。
汽轮机在其他领域的应用
工业驱动
汽轮机可用于驱动压缩机、泵等 工业设备,广泛应用于石油、化 工、造纸等领域。
船舶推进
汽轮机曾是大型船舶的主要推进 动力之一,尽管现在已被燃气轮 机部分取代,但仍有一些船舶使 用汽轮机。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机工作原理和结构
一、汽轮机工作原理
汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。

在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能.如图1所示。

高速汽流流经动叶片3时,由于汽流方向改变,产生了对叶片的冲动力,推动叶轮2旋转做功,将蒸汽的动能变成轴旋转的机械能。

图1 冲动式汽轮机工作原理图
1—轴;2—叶轮;3—动叶片;4-喷嘴
二、汽轮机结构
汽轮机主要由转动部分(转子)和固定部分(静体或静子)组成。

转动部分包括叶栅、叶轮或转子、主轴和联轴器及紧固件等旋转部件。

固定部件包括气缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。

套装转子的结构如图2所示。

套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套(过盈配合)在主轴上,并用键传递力矩。

图2 套装转子结构
1-油封环2-油封套3-轴4-动叶槽5—叶轮6-平衡槽
汽轮机主要用途是在热力发电厂中做带动发电机的原动机。

为了保证汽轮机正常工作,需配置必要的附属设备,如管道、阀门、凝汽器等,汽轮机及其附属设备的组合称为汽轮机设备.图3为汽轮机设备组成图。

来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机。

由于汽轮机排汽口的压力大大低于进汽压力,蒸汽在这个压差作用下向排汽口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。

做完功的蒸汽称为乏汽,从排汽口排入凝汽器,在较低的温度下凝结成水,此凝结水由凝结水泵抽出送经蒸汽发生器构成封闭的热力循环.为了吸收乏汽在凝汽器放出的凝结热,并保护较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。

由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧.
若任空气在凝汽器内积累,凝汽器内压力必然会升高,导致乏汽压力升高,减少蒸汽对汽轮机做的有用功,同时积累的空气还会带来乏汽凝结放热的恶化,这两者都会导致热循环效率的下降,因而必须将凝汽器壳侧的空气抽出。

凝汽设备由凝汽器、凝结水泵、循环水泵和抽气器组成,它的作用是建立并保持凝汽器的真空,以使汽轮机保持较低的排汽压力,同时回收凝结水循环使用,以减少热损失,提高汽轮机设备运行的经济性。

图3 汽轮机设备组成图
1—主汽阀2-调节阀3-汽轮机4-凝汽器5—抽汽器6-循环水泵
7—凝结水泵8—低压加热器9—除氧器10-除水泵11-高压加热器
为了调节汽轮机的功率和转速,每台汽轮机有一套由调节装置组成的调节系统。

另外,汽轮机是高速旋转设备,它的转子和定子间隙很小,是既庞大又精密的设备.为保证汽轮机安全运行,配有一套自动保护装置,以便在异常情况下发出警报,在危急情况下自动关闭主汽阀,使之停运.调节系统和保护装置常用压力油来传递信号和操纵有关部件。

汽轮机的各个轴承也需要油润滑和冷却,因而每台汽轮机都配有一套润滑油系统.
总之,汽轮机设备是以汽轮机为核心,包括凝汽设备、回热加热设备、调节和保护装置及供油系统等附属设备在内的一系列动力设备组合。

正是靠它们协调有序地工作,才得以完成能量转换的任务.。

相关文档
最新文档