斜拉桥结构体系
斜拉桥整体介绍及实例分析(90页)

1.2.2 索塔布置
横向布置形式
从横桥向,索塔的布置方式主 要有柱型(单或双)、门型或H型、 A型、倒Y型及菱型等,如图 19.5所示。柱型塔构造简单, 但承受横向水平力的能力低。较 单柱型而言,门型塔抵抗横向水 平荷载的能力较强。A型和倒Y 型主塔具有较大的横向刚度,但 其构造及受力复杂,施工难度较 大。
单索面类型兼具美学与结构的优势,但拉索不起抗扭的作用,主梁 要采用抗扭刚度较大的截面。这种体系不适合太宽的桥
平行双索面类型对主梁截面抗扭有利,主梁可采用较小抗扭刚度的 截面并且具有较好的抗风稳定性,
斜向双索面对桥面梁体抵抗风力扭振十分有利,尤其适合于特大跨 径的桥梁,倾斜的双索面应采用倒Y型、A型或双子型索塔。若跨径 过小,考虑视野问题,不宜采用。
1.2.2 索塔布置
普通索
拉索锚点处荷载P作用下, 主梁 下挠量:
Pb
EAsin2
பைடு நூலகம்
cos
Pb3 3EI
tan
sin2 cos 值最大,拉索的支承刚度最大, α 为55°最大;tanα越小,塔的
支承刚度越大。
1.2.2 索塔布置
端锚索
中跨布载时,水平力F作用下,塔顶水平位移为:
F H
EAsin cos2
α为35°时,Δ最小,端锚索提供的支承刚度最大
综合考虑索和塔的共同影响,对于 每座斜拉桥存在一个最佳高度H, 使得索和塔对主梁的支承刚度达到 最大。
1.2.3拉索布置
1、索面布置
索面布置主要有单索面、平行双索面、空间斜向双索面等类型,如图 19.6所示。
1.2.3拉索布置
密索布置
第三阶段:密索布置,主梁更矮,并广泛采用梁板式开口断面。
现代斜拉桥的发展

3、桥塔的形式和布置
1)桥塔纵向形式 主要有三种类型: 单柱形、倒V形、倒Y形
2)桥塔的横向形式 桥塔的横向形式与索面布置密切相关。当采用单面索中,横向形式主要为 三种类型:单柱形、倒V形、A形
当采用双索面时,桥塔横向形式有5种:独柱形、A形、菱形、门形、梯形。
Knie Bridge(中文:格尼桥),位于德国杜塞尔多夫。该桥为独塔竖琴式 双索面斜拉桥,桥塔为柱形。
4、锚拉体系与支承体系 1)斜索的锚拉体系 有三种:自锚式、地锚式、部分地锚式。
2、桥塔支承体系 (1)、塔墩固结、塔梁分离 (2)、塔梁固结、梁墩分离 (3)、铰支桥塔 (4)、塔、梁、墩固结
三、现代斜拉桥发展趋势
现代斜拉桥的发展趋势是: (1)桥跨向特大跨度(即1000m以上)发展; (2)结构形式更为美观,表现为桥塔独特异形,桥面加劲梁更为轻巧。 因此需要存在改进的问题为: (1)、抗风设计 风的随机性和其动力振动行为极为复杂,尽管依靠风洞试验来验证抗风设 计,但风洞模型与实际还是存在差异。因此,需要多收集跨海峡大桥的风振方 面实际资料加以研究。 (2)、抗震设计 斜拉桥的塔、索、梁的各自振动特性有很大差别,给地震设计带来很大的复 杂性。此外结构的阻尼特性也还研究不够,再加之对于大跨度桥梁,地震的行 波效应也需要考虑。 (3)、斜索的使用寿命 影响斜索的使用寿命是两个方面的问题:腐蚀与疲劳。 (4)结构材料强度的提高 结构材料强度的提高可以减轻结构自重,从而提高桥梁跨越能力。
长沙浏阳河洪山大桥,主桥结构形式为无背索斜塔竖琴式单索面斜拉桥,主 跨206米,等截面薄壁空心钢筋混凝土结构,钢箱梁高4.4米,桥面宽33.2米。
4)多塔多跨式 斜拉桥与悬索桥很少采用多塔多跨式。主要原因是多塔多跨式斜拉桥的中间 桥塔顶没有很好的方法来有效地限制它的变位。
斜拉桥梁简介及发展趋势

大跨度桥梁——斜拉桥专业:岩土与地下工程班级:10-1班姓名:卢雪东学号:20101792斜拉桥斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
斜拉桥由索塔、主梁、斜拉索组成。
索塔主要是承压,斜拉索受拉,梁体主要承受弯矩,外荷载主要由主梁和斜拉索承受,并由斜拉索将受力传递给索塔。
主梁由一根根拉索拉起,等于在梁内设置了许多支撑点,可以将其看作由拉索代替支墩的多跨弹性支承连续梁,这种结构能够非常有效的减小梁体内弯矩,从而降低主梁的高度,减轻结构重量,节省建筑材料,有利于斜拉桥向大跨度方向发展。
主梁常见的截面形式有:板式截面和箱形截面。
主梁截面选取主要由斜拉索的布置形式和抗风稳定性情况所决定。
板式截面的主梁构造简单,施工方便,一般适用于双索面斜拉桥。
箱形截面梁有抗弯、抗扭刚度大、收缩变形较小等特点,能适应许多不同形式的拉索布置,对悬臂施工非常有利,而且可以部分预制、部分现场浇筑,为施工方案提供了多种选择,因此箱形截面主梁逐渐成为现代斜拉桥中经常采用的形式。
另外,主梁按材料可以分为:预应力混凝土梁、刚—混凝土组合梁、钢主梁和混合式梁斜拉桥相对悬索桥有较大的刚度,在抵抗风载、地震、竖向活载的作用方面有优势斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型,也是我国大跨径桥梁最流行的一种桥型。
目前为止我国建成或正在施工的斜拉桥共有30余座,仅次于德国、日本,而居世界第三位。
而大跨径混凝土斜拉桥的数量已居世界第一。
按照交通功能分类根据桥梁建造的使用目的,可以分为公路斜拉桥,铁路斜拉桥,人行斜拉桥,斜拉管道桥,斜拉渡槽等,有时在一座桥上这些功能是兼而有之的,如公铁两用桥,现在越来越多的斜拉桥都同时通行管道(输送水。
液化气。
电缆等);按照梁体材料分类有钢桥、混凝土桥、迭合梁桥。
复合梁桥、组合梁桥;按照塔的数量分类有单塔、双塔、多塔;按照索面不知形式分类索的布置:面外——单面索、双面索、多面索、空间索,单索面应用较少,因为采用单索面是拉索对结构抗扭不起作用,主梁需要采用抗扭刚度大的截面。
第五章 斜拉桥-1-2

第五章 斜拉桥
桥梁工程
Milliau
第五章 斜拉桥
桥梁工程
Skyway Bridge
第五章 斜拉桥 Rion-Antirion
桥梁工程
第五章 斜拉桥
桥梁工程
Ting Kau Bridge
第五章 斜拉桥
辅助墩及外边孔
桥梁工程
2、索塔高度
第五章 斜拉桥
索 塔 高 度 主跨跨径 索面形式(辐射式、竖琴式或扇式) 拉索的索距和拉索的水平倾角
桥梁工程
第五章 斜拉桥
桥梁工程
第五章 斜拉桥
桥梁工程
拉索倾角(边索)
辐射式或扇式:260~300 竖琴式:210~300
第五章 斜拉桥
4、主梁的布置
桥梁工程
第五章 斜拉桥
5、结构体系 漂浮体系 按梁体与塔墩的连接分 半漂浮体系 塔梁固结体系 刚构体系
桥梁工程
第五章 斜拉桥
自锚式斜拉桥 按拉索的锚拉体系分类 地锚式斜拉桥 部分地锚式斜拉桥
第五章 斜拉桥 二、总体布置及结构体系
塔索布置 总 体 布 置 跨径布置 拉索及主梁的关系 塔高与跨径关系
桥梁工程
第五章 斜拉桥 1、跨径布置 双塔三跨
边跨l1/中跨l2=0.2~0.5,
桥梁工程Βιβλιοθήκη 单塔二跨边跨l1/中跨l2=0.5~1.0
第五章 斜拉桥 典型多跨斜拉桥
桥梁工程
Rio-Antirio has cable-stayed spans of 286 m,560 m x 3,286 m the Millau Viaduct has cable-stayed spans of 204 m, 342 m x 6, 204 m
桥梁工程 双塔:H/l2=0.18~0.25 单塔:H/l2=0.0.34~0.45
第八章斜拉桥

span=229 m
第八章 斜拉桥
Pylon and main span during construction
第八章 斜拉桥
中国(2019年),苏通大桥,主跨1088m
第八章 斜拉桥
第八章 斜拉桥
第八章 斜拉桥
第八章 斜拉桥
塔梁固结体系是指塔梁之间固结,但塔与墩之间用 支座传递荷载的结构形式。其优点是索塔的弯矩小、 主梁受力比较均匀,整体升降温引起的结构温度应 力较小。缺点是结构的刚度小,在荷载作用下变形 比较大,塔下的支座承受比较大的反力,需要采用 大吨位的支座,在跨度比较大的斜拉桥中不宜采用。
第八章 斜拉桥
第二节 总体布置及结构体系 1. 总体布置 2.结构体系 3.斜拉桥构造 4. 斜拉索在塔梁上的锚固 5. 斜拉桥的计算
1. 总体布置
总 体 布 置
塔索布置 跨径布置 拉索及主梁的关系 塔高与跨径关系
第八章 斜拉桥
第八章 斜拉桥
1.1 跨径布置 双塔三跨: 边跨l1/中跨l2 = 0.2~0.5; 单塔二跨: 边跨l1/中跨l2 = 0.5~1.0; 多塔多跨:
第八章 斜拉桥 独塔双跨
第八章 斜拉桥 双塔三跨
第八章 斜拉桥 多塔多跨
辅助墩及外边孔
第八章 斜拉桥
1.2 索塔高度
第八章 斜拉桥
索 主跨跨径 塔 高 索面形式(辐射式、竖琴式或扇式) 度 拉索的索距和拉索的水平倾角
双塔:H/l2=0.18~0.25;单塔:H/l2=0.34~ 0.45
1.3 拉索布置
第八章 斜拉桥
第八章 斜拉桥
3.2.4 混合梁
斜拉桥简介

200~800m的跨径范围内占据着优势
由于拉索的自锚特性而不需要悬索桥那样巨大锚碇
在800~1100m的跨径范围内,斜拉桥也扮演重要角
色,1600m跨径都是可行的。
孔跨布局
双塔三跨式
独塔双跨式
三塔四跨式和多塔多跨式
矮塔部分斜拉桥体系
混凝土斜拉桥
1993年建成的郧阳汉江大桥,跨径414m、 1995年建成的安徽铜陵长江大桥,跨径 432m、 1996年建成的重庆长江二桥,跨径444m、 2001年建成的重庆大佛寺长江大桥,跨径 450m 2002年建成湖北荆州和鄂黄长江大桥,跨 径分别为500和480m
斜拉桥发展简介
我国1975年建成的跨 径76m的四川云阳桥 是国内第一座斜拉桥, 90年代以后,因跨越 大江大河的需要,斜 拉桥得到了快速的发 展。 据不完全统计(几年前,现在的数据?),我国 建成的斜拉桥已超过100座,其中跨度超过 400m的斜拉桥已达20多座,居世界首位。
斜拉桥的特点
组合体系,比梁式桥有更大的跨越能力
The end!
1991年建成的上海南浦大桥, 主跨径423m
上海杨浦大桥 (602m),1993年
香港汀九大桥 香港汀九大桥 (448+475m),1998年
福建青州闽江大桥:主桥有5跨,最大跨径为605m,总投资约6.5亿 元。1998年8月正式开工, 2002年12月通车。
钢主梁斜拉桥
主跨500米以上宜用钢主梁斜拉桥。 钢材的大量生产,钢桥增多。 钢箱梁为主
武汉白沙洲长江大桥(618m),2000年
南京长江二桥 (628m) 2001年
芜湖长江大桥(312m) 公铁两用桥
台湾高屏溪大桥 2000年初建成, 跨径组合为180+330米,
斜拉桥组成部分的类型作用及连接[详细]
![斜拉桥组成部分的类型作用及连接[详细]](https://img.taocdn.com/s3/m/2ebe269e7375a417876f8f39.png)
连接筒
前盖 斜拉索
彩色PE 黑色PE
张拉端锚杯 预留管道
聚乙烯护套
平行钢丝拉索
缠绕细钢丝或 纤维增强聚脂带
高强钢丝
资讯
斜向双索面
单索面
竖向双索面
➢子任务3.1:试比较三者区别,试着说出各自形式上 的特点。(视觉、抗扭、跨径)
解析
单索面
优点: ➢视觉效果最佳, 墩尺寸最小; 缺点: ➢拉索不抗扭 适用: ➢城市桥、窄桥。
重点和 难点
思维导图
思考
见过下图中的吊桥吗?
• 斜拉桥源于 吊索桥。斜 拉桥的演变 历史表明, 很早以前, 人们就掌握 了从塔架上 悬吊斜拉索 来支承梁的 知识。
我国古代的吊桥
任务一引入:认识斜拉桥
1.斜拉桥与西潼改线沋河大桥有何区 别?(形式上) 2.斜拉桥的传力途径是什么? 3.简述梁、索、塔主要受什么力?( 压、拉、弯)?
1.辐射形
特点:
特点:
➢索倾角最大,垂直分力增大, 索用量最省(索力由垂直力定); ➢索集中在塔顶布置,当跨径 大时,索较多,塔顶截面增大, 不美观; ➢索倾角不同,锚具、垫板的 制作和安装复杂。
➢索倾角相同—锚具、
垫板不复杂;
2.竖琴形
➢塔中压力逐段向下
加大,稳定性提高,
索塔连接易处理;
➢水平分力大,两侧
➢梁与塔墩连接方式
半漂浮 体系
构造特点:塔墩固结,塔墩上设置竖向支承(一般 全设活动支座) 优点:在减小纵向漂移和经济方面有一定好处(优 点不明显) 缺点:塔柱处主梁弯矩很大;温度、收缩、徐变次 内力仍较大; 措施:采用可调高度的支座或弹簧支承,并在成桥 时调整支座反力,以消除大部分收缩、徐变等的不 利影响。 使用:早期常用
斜拉桥

哈尔滨工业大学毕业设计(论文)第1章绪论1.1概述斜拉桥是一种桥面体系受压、支承体系受拉的结构,其桥面体系由加劲梁构成,其支承体系由钢索组成。
上世纪70年代后,混凝土斜拉桥的发展可分成三个阶段:第一阶段:稀索,主梁基本上为弹性支承连续梁;第二阶段:中密索,主梁既是弹性支承连续梁,又承受较大的轴向力;第三阶段:密索,主梁主要承受强大的轴向力,又是一个受弯构件。
近年来,结构分析的进步、高强材料的施工方法以及防腐技术的发展对大跨斜拉桥的发展起到了关键性的作用。
斜拉桥除了跨径不断增加外,主梁梁高不断减小,索距减少到10m以下,截面从梁式桥截面发展到板式梁截面。
混凝土斜拉桥已是跨径200m~500m范围内最具竞争力的桥梁结构。
1.1.1 结构体系斜拉桥的基本承载构件由梁(桥面)、塔和索三部分组成,且三者以不同的方式影响总体结构的性能。
实际设计时三者是密不可分的。
塔、梁及索的不同变化和相互组合,可以构成具有各自结构性能且力学特点和美学效果的突出的斜拉桥。
正因为如此,斜拉桥基本体系可按力学性能分为漂浮体系、支承体系、塔梁固结体系和刚构体系:漂浮体系为塔墩固结、塔梁分离,主梁除两端有支承外,其余全部用拉索悬吊,是具有多点弹性支承的连续梁。
支承体系即墩梁固结、塔梁分离,在塔墩上设置竖向支承,为具有多点弹性支撑的三跨连续梁。
塔梁固结体系即塔梁固结并支承在墩上,梁的内力和挠度同主梁与塔柱的弯曲刚度比值有关。
其支座至少有一个为纵向固定。
刚构体系为梁塔墩互为固结,形成跨度内具有多点弹性支承的刚构。
这种体系的优点是既免除了大型支座又满足悬臂施工的稳定要求,结构整体刚度较好,主梁挠度小;缺点是主梁固结处负弯矩较大,较适合于单塔斜拉桥。
在塔墩很高的双塔斜拉桥中,若采用薄壁柔性墩来适应温度和活载等对结构产生的水平变形,形成连续刚构,能保持刚构体系的优点,并使行车平顺。
采用这种体系的有美国的Dames Point桥和我国的广东崖门大桥等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斜拉桥结构体系
一、结构体系的分类
1、按照塔、梁、墩相互结合方式,可划分为漂浮体系、半漂浮体系、塔梁固结体系和刚构体系。
2、按照主梁的连续方式,有连续体系和T构体系等。
3、按照斜拉桥的锚固方式,有自锚体系、部分地锚体系和地锚体系。
4、按照塔的高度不同,有常规斜拉桥和矮塔斜拉桥体系。
二、结构体系介绍
1、漂浮体系:漂浮体系的特点是塔墩固结、塔梁分离。
主梁除两端有支承外,其余全部用拉索悬吊,属于一种在纵向可稍作浮动的多跨柔性支承类型梁。
一般在塔柱和主梁之间设置一种用来限制侧向变位的板式活聚四氟乙烯盘式橡胶支座,简称侧向限位支座。
漂浮体系的优点:主跨满载时,塔柱处的主梁截面无负弯矩峰值;由于主梁可以随塔柱的缩短而下降,所以温度、收缩和徐变内力均较小。
密索体系中主梁各截面的变形和内力的变化较平缓,受力较均匀;地震时允许全梁纵向摆荡,成为长周期运动,从而吸震消能。
目前,大跨斜拉桥多采用此种体系。
漂浮体系的缺点:当采用悬臂施工时,塔柱处主梁需临时固结,以抵抗施工过程中的不平衡弯矩纵向剪力。
由于施工不可能做到完全对称,成桥后解除临时固结时,主梁会发生纵向摆动。
2、半漂浮体系:半漂浮体系的特点是塔墩固结,主梁在塔墩上设置竖向支承,成为具有多点弹性支承的三跨连续梁。
可以是一个固定支座,三个活动支座;也可以是四个活动支座,一般均设活动支座,以避免由于不对称约束而导致不均衡温度变化。
水平位移将由斜拉索制约。
3、塔梁固结体系:塔梁固结体系的特点是将塔梁固结并支承在墩上,斜拉索变为弹性支承。
主梁的内力与挠度直接同主梁与索塔的弯曲刚度比值有关。
这种体系的主梁一般只在一个塔柱处设置固定支座,而其余均为纵向乐意活动的支座。
塔梁固结体系的优点是显著减少主梁中央段承受的轴向拉力,索塔和主梁的温度内力极小。
缺点是中孔满载时,主梁在墩顶处转角位移导致塔柱倾斜,使塔顶产生较大的水平位移,从而显著地增大主梁跨中挠度和边跨负弯矩。
4、刚构体系:刚构体系的特点是塔梁墩相互固结,形成跨度内具有多点弹性支承的刚构。
种体系的优点是既免除了大型支座又能满足悬臂施工的稳定要求;结构的整体刚度比较好,主梁挠度又小。
缺点是主梁固结处负弯矩大,使固结处附近截面需要加大;。
再则,为消除温度应力,应用于双塔斜拉桥中时要求墩身具有一定的柔性,常用语高墩的场合,以避免出现过大的附加内力。
三、斜拉桥桥例
[Theodor-Huess桥]:德国、1957年,跨径108+260+108(m),塔高41m。
斜索:竖琴式;塔柱:双柱式;结构体系:塔梁固结体系。
[加弗莱厄桥]:Fiehe桥跨越莱茵河,远处眺望倒Y型塔柱与中央的单索面,造型简洁舒展,令人愉悦。
斜索:竖琴式、扇式;塔柱:倒Y式;结构体系:悬浮体系。
[武汉长江二桥]:双塔双索面,主跨400m,是一座造型优美的桥梁。
斜索:扇式;塔柱:宝石式;结构体系:悬浮体系。
[广东南海西樵桥]:大桥位于广东省南海县境内,跨越北江,是连接著名西樵风景区与广州、佛山等城市的一座预应力混凝土斜拉桥。
主孔跨径110+124.58(m),竖琴式索型。
塔高67m,在塔顶设置有370平米的观赏厅,是我国首座交通功能与旅游观赏融为一体的桥梁。
斜索:竖琴式;塔柱:门式;结构体系:刚构体系。
[上海南浦大桥]:南浦大桥位于上海市南码头,是振兴上海开发浦东的起步工程。
1991年建成通车,了却了几代上海人民在黄浦江上架桥的夙愿。
该桥主桥跨径为171+423+171(m),双塔双索面,扇形拉索,H型塔身,钢与混凝土结合梁,悬浮体系。
[上海杨浦大桥]:杨浦大桥,跨径602m,为当时世界最大跨径。
双塔双索面,主塔高208m,采用钻石型塔形,以提高抗风能力。
拉索扇形布置,钢主梁采用箱形断面。
它的建成,标志着中国的斜拉桥建设进入世界领先水平。
悬浮体系。