混合动力汽车控制系统

合集下载

混合动力汽车再生制动系统的控制

混合动力汽车再生制动系统的控制

2 C lg f cai l ni en ,G agi n e i ,N ni 30 4 h a . oeeo hn a E g er g unx U vrt ann 500 ,C i ) l Me c n i i sy g n
Ab ta t sr c :Asa s b y tm fte h b i lcrcv hce,t e rg n rt eb a n y tm so i lsg i — u s se o y rde e ti e il h e e e ai rkig s se i fvt inf h v a i c e o e h n e te v h ce p roma c n a e t n a c h e il efr n e.Ths p p r p o o e a allb a e sr tg c o dn o te i a e rp s s a p r l rk tae y a c r i g t e h
维普资讯
第2 2卷 第 5期
V0 . 2 No. 12 5
重 庆 工 学 院 学 报( 自然科 学)
Junlo C og i stt o eh o g( a r c ne ora f hnqn I tu T cnl y N t a Si c) gn i e f o ul e
开发过 程 中 的重 要 环 节 之 一 . 系统 的 性 能 主要 该 依 赖 于该 系统 的控 制 策 略 . 动 能量 回 收控 制 策 制
略 需根 据车 辆 的动 力 学 结 构 进 行 设 计 . 设 计 的 该
目标是 在保 证 汽 车 制 动 时 的方 向稳 定 性 、 足驾 满 驶 员制 动要 求 的基 础上 最 大程 度 地 回收车 辆 的制
W U o g fn T n —e g ,XI n z E Big

混合动力新能源汽车的优化控制策略

混合动力新能源汽车的优化控制策略

混合动力新能源汽车的优化控制策略大家好,今天我们要谈论的是混合动力新能源汽车的优化控制策略。

随着环保意识的增强和汽车行业的快速发展,混合动力新能源汽车越来越受到人们的关注。

那么,在这些环保节能的汽车中,优化的控制策略又扮演着怎样的角色呢?接下来,让我们一起来深入探讨。

混合动力汽车的特点混合动力汽车是指搭载了内燃机和电动机的汽车,通过两种动力源的协同工作来驱动车辆。

相比传统燃油汽车,混合动力汽车具有节能环保、动力性好、减少尾气排放等诸多优点。

然而,要发挥混合动力汽车的优势,关键在于合理优化控制策略。

优化控制策略的重要性优化控制策略可以使混合动力汽车在不同工况下实现最佳性能,包括提高燃油经济性、减少排放、优化动力输出等方面。

合理的控制策略能够最大限度地发挥混合动力系统的优势,提升整车的性能表现,也能延长动力系统的使用寿命。

控制策略优化手段1.能量管理系统优化能量管理系统是混合动力汽车控制的核心,通过对内燃机和电动机之间能量分配的优化控制,实现对动力输出的有效管理。

优秀的能量管理系统需要结合车辆状态、驾驶要求和路况等因素,动态调整能量分配策略,以实现最佳性能。

2.车辆动力分配优化在混合动力汽车中,内燃机和电动机的配合是非常重要的。

通过优化车辆动力分配策略,可以在不同驾驶工况下实现动力输出的最佳匹配,提高整车的燃油经济性和性能表现。

3.制动能量回收优化混合动力汽车在制动过程中可以通过电动机将制动能量回收并储存到电池中,这有助于提高能量利用率和车辆的续航里程。

优化制动能量回收策略,可以进一步提升混合动力汽车的节能性能。

混合动力新能源汽车的优化控制策略至关重要。

通过合理优化能量管理系统、车辆动力分配和制动能量回收策略,可以提高汽车的性能、节能环保性能,在未来的发展中获得更广阔的应用空间。

希望本文的内容能够帮助大家更好地了解混合动力新能源汽车的优化控制策略,促进新能源汽车技术的进步与发展。

优化控制策略是混合动力新能源汽车提升性能、节能环保的关键,必须不断完善和创新。

混合动力汽车AMT系统故障诊断研究

混合动力汽车AMT系统故障诊断研究

混合动力汽车AMT系统故障诊断研究混合动力汽车AMT系统故障诊断研究随着新能源汽车逐渐走进人们的生活,混合动力汽车作为其一种重要的形式,已经成为了市场上的主流产品之一。

其中,自动变速器(AMT)系统是混合动力汽车必不可少的一个组件,它负责协调发动机和电机的工作模式,实现对车速和能量输送的精确控制。

然而,由于AMT系统的复杂性和特殊性,一旦出现故障,往往需要专业技术的支持来进行诊断和修复。

因此,本文将探讨混合动力汽车AMT系统故障诊断的方法和技术。

一、故障诊断方法混合动力汽车AMT系统的故障诊断方法主要包括以下几个方面:1.故障代码分析:当AMT系统出现故障时,电脑会记录相应的故障代码,可以通过读取故障码,找到故障所在位置。

然后根据故障码的含义,判断故障的类型和严重程度,从而采取相应的修复措施。

2.测试仪器和工具检测:通过使用专业的诊断测试仪器和工具,对AMT系统进行全面的检测和分析。

例如,使用故障分析仪等工具,可以快速诊断出各种机械部件的损坏情况,以及电气部件的供电正常与否等等。

3.实时监控:现代的混合动力汽车AMT系统都可以通过车载电脑实时监控各种传感器的信号,从而发现并处理潜在的问题。

当AMT系统出现故障时,车载电脑会立即发出警报,并提示车主进行修理。

二、故障诊断技术混合动力汽车AMT系统的故障诊断技术主要包括以下方面:1.故障信息共享:混合动力汽车厂家和第三方维修店等可以通过网络系统将各种类型的故障信息进行集中管理和共享。

由此,技术人员可以及时获得大量的故障信息和处理经验,提高诊断和修复效率。

2.故障数据库的建设和应用:混合动力汽车AMT系统的故障数据库是一种非常有价值的工具,可以帮助技术人员准确地诊断故障问题。

在AMT系统的故障数据库中,包括各种故障代码的解释、故障发生的原因、处理方法和建议等信息,能够为技术人员提供参考。

3.模型验证和仿真:模型验证和仿真是一种基于数学模型和软件工程技术的故障诊断方法。

混合动力汽车能量管理控制策略

混合动力汽车能量管理控制策略

混合动力汽车能量管理控制策略摘要混合动力汽车是一种通过利用内燃机和电动机的相互配合来提高燃油经济性和减少排放的先进技术。

能量管理控制策略是混合动力汽车中关键的技术之一,其主要作用是合理分配和利用汽车系统中的能量,以实现最佳的能效和驾驶性能。

本文将详细探讨混合动力汽车能量管理控制策略的原理、方法和挑战,并介绍当前研究的热点和未来发展方向。

一、能量管理控制策略的基本原理能量管理控制策略是指在混合动力汽车中对内燃机和电动机之间的能量流进行控制和优化调度的方法。

其基本原理是通过实时监测车辆的动力需求和能量状态,合理地选择使用内燃机、电动机或两者的组合模式,以最大程度地提高能源利用率和驾驶性能。

能量管理控制策略的核心是能量管理算法。

常用的能量管理算法包括规则型算法、优化算法和神经网络算法。

规则型算法是一种基于规则和经验的控制策略,通常根据驾驶条件和车辆状态来选择内燃机和电动机的工作模式。

优化算法是一种通过数学模型和计算方法来寻找最优解的策略,常用的优化算法有动态规划、遗传算法和模型预测控制算法。

神经网络算法则是通过模拟人脑的神经网络结构来实现能量管理的策略。

二、常用的能量管理控制策略1. 静态规则型策略静态规则型策略是一种基于预设规则的能量管理控制策略。

它根据车辆驾驶模式和能量状态进行判断,确定内燃机和电动机的工作模式。

常见的静态规则包括纯电动模式、混合模式和纯内燃机模式。

纯电动模式下,车辆只使用电动机提供动力;混合模式下,车辆通过内燃机和电动机的组合来提供动力;纯内燃机模式下,车辆只使用内燃机提供动力。

静态规则型策略的优点是简单易懂、易实现,并且适用于驾驶条件相对固定的情况。

缺点是不能适应复杂的驾驶环境和动力需求变化,无法实现最优的能效和驾驶性能。

2. 动态规则型策略动态规则型策略是一种根据实时驾驶需求和能量状态进行判断的能量管理控制策略。

它通过车辆动力需求的实时变化来调整内燃机和电动机的工作模式。

常见的动态规则包括启停控制策略、能量回收策略和能量分配策略。

混合动力电动汽车再生制动控制策略

混合动力电动汽车再生制动控制策略

优化方向与目标
1 2 3
提高制动效能稳定性
通过优化控制策略,使混合动力电动汽车在各种 行驶条件下都能提供稳定、可靠的制动效能。
最大化能量回收
优化控制策略以实现在制动过程中尽可能多地回 收和储存能量,从而提高混合动力电动汽车的能 效。
增强自适应能力
改进控制策略,使其能够根据驾驶环境和驾驶风 格的变化自适应调整,以实现最佳的制动性能和 能量回收效果。
控制策略具体实现步骤
1. 采集车辆状态信息
实时获取车速、轮速、电池荷电状态等车辆状态信息。
2. 分析驾驶员意图
通过制动踏板行程、踏板力等信息,判断驾驶员的制动意图。
3. 评估路况信息
利用车载传感器或外部数据源,获取当前道路坡度、路面附着系数 等路况信息。
控制策略具体实现步骤
4. 计算制动力分 配比例
针对再生制动系统的控制策略进行优化,能够显著提升混合动力电动汽
车在制动过程中的稳定性和效率,提高驾驶的舒适性和安全性。
03
多种因素影响制动效果
研究还发现,再生制动系统的性能受到多种因素的影响,包括电池状态
、驾驶员的制动习惯、道路条件等,这需要在实际应用中加以考虑。
对未来研究的展望
更精细化的控制策略
控制策略的目的和意义
提高再生制动效率
控制策略的优化能够实现制动能 量的高效回收和再利用,从而提 高再生制动的效率,为汽车的节
能和环保性能做出贡献。
保障行驶安全
控制策略需要确保再生制动与传统 制动的协调配合,确保汽车在制动 过程中的稳定性和安全性。
推动技术发展
对控制策略的研究和改进能够推动 HEV相关技术的进步和发展,为新 能源汽车产业的可持续发展注入新 的活力。

丰田THS混合动力系统组成及其维修培训

丰田THS混合动力系统组成及其维修培训
5
任务分析
要熟悉普锐斯混合动力汽车的技术特点,掌握丰田混合动力 系统的组成、工作原理和混合动力控制系统,需以下几个步骤:
1
归纳总结普锐斯混合动力系统的技术特点
2
分析丰田混合动力系统的组成和工作原理
3
分析丰田混合动力控制系统
6
一、普锐斯混合动力汽车技术特点
THS-Ⅱ组成简图 1-减速器 2-行星齿轮机构 3-发动机 4-MG1(发电机) 5-HV(混合动力汽车)蓄电池 6-变频器 7-MG2(电动机)
15
丰田混合动力系统主要部件的位置(2)
16
1. HV(混合动力汽车)变速驱动桥
MG1和MG2 1-MG1 2-MG2
17
发电机(MGl)和电动机(MG2)电路图
18
发电机(MGl)和电动机(MG2)的工作原理
19
2. HV蓄电池
HV蓄电池
20
3. 变频器总成
变频器总成
21
(1)作用及组成 变频器总成用于将高压直流电(HV 蓄电池)转换为 交流电(发电机MG1和电动机MG2);反之亦可,将交 流电(AC) 转换为直流电(DC)。其组成部件包括增 压转换器、DC/DC转换器和空调变频器。
发动机驱动车轮
34
(3)发电机(MGl)由发动机通过行星齿轮机构带动旋 转,为HV蓄电池充电
发动机发电
35
(4)车辆减速时,车轮的动能被回收并转化为电能, 并通过电动机/发电机为HV蓄电池再次充电
车轮的动能回收
36
2. 工作原理
车辆行驶状况
37
行星齿轮组与发动机、MG1和MG2连接关系 1-驱动链 2-发动机 3-MG1 4-太阳轮 5-环齿圈 6-MG2 7-行星架

简述混合动力汽车的工作原理

简述混合动力汽车的工作原理一、前言混合动力汽车是指采用内燃机和电动机相结合的动力系统,以达到更高的燃油效率和更低的尾气排放。

本文将详细介绍混合动力汽车的工作原理。

二、混合动力汽车的分类根据电池充电方式不同,混合动力汽车可以分为串联式混合动力汽车和并联式混合动力汽车两种类型。

1. 串联式混合动力汽车串联式混合动力汽车是指内燃机驱动发电机,发电机再通过电池驱动电机,从而实现驱动轮的运转。

在行驶过程中,内燃机可以直接驱动发电机或者通过离合器与传统变速器相连。

当电池能量不足时,发电机会自动启动,并通过内燃机产生的能量来充电。

2. 并联式混合动力汽车并联式混合动力汽车是指内燃机和电池都可以直接驱动轮子。

在行驶过程中,内燃机和电池可以同时或单独地提供能量给驱动系统。

当需要更大的功率时,内燃机会启动,并与电池共同驱动轮子。

三、混合动力汽车的工作原理混合动力汽车的工作原理可以分为四个步骤:能量转换、能量储存、能量管理和能量输出。

1. 能量转换内燃机通过燃烧汽油或柴油产生动力,同时驱动发电机发电。

发电机将产生的电能储存在电池中,以备后续使用。

电池中的电能可以直接驱动电机,从而实现车辆行驶。

在制动时,电机会变成发电机,将制动产生的能量转化为电能储存在电池中。

2. 能量储存混合动力汽车采用高压镍氢或锂离子电池来存储能量。

这些电池具有高效率、高功率密度和长寿命等优点。

在行驶过程中,内燃机和制动系统都可以向电池充放电。

3. 能量管理混合动力汽车采用先进的控制系统来管理内燃机、发电机、变速器和电池等组件之间的协调工作。

控制系统会根据驾驶员的需求以及路况等因素来调节各个组件之间的配合关系,以达到最优的燃油效率和动力输出。

4. 能量输出混合动力汽车的能量输出由电池和内燃机共同实现。

在低速行驶时,电池会提供驱动力;在高速行驶时,内燃机会启动,并与电池共同提供驱动力。

当需要加速或超车时,内燃机会提供更多的能量来增加车辆的动力输出。

混合动力客车多功能整车控制系统开发


l发动机控 l l 制系统 l
电池管理 l 系统 l
l电机驱动 I l控制系统 I
增多 。若每个被控对 象都附加一控制器节点 , 则 动力 系 统 的可靠性将大 大降低 , 控制协调难度和复杂性增 加系统可 靠性 , 降低控制 难度 , 应尽 可能减 少
以 Mo t o t r o n为基 础 平 台 . 开 发 出集 成 整 车 控 制 、 离合 器 控 制 以及 变速 器控 制 于 一体 的 多功 能 控 制 系统 。 经
实车 路 试 对 该控 制 系统进 行验 证
关键词 : 混合 动 力 客 车 ; 多功 能 : 整 车控 制 系统
中图分类号 : U4 6 9 . 7 ;U 4 6 1 . 2
1 动 力 系 统控 制 简 介
随着混合动力 电动汽车 , 特别是混合动 力客车 日趋 成熟 , 对动力 系统 的性 能要求愈来愈高 , 结构也愈 复杂 ; 零部件数量愈多 , 需要整 车控制系统协调控制 的对象 也
。 。
… … … … … 。 … … 一 … … … …
a n d t r a n s mi s s i o n c o n t r o l i s d e v e l o p e d ba s e d o n Mo t o t r o n. T h e c o n t r o l s y s t e m i s v e r i i f e d b y t h e v e h i c l e r o a d t e s t . Ke y wo r d s : hg b r i d e l e c t r i c b u s ; mu h i — f u n c t i o n; v e h i c l e c o n t r o l s y s t e m

混合动力汽车驱动系统方案设计及控制策略研究

2驱动系统总体设计方案混合动力汽车驱动系统的部件特性、参数以及控制策略对于车的性能具有十分重要的作用。

但是充电设备的限制以及蓄电池组容量还是不能够忽视的,如果使用容量小的蓄电池,在行驶时电池荷电状态在一定范围内变动,而不用借助外部电网。

所以本方案属于电量维持型混动汽车[2]。

混合动力汽车驱动系统主要包括发电机、电池组、电动第二种布置形式,如图3,动力输出的扭矩主要在变速器的输出轴前端进行耦合,变速器的作用是传递发动机的输出功率,其额定功率比第一种形式小。

这两种布置形式,扭矩耦合装置主要是通过齿轮传动来实现。

齿轮传动效率高,结构紧凑,带传动布置灵活,具有防过载的特点,在实际中采用较多。

第三种布置形式,如图4,发动机和电机通过各自的传动系驱动车轮。

但是存在控制复杂的缺点,本文并联式———————————————————————基金项目:广东省普通高校青年创新人才类项目(2019GKQNCX93)。

图2变速器输入轴耦合形式油箱电池发动机离合器扭矩耦合装置电动机变速器差速器图1混合动力汽车动力总成结构图HV 蓄电池动力控制单元电动机发电机动力分离装置发动机减速机图3变速器输出轴耦合形式油箱电池发动机离合器扭矩耦合装置电动机变速器差速器混合动力汽车驱动系统采用第二种布置形式,扭矩通过带传动装置在变速器输出轴处进行扭矩耦合。

3混合动力汽车驱动系统部件参数确定对于混合动力汽车驱动系统的主要部件参数,要在动力性能满足的前提下,根据动力系统的控制策略,整车参数来确定[3]。

本文所选车型基础参数如表1所示。

式中,P c 为发动机单独驱动产生的功率;率,取为0.9;m 为整车质量;g 为重力加速度;力系数;v c 为巡航速度;C D 为空气阻力系数;3.2电动机参数确定如图5所示。

驱动电机典型的输出特性主要包括两个工作区:①速以下恒转矩区,主要作用是对混合动力汽车的载重能力速空间。

驱动电机功率可由下式计算[3]:式中,P d 为电动机功率;η2为电机传动效率;低速行驶时的速度。

第二代混合动力系统(THS-Ⅱ)

1-发动机(汽油机) 2-发电机 3-电动机 4-高压电池 5-驱动电池用逆变器 6-空调用逆变器 7- 升压电 路 8-12V充电用DC/DC 9-辅助电源 10-汽油箱 11-差速器 12-空气压缩机电机 13 发动机用冷却器 14-逆变器用冷却器 15-冷凝器(制冷剂用) 16-散热器 17-蒸发器 18 空调单元
(4)发动机和电动机并联加速起步 当汽车需要大转矩或急加速起步前进时,发动机和电动机同时参与工作。此时燃 料、电力、动力和热量的传递路线分别为:
• 燃料传递路线:10-汽油箱→1-发动机 • 电力传递路线:4-高压电池→8-12V充电用DC/DC →5-驱动电池用逆变器→7升压
电路→3-电动机 • 动力传递路线: 3-电动机→11-差速器(车轮)+1-发动机→11-差速器(车轮) • 热传递路线:1-发动机→16-散热器;5-驱动电池用逆变器→14-逆变器用冷却器
(10)汽车滑行 汽车滑行时,虽然不需要车辆驱动动力,但空调系统仍需要驱动力,此时 电力和热量的传递路线为:
• 电力传递路线:4-高压电池→8-12V充电用DC/DC→6-空调用逆变器→12空气压缩机电机
• 热传递路线:12-空气压缩机电机→17-蒸发器;5-驱动电池用逆变器→14逆变器用冷却器;12-空气压缩机电机→15-冷凝器(制冷剂用)
(11)汽车停车 当汽车在十字路口停车并且空调处于关闭状态时,THS系统停止工作。
• 电力传递路线:2-发电机→5-逆变器→4-高压电池 • 动力传递路线: 1-发动机→2-发电机+1-发动机→11-差速器(车轮)
(8)电动机行驶(用于倒车和缓行等工况) 在汽车倒车或缓行等工况时,采用电动机行驶模式。此时发动机不参与工作。
• 动力传递路线: 3-电动机→11-差速器(车轮) • 电力传递路线:4-高压电池→5-驱动电池用逆变器→7升压电路→3-电动机。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档