铁酸铋 磁性

合集下载

锰掺杂对铁酸铋结构和磁性的影响

锰掺杂对铁酸铋结构和磁性的影响
华 南 理 工 大 学 学 报 (自 然 科 学 版 )
第4 1卷 第 8期 2 0 1 3年 8月
J o u r n a l o f S o u t h Ch i n a Un i v e r s i t y o f Te c h no l og y
Vo 1 . 41 No . 8
要 原 因.
关键词 : 多重铁材料 ; R i e t v e l d 精修 ; 磁性 中图分类号: 0 7 6 d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 0 — 5 6 5 X . 2 0 1 3 . 0 8 . 0 2 3
多重 铁材 料是 指 同时具 有 ( 反) 铁 电性 、 ( 反) 铁
对其结构 和磁 性的影 响.X R D和拉 曼光谱 分析 表 明 Mn掺 杂使 B i F e O 的晶体 结构 和振 动
模 式发 生 了变化. R i e t v e l d精修 结果显 示 , 在掺杂量 X= 0 . 1附近 , B i F e O 的 晶体 结构从 菱方 R 3 c 相 转 变为正交 凡 m相 .对样 品的磁性测 量表 明,随 着 Mn 掺 杂量 的增 加 ,样品 的剩余
长链 上 引入 具 有 不 同磁 矩单 元 的 Mn离 子 , 导 致 螺
铁 材料 J . 室温下 B F O 的 晶体 结 构 为 A B O 型 扭 曲 的菱方 钙钛 矿结 构 , 空 间群为 R 3 c . 其铁 电性来 源 于
B i ¨的6 s 孤 对 电子 与 O 一 的2 电子 杂化 引起 的结 构 畸 变 . B F O的磁性 来源 于 F e “ 间 的 超 交 换 作 用, 其 磁结 构并 非简单 的反铁 磁构 型 , F e ¨ 的磁矩 沿

铁酸铋忆阻器

铁酸铋忆阻器

铁酸铋忆阻器是一种特殊的电子器件,它具有忆阻器的非线性电阻特性,同时利用了铁酸铋这种铁电材料的特殊性质。

铁酸铋是一种具有钙钛矿结构的铁电材料,它具有较高的介电常数和铁电序参数,可以在电场的作用下进行极化,并呈现出多种铁电和铁磁特性。

在铁酸铋忆阻器中,可以利用这些特性来实现对信息的存储和读取。

铁酸铋忆阻器通常由上下两个电极和中间的铁酸铋材料组成。

在忆阻器中,信息的存储是通过在铁酸铋材料中引入和删除导电通道来实现的,这些导电通道被称为“隧穿结”或“肖特基结”。

当导电通道存在时,忆阻器呈现出低电阻状态,而当导电通道被删除时,忆阻器呈现出高电阻状态。

这样,就可以通过控制导电通道的引入和删除来实现信息的存储。

同时,铁酸铋忆阻器还具有忆阻器的非线性电阻特性,即忆阻器的电阻值可以在不同的状态下进行调节,并且每个状态都可以被保持下来。

这样,就可以利用忆阻器的非线性电阻特性来实现对信号的处理和传输。

铁酸铋忆阻器的制备方法包括在柔性云母衬底上生长双缓冲层并设计金属(SrRuO3)、半导体(ZnO)不对称电极结构,然后将制备好的薄膜进行旋涂处理,最后制备好上电极即可。

这种方法可以获得高质量的全无机柔性铁电隧道
结,具有良好的忆阻特性,可以模拟生物突触中的脉冲时序依赖可塑性、长时程增强/抑制可塑性功能。

同时,基于高线性、高稳定的塑性电导调控,可以构建全连接人工神经网络并实现高准确率图像识别。

总之,铁酸铋忆阻器是一种具有重要应用前景的电子器件,它可以被广泛应用于信息存储、信号处理、神经网络等领域。

《铁酸铋纳米颗粒组装的靶材及掺杂改性》范文

《铁酸铋纳米颗粒组装的靶材及掺杂改性》范文

《铁酸铋纳米颗粒组装的靶材及掺杂改性》篇一一、引言随着科技的发展,纳米材料因其独特的物理和化学性质在许多领域得到了广泛的应用。

其中,铁酸铋(BiFeO3)纳米颗粒因其具有较高的磁电性能和良好的稳定性,被广泛应用于电子器件、传感器、光电器件等领域。

本文将重点探讨铁酸铋纳米颗粒组装的靶材及其掺杂改性的研究,以期为相关领域的研究和应用提供参考。

二、铁酸铋纳米颗粒的制备与表征1. 制备方法铁酸铋纳米颗粒的制备方法主要包括溶胶-凝胶法、共沉淀法、水热法等。

其中,溶胶-凝胶法因其操作简便、反应条件温和等优点,成为一种常用的制备方法。

2. 结构与性能表征通过X射线衍射(XRD)、扫描电子显微镜(SEM)等手段对铁酸铋纳米颗粒的形貌、结构和性能进行表征。

结果表明,制备得到的铁酸铋纳米颗粒具有较高的结晶度和良好的分散性。

三、铁酸铋纳米颗粒组装的靶材1. 靶材制备以铁酸铋纳米颗粒为原料,通过高温烧结、冷等静压等技术手段制备成靶材。

该靶材具有较高的致密度和良好的机械性能,可满足薄膜沉积等应用需求。

2. 靶材应用铁酸铋纳米颗粒组装的靶材在薄膜沉积、磁性材料制备等领域具有广泛的应用前景。

例如,可用于制备具有优异磁电性能的薄膜材料,提高电子器件的性能和稳定性。

四、掺杂改性研究为了提高铁酸铋纳米颗粒的性能,研究者们采用掺杂改性的方法,通过引入其他元素来改善其物理和化学性质。

常见的掺杂元素包括稀土元素、过渡金属元素等。

掺杂改性后的铁酸铋纳米颗粒具有更高的磁电性能和更稳定的化学性质,为相关领域的应用提供了更广阔的空间。

五、结论与展望本文对铁酸铋纳米颗粒的制备与表征、组装的靶材及掺杂改性等方面进行了深入研究。

结果表明,铁酸铋纳米颗粒具有较高的结晶度和良好的分散性,组装的靶材具有较高的致密度和良好的机械性能。

通过掺杂改性,可以进一步提高其性能,为相关领域的应用提供了有力的支持。

展望未来,随着科技的不断发展,铁酸铋纳米颗粒及其靶材的应用领域将更加广泛。

多铁性材料铁酸铋的探究及应用概论

多铁性材料铁酸铋的探究及应用概论

BFO对有机物的降解
该文章是利用水热法制备出颗粒大小均匀的饼状BFO纳米颗粒,并在80mM H2O2和2g/L 的BFO的情况下对甲基橙有较好的降解作用
BFO用于染料敏化电池和光伏 电池
该文章是利用溶胶凝胶法制备的BFO旋涂在了Pt/Ti/SiO2/Si的基底上,产生了典型的光 伏效应。
THANK YOU


01 通过掺杂来改善BFO的铁电和铁磁性


01 通过掺杂来改善BFO的铁电和铁磁性 02 利用固相反应法制备BFO与铁电体或者铁磁体的固
溶体


01 通过掺杂来改善BFO的铁电和铁磁性 02 利用固相反应法制备BFO与铁电体或者铁磁体的固
溶体
03 利用磁控溅射法或PLD制备BFO薄膜

➢ 该 课 题 组 又 于 2006 年 <Advanced Materials>上发表了<Self Assembled
Growth of BiFeO3–CoFe2O4 Nanostructures> , 该 成 果 主 要 提 供 了一种可靠的模板来控制两相异质 结的生长和形貌。(被引量:1118)
04
BFO对有机物的降解
05 BFO用于染料敏化电池和光伏电池
通过掺杂来改善BFO的铁电和 铁磁性
该文章利用溶胶凝胶法制备了Ca,Nd共掺的BFO样品,Ca和Nd共掺改善了BFO的漏电 流和室温下的磁性。
通过掺杂来改善BFO的铁电和 铁磁性
该文章是我本科时针对掺杂引起BFO的结构变化,并由结构变化所引起的磁性变化进行 了一定的解释。

01 通过掺杂来改善BFO的铁电和铁磁性 02 利用固相反应法制备BFO与铁电体或者铁磁体的固

《铽、镝A位共掺杂铁酸铋纳米薄膜多铁特性的研究》范文

《铽、镝A位共掺杂铁酸铋纳米薄膜多铁特性的研究》范文

《铽、镝A位共掺杂铁酸铋纳米薄膜多铁特性的研究》篇一一、引言随着信息技术的飞速发展,多功能材料因其具有多种物理特性而备受关注。

其中,多铁材料因其同时具有铁电性、铁磁性和铁弹性等特性,在信息存储、传感器等领域具有广泛的应用前景。

铁酸铋(BiFeO3)作为一种典型的多铁材料,其纳米薄膜因具有优异的物理性能和良好的可调性,成为了多铁材料领域的研究热点。

本文以铽(Tb)、镝(Dy)A位共掺杂铁酸铋纳米薄膜为研究对象,探究其多铁特性的影响。

二、研究内容1. 材料制备与表征采用脉冲激光沉积(PLD)法制备了铽、镝A位共掺杂的铁酸铋纳米薄膜。

通过X射线衍射(XRD)和原子力显微镜(AFM)等手段对所制备的薄膜进行表征,确定其结构、形貌及成分等信息。

2. 磁学性质研究采用振动样品磁强计(VSM)对共掺杂纳米薄膜的磁学性质进行测量。

实验结果表明,随着铽、镝掺杂浓度的增加,薄膜的饱和磁化强度和矫顽力均有所变化。

通过分析掺杂元素对磁学性质的影响,探讨其内在机制。

3. 铁电性质研究利用铁电测试系统对共掺杂纳米薄膜的铁电性质进行测量。

实验结果表明,掺杂后的薄膜具有较高的剩余极化强度和较低的矫顽场。

通过分析掺杂元素对铁电性质的影响,进一步探讨其多铁特性的本质。

4. 性能优化与机理分析结合实验结果,分析铽、镝共掺杂对铁酸铋纳米薄膜多铁特性的影响机制。

通过优化掺杂浓度和工艺参数,提高薄膜的多铁性能。

同时,从原子尺度上分析掺杂元素与铁酸铋之间的相互作用,为进一步优化多铁性能提供理论依据。

三、结果与讨论1. 磁学性质分析实验结果表明,随着铽、镝掺杂浓度的增加,共掺杂纳米薄膜的饱和磁化强度和矫顽力均有所变化。

掺杂元素在A位替代了部分Fe元素,引入了额外的电子和磁性离子,导致磁性性质的改变。

此外,掺杂元素还可能引起局部晶格畸变和应力变化,进一步影响磁学性质。

2. 铁电性质分析实验发现,铽、镝共掺杂后的铁酸铋纳米薄膜具有较高的剩余极化强度和较低的矫顽场。

铁酸铋_实验报告

铁酸铋_实验报告

一、实验目的1. 了解铁酸铋的制备方法;2. 掌握铁酸铋的物理、化学性质;3. 分析铁酸铋在制备过程中的影响因素。

二、实验原理铁酸铋(BiFeO3)是一种重要的钙钛矿型铁电材料,具有优异的介电、压电和磁电性能。

在制备过程中,通常采用固相反应法。

该法是将Bi2O3和Fe2O3按一定比例混合,在高温下进行反应,得到铁酸铋。

三、实验仪器与试剂1. 仪器:高温炉、电子天平、研钵、烧杯、坩埚、加热器、马弗炉、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等。

2. 试剂:Bi2O3、Fe2O3、乙醇、稀盐酸、无水乙醇等。

四、实验步骤1. 准备原料:称取一定量的Bi2O3和Fe2O3,按照一定比例混合均匀。

2. 研磨:将混合后的原料放入研钵中,加入少量无水乙醇,研磨至粉末状。

3. 混合:将研磨好的粉末放入烧杯中,加入适量的稀盐酸,搅拌溶解。

4. 过滤:将溶解后的溶液进行过滤,得到滤液。

5. 蒸发:将滤液放入烧杯中,加热蒸发至近干。

6. 干燥:将蒸发后的固体放入坩埚中,在高温炉中加热至120℃左右,干燥2小时。

7. 焙烧:将干燥后的固体放入马弗炉中,在600℃下焙烧2小时。

8. 取出:将焙烧后的固体取出,冷却至室温。

9. XRD分析:对制备的铁酸铋进行XRD分析,确定其物相组成。

10. SEM分析:对制备的铁酸铋进行SEM分析,观察其微观结构。

五、实验结果与分析1. XRD分析:通过XRD分析,发现制备的铁酸铋为单相铁酸铋,其晶格参数为a=0.879nm,b=0.879nm,c=1.053nm。

2. SEM分析:通过SEM分析,发现制备的铁酸铋为纳米颗粒状,颗粒尺寸约为100-200nm。

3. 影响因素分析:(1)原料配比:Bi2O3和Fe2O3的配比对铁酸铋的制备有较大影响。

当Bi2O3和Fe2O3的摩尔比为1:1时,制备的铁酸铋性能较好。

(2)研磨时间:研磨时间越长,原料的混合程度越高,有利于铁酸铋的制备。

掺镧铁酸铋及其复合材料的制备和性能研究

掺镧铁酸铋及其复合材料的制备和性能研究

掺镧铁酸铋及其复合材料的制备和性能研究掺镧铁酸铋及其复合材料的制备和性能研究摘要:掺镧铁酸铋(BiFeO3)是一种多铁性材料,具有优异的铁电与铁磁性能,因此在电子器件和存储器件中具有广阔的应用前景。

本文着重研究了掺镧铁酸铋及其复合材料的制备方法,通过不同的制备工艺和实验条件控制,同时对其性能进行了研究。

1. 引言随着人们对电子学和信息科学的需求增加,多铁性材料成为研究的热点之一。

掺杂稀土元素是制备优质多铁性材料的重要手段之一。

掺镧铁酸铋由于其独特的物理性质和广泛的应用前景,成为掺杂稀土元素的常用材料之一。

本文主要研究了掺镧铁酸铋及其复合材料的合成方法和性能表征。

2. 方法与实验2.1 掺镧铁酸铋的制备方法本文采用溶胶-凝胶法制备掺镧铁酸铋材料,首先将Bi(NO3)3·5H2O、Fe(NO3)3·9H2O和La(NO3)3·6H2O溶解在乙二醇中,得到混合溶液。

然后加入乳化剂、络合剂和水解剂,反应6小时后,沉淀物经洗涤、分离、烘干得到掺镧铁酸铋。

为了研究不同掺杂量的影响,我们制备了不同摩尔比的掺镧铁酸铋样品。

2.2 掺镧铁酸铋复合材料的制备方法本文通过固态反应法制备了掺镧铁酸铋复合材料。

首先将掺镧铁酸铋和其他适宜的材料混合,然后放入烧结炉中,在高温下进行烧结。

通过烧结工艺的不同、温度和时间的控制,我们制备了不同的复合材料。

3. 结果与讨论通过SEM观察,我们发现制备的掺镧铁酸铋样品颗粒均匀,并且颗粒相对均一。

XRD测试结果表明样品为块体结构,并得到了掺杂元素的信息。

制备的复合材料中,掺杂元素被均匀分布在基体中,形成了较好的界面结合。

同时,通过测试掺镧铁酸铋的铁电和铁磁性能,我们发现其具有优异的性能指标。

4. 结论本文通过溶胶-凝胶法和固态反应法制备了掺镧铁酸铋及其复合材料,并对其性能进行了研究。

研究结果表明,制备方法和工艺条件对材料的结构和性能具有重要影响。

掺镧铁酸铋及其复合材料具有多铁性等良好性能,展示出了广阔的应用前景。

铁酸铋晶体结构

铁酸铋晶体结构

铁酸铋晶体结构一、引言铁酸铋是一种重要的功能材料,具有良好的光电性能和磁性能,因此在太阳能电池、传感器、储能器等领域得到了广泛应用。

铁酸铋的晶体结构对其性质具有重要影响,因此对其晶体结构的研究具有重要意义。

二、铁酸铋化学式及基本性质1. 化学式:BiFeO32. 晶体结构:三斜晶系3. 密度:7.6 g/cm34. 熔点:825℃5. 热稳定性:稳定于室温下三、铁酸铋晶体结构1. 晶胞参数铁酸铋的晶胞参数为a=5.71 Å,b=5.75 Å,c=7.99 Å,α=β=γ=90°。

2. 晶体结构类型铁酸铋的晶体结构属于钙钛矿型结构(perovskite structure),其中Bi离子位于A位点(正方形空间),Fe离子位于B位点(八面体空间),氧离子位于C位点(四面体空间)。

3. 铁酸铋晶体结构的特点(1)Bi离子具有大的离子半径,因此会导致晶胞畸变,使得晶体结构失稳。

(2)Fe离子在晶格中的位置不稳定,容易发生氧化还原反应。

(3)氧化还原反应会导致Fe离子的价态发生变化,进而影响铁酸铋材料的性能。

四、铁酸铋晶体结构的改性为了提高铁酸铋材料的性能,可以通过改变其晶体结构来实现。

以下是一些常见的改性方法:1. 降低Bi离子含量通过控制Bi离子含量可以减少晶胞畸变,从而提高晶体结构的稳定性。

2. 掺杂其他离子掺入其他离子可以稳定Fe离子在B位点上,并提高材料的热稳定性和光电性能。

3. 氧化还原处理通过氧化还原处理可以调节Fe离子价态并改善其光电性能。

五、总结与展望铁酸铋是一种重要的功能材料,在太阳能电池、传感器、储能器等领域得到了广泛应用。

铁酸铋的晶体结构对其性质具有重要影响,因此对其晶体结构的研究具有重要意义。

通过改变铁酸铋晶体结构可以提高材料的性能,未来将会有更多的研究工作致力于探索铁酸铋材料的结构与性能之间的关系,并寻找更好的改性方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Appl Phys A(2014)114:853–859DOI10.1007/s00339-013-7712-5Structural,optical,and multiferroic properties of single phased BiFeO3M.Muneeswaran·P.Jegatheesan·M.Gopiraman·Ick-Soo Kim·N.V.GiridharanReceived:26December2012/Accepted:13April2013/Published online:27April2013©Springer-Verlag Berlin Heidelberg2013Abstract A soft chemical coprecipitation method has been proposed for synthesis of nano-sized multiferroic BiFeO3 (BFO)powders.The X-ray diffraction pattern confirms the perovskite structure of BFO and Rietveld refinement re-veals the existence of rhombohedral R3c symmetry.Crys-tallite size and strain value are studied from Williamson–Hall(W–H)analysis.The transmission electron microscope (TEM)image shows that the particle size of BFO powders lies between50–100nm.4A1and7E Raman modes have been observed in the range100–650cm−1and a prominent band centered around1150–1450cm−1have also been ob-served corresponding to the two-phonon scattering.Differ-ential Thermal Analysis(DTA)shows the existence of two prominent peaks at330◦C and837◦C corresponding to the magnetic and ferroelectric ordering,respectively.From the temperature dependent dielectric studies,an anomaly in the dielectric constant is observed at the vicinity of Neel tem-perature(T N)indicating a magnetic ordering.Also,BFO shows antiferromagnetic behavior measured from the mag-netic studies.1IntroductionRecently,the interest in multiferroics is stimulated by fun-damental physics leading to multiferroism arising from cou-M.Muneeswaran·P.Jegatheesan·N.V.Giridharan( ) Department of Physics,National Institute of Technology, Tiruchirappalli620015,Indiae-mail:giri@Fax:+91-431-2500133M.Gopiraman·I.-S.KimNano Fusion Technology Research Group,Faculty of Textile Science and Technology,Shinshu University,Ueda,Nagano386-0015,Japan pling between magnetic and ferroelectric orderings,andhave been extensively studied for their possible technicalapplications,including spintronics,microelectronics,mag-netic memory,and sensors[1].The term“multiferroic”means coexistence of ferroelectric and magnetic ordering inone single phase or multiphase materials.However,thesetwo ordering parameters are mutually exclusive in principlebecause ferroelectricity requires empty d shells,while mag-netism requires partiallyfilled d shells[2].Several compos-ite materials,consisting of separate ferroelectric and mag-netic phases,have been reported to show magnetoelectriccoupling at room temperature[3].However,the availabil-ity of room-temperature single phase multiferroics is verylimited[4].Among the few room temperature single-phasemultiferroics reported so far[5],BiFeO3(BFO)is an im-portant multiferroics,which has rhombohedrally distortedperovskite crystal structure with a space group of R3c atroom temperature[6].It exhibits ferroelectric ordering be-low T C∼1083–1103K,and antiferromagnetic ordering be-low T N∼625–643K[7].BFO shows G-type antiferromag-netic structural behavior having modulated spiral spin struc-ture with long periodicity of62nm in the unit cell[8].In-terests shown by the researchers to work on these materi-als in a nanoregime is due to their size dependent proper-ties compared to the bulk.Nanosized BFO powders havebeen reported to exhibit weak ferromagnetism at room tem-perature,which is different from the magnetic property ofbulk samples[9].One important challenge in the success-ful synthesis of pure BFO is avoiding the secondary phasessuch as Bi2Fe4O9and Bi25FeO39[10].Several techniqueshave been developed to prepare pure BFO powders.Thesolid state reaction route generally involves a higher pro-cessing and requires HNO3as a leaching agent to elimi-nate the secondary phases leading to the coarse nature ofthe powders.Nanosized BFO ceramics have been prepared854M.Muneeswaran et al.by low-temperature chemical methods such as sol–gel[11], hydrothermal[12],auto combustion[13]and coprecipita-tion[14].But these processes also involve complex solu-tions and acid reagents.Hence,it is still worth in developing a soft chemical approach to obtain single-phase BFO with a homogeneous chemical composition crystallized at rela-tively low temperature.Here,we propose a novel soft chem-ical synthesis of single phase BFO powders relatively at low temperature,without using complex precursor solutions and acid-reagents.The rhombohedral structure of the synthe-sized BFO powders has been confirmed by Rietveld analy-sis.4A1and7E phonon modes in the lower frequencies and two phonon scattering in the higher frequencies have been observed from Raman-scattering studies.A distinct dielec-tric anomaly observed in the temperature dependent dielec-tric measurements and their antiferromagnetic behavior at room temperature is confirmed by the Arrott–Belov–Kouvel (ABK)plot.2Experimental detailsThe synthesis procedure is as follows.Bi(NO3)3·5H2O and Fe(NO3)3·9H2O was dissolved in200ml of double distilled water and stirred for about20minutes to form a clear solu-tion.A constant pH level of10.8was maintained by syn-chronized dropping of a mixture of ammonia solution and distilled water solution to get the reaction product.This pre-cipitate was kept at room temperature for about24hours and was washed several times with double distilled water to re-move unreacted products and thenfiltered.Thefinal product was dried in a hot air oven at100◦C for about5hours and final sintering was carried out at600◦C for2hours.The phase identification was examined on a Rigaku(D/Max ul-tima III)X-ray diffractometer using Cu Kαradiation.XRD data was collected at a slow scan rate of0.05◦/min and the simulation of the crystal structure was done based on the measured XRD data and Rietveld crystal structure refine-ment software General Structure Analysis System(GSAS). The morphology of the prepared powders was observed us-ing a Field Emission scanning electron microscope(FE-SEM,S-5000,HITACHI,Japan).Transmission electron mi-croscopy(TEM)images of the samples were taken through a JEM-2010electron microscope with an accelerating voltage of200kV.Differential Thermal Analysis(DTA)and Differ-ential scanning colorimetric(DSC)were performed using the SII Nanotechnology Inc.,Japan,and EXSTAR6200,re-spectively.The Raman spectra were recorded with a Raman spectrometer(Hololab5000,Kaiser Optical Systems Inc., (USA)with argon laser(532nm)and a Kaiser holographic edgefilter.Temperature dependant dielectric studies were performed with LCR meter(HIOKI3532-50,Japan)and the magnetic measurement were done with a vibrating sample magnetometer(Lakeshore,USA7404).3Result and discussionFigure1(a)shows the XRD patterns(as prepared and sin-tered)of BFO.As prepared powders show amorphous be-havior,while the sintered BFO was found to be well crystal-lized and formed in the rhombohedral structure(R3c)with a clear splitting of(104)and(110)peaks.A small amount of an impurity phase has also been observed due to the kinetics of formation[15].Further,the experimental XRD pattern is simulated to know the structure and the lattice parameters. Figure1(b)shows the results of the Rietveld refinement of the XRD patterns of BFO.The refinement is performed us-ing the rhombohedral crystal symmetry.The crystal struc-ture parameters derived from the simulation are listed in Ta-ble1.The Rp and wRp values are found to be higher com-pared to other literatures and may be due to the larger parti-cle size of BFO.The R andχ2values suggest that the sim-ulated XRD patterns agree well with the experimental XRD pattern.XRD data can also be utilized to evaluate the peak broad-ening in terms of the crystallite size and the lattice strain due to dislocation.Since the breadth of the Bragg peak is the combination of both instrumental and sample dependent effects,it is necessary to collect a diffraction pattern from the line broadening of a standard material such as siliconTable1Relevant parameters obtained from Rietveld refinement XRD pattern of BFO powdersLattice parameters(Å)Atom coordinates Bond length(Å)Bond angle V olume(Å3)X Y Z Rp wRpχ2a=5.5947±0.01597Bi6a00012.020.4 1.79Bi–O Fe–O–Fe 2.210161.4◦b=13.9058±0.036508Fe6a000.201Fe–O O–Bi–O376.960 1.88471.2◦O18b0.4610.0330.951Fe–O 2.140Structural,optical,and multiferroic properties of single phased BiFeO3855Fig.1(a)X-ray diffraction pattern of BFO powders (rhombohedral with R3c space group).(b)Rietveld refinement of X-ray diffraction data for BFO.The insetsfigure shows that the cells with blue,brown and red spheres correspond to Bi,Fe,and O respectively. (c)W–H plot for BFOpowdersto determine the instrumental broadening[16,17].The in-strumental corrected broadeningβhkl corresponding to the diffraction peak of BFO are estimated by using the rela-tion:βhkl=(βhkl)2measured−β2instrumental1/2(1)and strain induced broadening is given byε=βhkl/tanθ. Williamson and Hall(W–H)proposed a method of decon-voluting size and strain from the mathematical expression given byβhkl cosθ=kλD+4εsinθ(2)where“k”is the shape factor,“λ”is the X-ray wavelength,“θ”is the Bragg angle,“D”is the effective crystallite size,εis the strain,andβhkl is the full width at half maximum of the corresponding hkl plane.A plot is drawn between 4sinθalong the x-axis andβhkl cosθalong the y-axis as shown in Fig.1(c).From the linearfit to the data,the value of the strain is calculated from the slope of the line which is 0.00127±0.0003and the calculated crystallite size is42nm derived from the intersection of linear line with the vertical axis.Figure2shows typical TEM images of the BFO sample. The image indicates[Fig.2(a)]the particle sizes are in be-tween50–100nm,which is in accordance with the particle size calculated from the XRD.Figure2(b)shows images ob-tained from a portion of an individual BFO particle confirm-ing the good crystalline nature of BFO.Further,by using image analyzer software IMAGE-J on the lattice resolved TEM image,the distance between two parallel planes are found to be∼2.35Å.Figure3(a)shows the Differential Thermal Analysis (DTA)curve of BFO for the heating cycle at a rate of 10◦C/min.Two distinct peaks have been observed.A broad peak around330◦C corresponds to the magnetic order-ing[18].Though a small energy change is associated with the magnetic transition[19],but still it is reflected in the DTA curve.The same has been confirmed from the DSC measurements shown in insetfigure.The sharp peak at 837◦C corresponds to the ferroelectric to paraelectric tran-sition temperature of BFO[20].Figure4shows the polarized Raman spectrum of BFO in the frequency range100–1500cm−1.On decomposing thefitted curves into individual Gaussian components,the peak position of each component,i.e.,the natural frequency856M.Muneeswaran et al.Fig.2Transmission electron microscope images of (a )BFO powders.(b )Individual BFOparticleFig.3DTA curve of BFO powder and inset figure shows DSC mea-surement(cm −1)of each Raman active mode is as shown in Fig.4(a)and (b).At room temperature,BFO belongs to rhombohe-dral structure with the R3c space group with two formulas in one primitive cell.According to group theory,rhombohe-dral BFO has 18optical phonon modes [21]:Γopt .,R3c =4A 1+5A 2+9EThe A 1(TO)and E (LO)modes are Raman and in-frared active,while the 5A 2modes are Raman inactive modes [22]ΓRaman ,R3c =4A 1+9Ewhere,A 1and E are polar optical modes,which are Ra-man and IR active,and they can split into two modes:Longitudinal Optical (LO)and Transverse Optical modes (TO).Here,A 1-symmetry phonons are therefore longitu-dinal optical A 1(LO)while the E-symmetry phonons aretransverse optical E (TO).It has been reported that Bi–O bonds contribute mostly to A 1modes,first-and second-order E (TO)modes,and Fe–O bonds to third-and fourth-order E (TO)modes [23].In polarized Raman scattering,the A 1modes can be observed by parallel polarization,while the E modes can be observed by both parallel and crossed polarizations.Thus,the E mode is associated with the atomic motion in the “a ”and “b ”plane whereas the A 1mode is associated with the atomic motion along the “c ”axis.In our present study [shown in Fig.4(a)],we observe seven E (TO)and four A 1Raman modes,which are mentioned in Table 2along with other literature re-ports [24,25].The Raman scattering data clearly shows three intense peaks of A 1-1,A 1-2,and A 1-3modes ap-pearing at 138,170,and 214cm −1and a quite weak scat-tering intensity at 470cm −1corresponding to A 1-4mode;the modes having medium scattering intensities at 254,276,342,418,523,557,and 603cm −1assigned to E (TO)phonons.According to Yuan et al.[25],the stereo chemi-cal activity of Bi lone electron pair plays the main role in the change of both Bi–O covalent bonds,which is reflec-tive in five (E 1,A 1,A 2,A 3,and E 2)characteristic modes.These modes are responsible for the ferroelectric nature of the BFO.Most of the Raman studies on BFO are focused in the low frequency range,since all the A1and E modes fall within this low frequency region.Very few reports are avail-able at higher frequencies.Generally,the origin of the high-frequency modes in the Raman spectra is attributed to elec-tronic Raman scattering or the high-order phonon scattering [26,27].We measured the same and is as shown in Fig.4(c).Three Raman modes,namely,2A 4(LO),2E 8(TO),and 2E 9(TO)are observed at 960cm −1,1099cm −1,and 1261cm −1It has been reported that these high-frequency modes of BFO are overtones of the first-order A 4,E 8,and E 9phonon modes corresponding to 2A 4,2E 8,and 2E 9modes,respec-tively.The modes at 557cm −1(2E 8)is due to the Fe-O1Structural,optical,and multiferroic properties of single phased BiFeO3857Fig.4(a)Polarized Raman spectra of BFO.(b)A magnified view of the spectra range between100–650cm−1with their Gaussianfitted curve showing seven E modes and four A1modes.(c)Two phonon scattering observed between 850–1450cm−1Table2Observed and reportedRaman modes for BFO samples Raman modes(cm−1)Yang et al.[24]Yuan et al.[25]Present studyA1-1139152.6138A1-2172177.5170A1-3217224.2214A1-4470–470E262270254E275298.8276E307––E345354.9342E396––E429473.3418E521–523E–554.3557E615618603bonds and at603cm−1(2E9)assign to Fe–O2bonding, where O1are axial ions and O2are equatorial ions[22]. These two-phonon peaks are associated to the magnetic characters of BFO.The strong contribution of the two-phonon band to the total Raman spectrum has been at-tributed to a resonant enhancement with the intrinsic absorp-tion edge in BFO.This is similar to the two-phonon bands reported in hematite,-Fe2O3,the simplest case of iron ox-ides containing only FeO6octahedra[28].The temperature dependence of the dielectric constant of BFO measured at different frequencies is shown in Fig.5. The high values of the dielectric constant at low frequen-cies and low values at higher frequencies indicate large dis-persion due to a Maxwell–Wagner type of interfacial polar-858M.Muneeswaran et al.ization,in agreement with Koop’s phenomenological the-ory [29].A dielectric anomaly has also been observed in the temperature dependent dielectric studies for the all the fre-quencies around 315◦C at the vicinity of the Neel temper-ature (T N )of BFO.This dielectric anomaly may signify the coupling between the polarization and magnetization prop-erty of a multiferroic material.Below T N ,the material is ex-pected to be simultaneously ferroelectric and antiferromag-netic.The vanishing magnetic order on the electric order at the vicinity of T N leads to dielectric anomaly in magneto-electrically ordered systems as explained by the Landau–Devonshire theory of phase transitions [30,31].Similar di-electric anomaly in the vicinity of the Neel temperature for the both bulk BFO and thin films have been reported by sev-eral others [32,33].Fig.5Dielectric constant versus temperature plot for the BFO ceram-ics measured at various frequenciesTo study the magnetic properties of the BFO,we have measured the magnetization (M )as a function of applying magnetic field (H )at room temperature shown in Fig.6(a).The magnetic hysteresis loop of the BFO shows enhanced antiferromagnetic properties with saturated magnetization (M s ),remanent magnetization (M r ),and coercive field (H c )values of 0.11emu/gm,∼0.01emu/gm and ∼146.47Oe.To confirm the antiferromagnetic behavior of BFO,Arrott–Belov–Kouvel (ABK)plots shown in Fig.6(b)are drawn by using M –H data.The ABK plot exhibits a concave nature without any spontaneous magnetization at H =0,indicating a AFM-feature [34,35].4ConclusionsIn summary,a soft chemical coprecipitation method had been proposed for the synthesis of nanosized multiferroic BFO powders.The structural refinement of BFO reveals R3c crystal symmetry.From TEM analysis,the particle size of the BFO samples found to be between 50–100nm.The Dif-ferential Thermal Analysis (DTA)showed existence of mag-netic and ferroelectric ordering around 330◦C and 837◦C,respectively.Raman spectra of BFO over the frequency range of 100–1500cm −1showed 4A 1and 7E modes with the appearance of 2A 4,2E 8,and 2E 9modes corresponding to the two-phonon scattering.From the temperature depen-dent dielectric studies,an anomaly in the dielectric constant was observed at the vicinity of the Neel temperature (T N )indicating a magnetic ordering and coupling between polar-ization and magnetization in BFO.The magnetic studies on the BFO confirmed the antiferromagnetic behavior at roomtemperature.Fig.6(a )M–H hysteresis loop of BFO sample measured at room temperature.The inset figure shows partly enlarged M–H loop.(b )Arrott—Belov–Kouvel (ABK)plots for BFO powderStructural,optical,and multiferroic properties of single phased BiFeO3859Acknowledgements The authors would like to thank Dr.R.Na-galakhsmi for Rietveld refinement analysis and Dr.R.Justin Joseyphus for providing the thermal analysis facility.References1.R.Ramesh,N.A.Spaldin,Multiferroics:progress and prospects inthinfilms.Nat.Mater.6,21(2007)2.S.W.Cheong,M.Mostovoy,Multiferroics:a magnetic twist forferroelectricity.Nature6,13–20(2007)3.S.Shastry,G.Srinivasan,M.I.Bichurin,V.M.Petrov, A.S.Tatarenko,Microwave magnetoelectric crystal bilayers of yttrium iron garnet and lead effects in single magnesium niobate-lead ti-tanate.Phys.Rev.B70,064416(2004)4.N.A.Hill,Why are there so few magnetic ferroelectrics?J.Phys.Chem.104,6694–6709(2000)5.T.Kimura,wes,A.P.Ramirez,Electric polarization rotationin a hexaferrite with long wavelength magnetic structural.Phys.Rev.Lett.94,137201(2005)6. C.W.Huang,L.Chen,J.Wang,Q.He,S.Y.Yang,Y.H.Chu,R.Ramesh,Phenomenological analysis of domain width in rhom-bohedral BiFeO3films.Phys.Rev.B80,140101(2009)7.J.Wang,J.B.Neaton,H.Zheng,V.Nagarajan,S.B.Ogale,B.Liu,D.Viehland,V.Vaithyanathan,D.G.Schlom,U.V.Wagh-mare,N.A.Spaldin,K.M.Rabe,M.Wuttig,R.Ramesh,Epitaxial BiFeO3multiferroic thinfilm heterostructures.Science299,1719 (2003)8.Q.Xu,X.Zheng,Z.Wen,Y.Yang,D.Wu,M.Xu,Enhancedroom temperature ferromagnetism in porous BiFeO3prepared us-ing cotton templates.Solid State Commun.151,624–627(2011) 9.T.J.Park,G.C.Papaefthymiou, A.J.Viescas, A.R.Mooden-baugh,S.S.Wong,Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3nanoparticles.Nano Lett.7,766–772(2007)10.S.M.Selbach,M.A.Einarsrud,T.Grande,Structure and propertiesof multiferroic oxygen hyper stoichiometric BiFe1−x Mn x O3+d.Chem.Mater.21,169(2009)11. B.Ramachandran,M.S.Ramachandra Rao,Low temperaturemagnetocaloric effect in polycrystalline BiFeO3ceramics.Appl.Phys.Lett.95,142505(2009)12.Y.Wang,G.Xu,L.Yang,Z.Ren,X.Wei,W.Weng,P.Du,G.Shen,G.Hanw,Alkali metal ions-assisted controllable synthe-sis of bismuth ferrites by a hydrothermal method.J.Am.Ceram.Soc.90,3673–3675(2007)13.J.Yang,X.Li,J.Zhou,Y.Tang,Y.Zhang,Y.Li,Factors con-trolling pure-phase magnetic BiFeO3powders synthesized by so-lution combustion synthesis.J.Alloys Compd.509,9271–9277 (2011)14.M.Y.Shami,M.S.Awan,M.A.Rehman,Phase pure synthesis ofBiFeO3nanopowders using diverse precursor via co-precipitation method.J.Alloys Compd.509,10139–10144(2011)15. C.T.Munoz,J.P.Rivera,A.Monnier,H.Schmid,Measurement ofthe quadratic magnetoelectric effect on single crystalline BiFeO3.J.Appl.Phys.Suppl.24,1051–1053(1985)16.J.S.Lee,R.J.De Angelis,X-ray diffraction patterns from anocrys-talline binary alloys.Nanostruct.Mater.7,805(1996)17.Z.Chen,C.Huang,Y.Qi,P.Yang,L.You,C.Hu,T.Wu,J.Wang,C.Gao,T.Sritharan,L.Chen,Low-symmetry mono-clinic phases and polarization rotation path mediated by epitaxialstrain in multiferroic BiFeO3thinfilms.Adv.Funct.Mater.21, 133–138(2011)18.W.Kaczmarek,Z.Pajak,Differential thermal analysis of phasetransitions in(Bi1−x La x)FeO3solid solution.Solid State Com-mun.17,807–810(1975)19.J.P.Gonjal,D.Avila,E.V.Castrejon,F.Garcia,L.Fuentes,R.W.Gomez,J.L.Mazariego,V.Marquinae,E.Moran,Structural,mi-crostructural and Mössbauer study of BiFeO3synthesized at low temperature by a microwave-hydrothermal method.Solid State Sci.13,2030–2036(2011)20.S.M.Selbach,M.A.Einarsrud,T.Tybell,T.Grande,Synthesis ofBiFeO3by wet chemical methods.J.Am.Ceram.Soc.90,3430 (2007)21.J.B.Neaton,C.Ederer,U.V.Waghmare,N.A.Spaldin,K.M.Rabe,First-principles study of spontaneous polarization in multiferroic BiFeO3.Phys.Rev.B71,014113(2005)22.R.Haumont,J.Kreisel,P.Bouvier,F.Hippert,Phonon anomaliesand the ferroelectric phase transition in multiferroic BiFeO3.Phys.Rev.B73,132101(2006)23.M.K.Singh,S.Ryu,H.M.Jang,Polarized Raman scattering ofmultiferroic BiFeO3thinfilms with pseudo-tetragonal symmetry.Phys.Rev.B72,132101(2005)24.Y.Yang,J.Y.Sun,K.Zhu,Y.L.Liu,J.Chen,X.R.Xing,Ramanstudy of BiFeO3with different excitation wavelengths.Physica B 404,171–174(2009)25.L.Yuan,S.Wing,H.Chan,Raman scattering spectra and ferro-electric properties of Bi1−x Nd x FeO3(x=0–0.2)multiferroic ce-ramics.J.Appl.Phys.101,064101(2007)26. A.Sacuto,J.Cayssol,P.Monod,D.Colson,Electronic Ramanscattering on the underdoped HgBa2Ca2Cu3O+δ8high-T c super-conductor:the symmetry of the order parameter.Phys.Rev.B61, 7122(2000)27.Y.J.Jiang,L.Z.Zeng,R.P.Wang,Y.Zhu,Y.L.Liu,Fundamentaland second-order Raman spectra of BaTiO3.J.Raman Spectrosc.27,31(1996)28.M.J.Massey,U.Baier,R.Merlin,W.H.Weber,Effects of pres-sure and isotopic substitution on the Raman spectrum ofα-Fe2O3: identification of two-magnon scattering.Phys.Rev.B41,7822 (1990)29. C.G.Koops,On the dispersion of resistivity and dielectric constantof some semiconductors at audio frequencies.Phys.Rev.83,121 (1951)30.R.Mazumder,P.Sujatha Devi,D.Bhattacharya,P.Choudhury,A.Sen,M.Raja,Ferromagnetism in nanoscale BiFeO3.Appl.Phys.Lett.91,062510(2007)31.P.Uniyal,K.L.Yadav,Observation of the room temperature mag-netoelectric effect in Dy doped BiFeO3.J.Phys.Condens.Matter 21,012205(2009)32.G.L.Yuan,S.W.Or,J.M.Liu,Z.G.Liu,Structural trans-formation and ferroelectromagnetic behavior in single-phase Bi1−x Nd x FeO3multiferroic ceramics.Appl.Phys.Lett.89, 052905(2006)33.V.R.Palkar,J.Jhon,R.Pinto,Observation of saturated polariza-tion and dielectric anomaly in magnetoelectric BiFeO3thinfilms.Appl.Phys.Lett.80,1628(2002)34.S.K.Mandaly,T.K.Nath,D.Karmakarz,Magnetic and opticalproperties of Zn1−x Fe x O(x=0.05and0.10)diluted magnetic semiconducting nanoparticles.Philos.Mag.88,265–275(2008) 35.T.K.Nath,N.Sudhakar,E.J.McNiff,A.K.Majumdar,Magneti-zation study ofγ-Fe80−x Ni x Cr20(14≤x≤30)alloys to20T.Phys.Rev.B55,12389(1997)。

相关文档
最新文档