铁酸铋的漏电流机制
锰掺杂对铁酸铋结构和磁性的影响

第4 1卷 第 8期 2 0 1 3年 8月
J o u r n a l o f S o u t h Ch i n a Un i v e r s i t y o f Te c h no l og y
Vo 1 . 41 No . 8
要 原 因.
关键词 : 多重铁材料 ; R i e t v e l d 精修 ; 磁性 中图分类号: 0 7 6 d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 0 — 5 6 5 X . 2 0 1 3 . 0 8 . 0 2 3
多重 铁材 料是 指 同时具 有 ( 反) 铁 电性 、 ( 反) 铁
对其结构 和磁 性的影 响.X R D和拉 曼光谱 分析 表 明 Mn掺 杂使 B i F e O 的晶体 结构 和振 动
模 式发 生 了变化. R i e t v e l d精修 结果显 示 , 在掺杂量 X= 0 . 1附近 , B i F e O 的 晶体 结构从 菱方 R 3 c 相 转 变为正交 凡 m相 .对样 品的磁性测 量表 明,随 着 Mn 掺 杂量 的增 加 ,样品 的剩余
长链 上 引入 具 有 不 同磁 矩单 元 的 Mn离 子 , 导 致 螺
铁 材料 J . 室温下 B F O 的 晶体 结 构 为 A B O 型 扭 曲 的菱方 钙钛 矿结 构 , 空 间群为 R 3 c . 其铁 电性来 源 于
B i ¨的6 s 孤 对 电子 与 O 一 的2 电子 杂化 引起 的结 构 畸 变 . B F O的磁性 来源 于 F e “ 间 的 超 交 换 作 用, 其 磁结 构并 非简单 的反铁 磁构 型 , F e ¨ 的磁矩 沿
研究方向课报告

研究方向课报告多铁性材料铁酸铋(BFO)的磁性研究姓名:吴闯学号:B2015013导师:姜伟成绩:1、引言:随着工业和经济的发展,全球的环境问题变得越来越严峻[1]。
铁酸铋作为唯一的室温多铁材料,同时具有铁电性和G 型反铁磁性[2]。
由于铁酸铋在自旋电子器件和铁电存储方面的应用潜力,对铁酸铋材料的研究已经成为多铁材料研究中的一个重要方向[3]。
然而,由于其G型反铁磁结构导致了宏观上极其微弱的磁性,极大地限制了实际应用。
多铁性材料是目前受到人们广泛重视的新兴的功能材料之一,这种功能材料为发展基于铁电—磁性集成效应的新型信息存储处理以及磁电器件提供了巨大的潜在应用前景。
Bi Fe O3是当前唯一同时在室温以上表现出铁电性和反铁磁性的多铁性材料。
早在20 世纪50 年代时,Bi Fe O3这个材料就受到关注。
Bi Fe O3铁电、多铁性和磁电耦合特性、光学特性等物理,以及Bi Fe O3为基础而构造的多铁性异质结、多铁隧道结、以至于自组装纳米结构和超晶格等体系具有奇异的物理特性,都是人们研究的热点。
实验方面,人们在Bi Fe O3基铁磁电陶瓷、Bi Fe O3掺杂以及Bi Fe O3薄膜制备都有不俗的进展。
但是对于Bi Fe O3磁电耦合效应的理论研究相对较少,尤其是BiFeO3复合薄膜中的界面效应研究更是较少。
对于磁电耦合性质的研究有重要意义。
因此,研究多铁性材料Bi Fe O3等电子结构和磁性,弄清磁电效应产生的微观物理性质有重要的意义。
本人通过查阅大量关于铁酸铋(BFO)的相关文献及研究方法,设想基于从第一性原理出发,通过基于密度泛函原理的理论计算方法,通过替位参杂的方法来加强和改善BFO的磁性。
通过研究单元素参杂(Zn和Mn)和Zn、Mn双元素共参杂下BFO的结构、磁性、铁电性和介电性能,通过使用Material Studio和VASP对几种结构进行运算来试图找到提高BFO磁性的最佳方案。
2.BFO材料的研究进展2.1.1 BF0的晶体结构及性能多铁性是指同时具有两种或以上“铁性”特征(铁磁性、铁电性、铁弹性等)的材料[4]。
【国家自然科学基金】_铁酸铋_基金支持热词逐年推荐_【万方软件创新助手】_20140729

2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
科研热词 铁酸铋 集成薄膜 锆钛酸铅 铁酸铋薄膜 脉冲激光沉积 漏电流 溶胶-凝胶法 掺锰铁酸铋 铌酸钾钠 透明铁电电容器 薄膜 自组装单层膜 自组装单分子层 自组装 老化性能 紫外光 沉积温度 无铅压电陶瓷 图案化 压电性能 ots-sams
推荐指数 4 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2011年 科研热词 推荐指数 铁酸铋 3 等离子体烧结 2 混杂工艺 2 多铁性 2 介电性能 2 铁磁性能 1 铁电性能 1 退火温度 1 表面活性剂 1 自组装 1 聚丙烯酰胺凝胶法 1 纳米颗粒 1 纯相bifeo3薄膜 1 磁滞回线 1 电滞回线 1 甲基橙 1 水热法 1 晶粒尺寸调控 1 掺杂 1 微波水热法 1 多铁材料铁酸铋 1 多铁性材料 1 吐温80 1 单相铁酸铋粉体 1 光催化性能 1 光催化 1 保温时间 1 低碱浓度 1 single-phase bifeo3 powders 1 low alkali concentratio 1 hydrothermal method 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
科研热词 推荐指数 铁酸铋 5 铁电 4 铁磁 2 磁电耦合 2 介电 2 ho 2 cr共掺 2 镧掺杂 1 铁酸铋薄膜 1 铁酸铋磁纳米粒子 1 铁酸铋(bifeo3) 1 钴掺杂铁酸铋 1 金属有机分解法 1 过硫酸盐 1 过氧化氢 1 聚乙二醇(peg-4000) 1 磁性回收 1 磁性 1 磁分离 1 甲基橙 1 溶胶-凝胶法 1 污水处理 1 水热法 1 微波烧结 1 开路电压 1 多铁材料 1 多铁性 1 多重铁材料 1 四溴双酚a 1 可见光催化 1 变磁性 1 反铁磁相变 1 反铁磁 1 压电响应 1 光催化 1 催化降解 1 低价离子掺杂 1 亚甲基蓝 1 rietveld精修 1 bifeo3粉体 1 bi25feo40-g-c3n4复合催化剂 1 (012)取向 1
多铁性材料铁酸铋的探究及应用概论

BFO对有机物的降解
该文章是利用水热法制备出颗粒大小均匀的饼状BFO纳米颗粒,并在80mM H2O2和2g/L 的BFO的情况下对甲基橙有较好的降解作用
BFO用于染料敏化电池和光伏 电池
该文章是利用溶胶凝胶法制备的BFO旋涂在了Pt/Ti/SiO2/Si的基底上,产生了典型的光 伏效应。
THANK YOU
目
录
01 通过掺杂来改善BFO的铁电和铁磁性
目
录
01 通过掺杂来改善BFO的铁电和铁磁性 02 利用固相反应法制备BFO与铁电体或者铁磁体的固
溶体
目
录
01 通过掺杂来改善BFO的铁电和铁磁性 02 利用固相反应法制备BFO与铁电体或者铁磁体的固
溶体
03 利用磁控溅射法或PLD制备BFO薄膜
目
➢ 该 课 题 组 又 于 2006 年 <Advanced Materials>上发表了<Self Assembled
Growth of BiFeO3–CoFe2O4 Nanostructures> , 该 成 果 主 要 提 供 了一种可靠的模板来控制两相异质 结的生长和形貌。(被引量:1118)
04
BFO对有机物的降解
05 BFO用于染料敏化电池和光伏电池
通过掺杂来改善BFO的铁电和 铁磁性
该文章利用溶胶凝胶法制备了Ca,Nd共掺的BFO样品,Ca和Nd共掺改善了BFO的漏电 流和室温下的磁性。
通过掺杂来改善BFO的铁电和 铁磁性
该文章是我本科时针对掺杂引起BFO的结构变化,并由结构变化所引起的磁性变化进行 了一定的解释。
录
01 通过掺杂来改善BFO的铁电和铁磁性 02 利用固相反应法制备BFO与铁电体或者铁磁体的固
铁酸铋基半导体陶瓷材料的电阻率与热电性能的研究

铁酸铋基半导体陶瓷材料的电阻率与热电性能的研究赵琨2006级物理学基地班20061001179(山东大学物理学院,山东济南,250100)摘要:采用传统固相烧结法分别制备了纯铁酸铋、10%铋过量的铁酸铋半导体陶瓷材料和不同元素掺杂改性的铁酸铋基杂质半导体陶瓷材料,研究了不同的掺杂改性对铁酸铋基陶瓷材料在常温下的直流电阻的影响。
实验结果表明,少量钙的掺杂取代最大程度的减小了铁酸铋基陶瓷材料的直流电阻率。
同时可以看出,少量钙的掺杂并没有使晶格发生畸变,没有改变陶瓷的微观结构,并且对晶界势垒、电导激活能的影响较小,但是却可以使其直流电阻率大大减小,从而极大的改善了铁酸铋基陶瓷材料的热电性能。
为进一步探究其热电性能,选择(Bi0.96Ca0.04)FeO3陶瓷,研究了其物相结构、直流电阻率及热电参数随温度的变化规律,并获得了最佳的热电性能。
实验结果表明,(Bi0.96Ca0.04)FeO3陶瓷的Seebeck系数在一定的温度范围内变化很小,保持在530 μV K-1左右。
在510 ℃时,(Bi0.96Ca0.04)FeO3陶瓷的电阻率达到最小,同时功率因子达到最大值,为14.2 μW m-1K-2。
本论文中首次报道了铁酸铋基陶瓷材料的热电性能,其最佳适用温度为510 ℃,最佳的热电性能为功率因子达到14.2 μW m-1 K-2。
为进一步认识铁酸铋基陶瓷材料做出了一定的探索,填补了该领域研究的一项空白,可进一步研究扩大其应用领域,提高应用价值。
关键词:铁酸铋,半导体陶瓷,电阻率,热电性能中图分类号:O482.6Research on electrical resistivity and thermoelectric properties of bismuth ferric based semiconductiveceramic materialsZhao Kun(School of Physics, Shandong University, Jinan 250100, China) Abstract: Pure bismuth ferric, 10% excess of bismuth of the bismuth ferric semiconductor ceramic materials and different elements of the doped bismuth ferric based impurity semiconductor ceramic materials were prepared by the traditional solid-phase sintering. The effects on DC resistance at room temperature of different doping modification of the doped bismuth ferric based impurity semiconductor ceramic materials were studied. The Experimental results show that a small amount of calcium doping reduced the DC resistance at room temperature of different doping modification of the doped bismuth ferric based impurity semiconductor ceramic materials to the utmost extent. At the same time, we can see that a small amount of calcium doping does not cause the crystal lattice to have the distortion, no change in the ceramic micro-structure, and has no influence on the grain boundary barrier and the conductance activation energy, but it can substantially reduce the rateof DC resistance, which may greatly improve the thermoelectric properties of the doped bismuth ferric based impurity semiconductor ceramic materials. In order to further explore its thermoelectric properties, (Bi0.96Ca0.04)FeO3 ceramics was selected, the phase of their structure, the rule of change of resistivity and thermoelectric properties with the temperature were studied and the best thermal performance were obtained. The results show that, (Bi0.96Ca0.04)FeO3 ceramics has a Seebeck coefficient, whose change is very small of a certain range of temperature, remain at 530 μV K-1or so. At 510 ℃,the rate of resistance is the smallest, while the power factor achieves the maximum value at the same time, for 14.2 μW m-1. This paper reported in the thermoelectric properties of the bismuth ferric based semiconductor ceramic materials for the first time, the application of the best temperature is 510 ℃, the best performance of thermoelectric power factor reaches 14.2 μW m-1. This paper made a certain amount of exploration, which can be made to fill a gap in the study in this area, in order to further understand the bismuth ferric based semiconductor ceramic materials. Further study may be made in order to expand its applications and to enhance the value.Key words:bismuth ferric, semiconductive ceramics, electrical resistivity, thermoelectric properties1.引言1.1 热电材料热电材料也称为温差电材料,是一种能够实现热能和电能之间直接相互转换的功能材料。
铁酸铋_实验报告

一、实验目的1. 了解铁酸铋的制备方法;2. 掌握铁酸铋的物理、化学性质;3. 分析铁酸铋在制备过程中的影响因素。
二、实验原理铁酸铋(BiFeO3)是一种重要的钙钛矿型铁电材料,具有优异的介电、压电和磁电性能。
在制备过程中,通常采用固相反应法。
该法是将Bi2O3和Fe2O3按一定比例混合,在高温下进行反应,得到铁酸铋。
三、实验仪器与试剂1. 仪器:高温炉、电子天平、研钵、烧杯、坩埚、加热器、马弗炉、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等。
2. 试剂:Bi2O3、Fe2O3、乙醇、稀盐酸、无水乙醇等。
四、实验步骤1. 准备原料:称取一定量的Bi2O3和Fe2O3,按照一定比例混合均匀。
2. 研磨:将混合后的原料放入研钵中,加入少量无水乙醇,研磨至粉末状。
3. 混合:将研磨好的粉末放入烧杯中,加入适量的稀盐酸,搅拌溶解。
4. 过滤:将溶解后的溶液进行过滤,得到滤液。
5. 蒸发:将滤液放入烧杯中,加热蒸发至近干。
6. 干燥:将蒸发后的固体放入坩埚中,在高温炉中加热至120℃左右,干燥2小时。
7. 焙烧:将干燥后的固体放入马弗炉中,在600℃下焙烧2小时。
8. 取出:将焙烧后的固体取出,冷却至室温。
9. XRD分析:对制备的铁酸铋进行XRD分析,确定其物相组成。
10. SEM分析:对制备的铁酸铋进行SEM分析,观察其微观结构。
五、实验结果与分析1. XRD分析:通过XRD分析,发现制备的铁酸铋为单相铁酸铋,其晶格参数为a=0.879nm,b=0.879nm,c=1.053nm。
2. SEM分析:通过SEM分析,发现制备的铁酸铋为纳米颗粒状,颗粒尺寸约为100-200nm。
3. 影响因素分析:(1)原料配比:Bi2O3和Fe2O3的配比对铁酸铋的制备有较大影响。
当Bi2O3和Fe2O3的摩尔比为1:1时,制备的铁酸铋性能较好。
(2)研磨时间:研磨时间越长,原料的混合程度越高,有利于铁酸铋的制备。
铁酸铋光催化材料研究进展

铁酸铋光催化材料研究进展铁酸铋是唯一一种在室温下存在的单相多铁材料,因其具有较高的铁电居里温度、较大的剩余极化强度、较小的禁带宽度和多铁特性,受到国内外的广泛关注。
本文综述了铁酸铋制备方法及掺杂元素对铁酸铋性能的影响,提出了亟需解决的问题。
标签:铁酸铋;制备方法;掺杂;性能1 引言BiFeO3材料是现如今已发现的为数不多一种在室温以上表现出多铁性能(铁电性及反铁磁性)的材料,其在信息存储、光电感应、传感器和自旋电子学等领域有着极其重要的应用。
由于具有较高的理论剩余极化强度,展现出了其具有的潜在的铁电性能,有可能替代现在实际应用的铁电材料中部分含铅材料,如替代错钛酸铅,成为无铅铁电体的重要候选材料之一。
又由于具有弱反铁磁性能,能够与铁电性一起发生磁电耦合效应,进一步拓展了其潜在应用价值。
因此吸引着众多的科学家来研究如何合成BiFeO3材料及研究其多铁性能内在机制。
近年来,科学工作者已尝试通过各种途径改善材料的多铁性能,在改善其性能方面确实起到了良好的效果。
概括起来主要通过以下几种途径:第一途径,通过寻找合适的制备方法,降低制备过程中的烧结温度,改善制备工艺,通过这种途径在合成具有多铁性能的铁酸铋取得了良好效果;第二条途径,通过缩小BiFeO3材料颗粒尺寸,实现材料纳米化,来达到增强其多铁性能的目的,其主要是通过采用先进的制备工艺及方法,并改善工艺步骤来达到目的;第三条途径,通过摻杂改性,调节材料的多铁性能;第四条途径,制备BiFeO3薄膜材料;第五条途径,通过与其他铁电铁磁材料进行复合,形成固溶体或复合材料。
这种方法通过引入铁电体提供该种多铁性材料体系的内部电场,或者通过引入铁磁性物质提供该种多铁性材料体系的内部磁场,来增强BiFeO3基固溶体材料的多铁性能,增加其磁电耦合系数,获得更好的磁电亲合效果。
2 铁酸铋的结构和磁性研究1957年,铁酸铋被Roye等人首次合成。
1960年,俄国科学家首次对铁酸铋的结构进行了研究,并提出了铁酸铋的R3c结构。
【国家自然科学基金】_铁电电容器_基金支持热词逐年推荐_【万方软件创新助手】_20140730

2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12
科研热词 非晶ni-al 铁电薄膜 第一性原理 立方相 电滞回线 电子能带结构 漏电流 溶胶-凝胶 正交相 掺锰铁酸铋 光 p(vdf-trfe)
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
科研热词 推荐指数 溶胶-凝胶法 4 锆钛酸铅 3 集成薄膜 2 铁电电容器 2 磁控溅射法 2 漏电流 2 掺锰铁酸铋 2 pzt 2 锡酸盐 1 铁酸铋 1 铁电性能 1 钌酸锶 1 透明铁电电容器 1 退火工艺 1 脉冲激光沉积 1 电极 1 电学性能 1 玻璃基lsco/pzt/lsco电容器 1 快速退火 1 导电机制 1 外延薄膜 1 sol-gel法 1 pt/pzt/ito 1
2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
2011年 科研热词 铁电电容器 pzt ni-al 非晶ti-al薄膜 阻挡层 铁电性质 过渡层 输运性质 脉冲激光沉积 聚偏氟乙烯 磁控溅射 漏电机制 溶胶-凝胶 沉积温度 极化翻转 含氟聚合物 光照 储能 介电 srruo3 pb过量 cu bst薄膜 bifeo3薄膜 bife0.95mn0.05o3薄膜 bife0.95mn0.05o3 推荐指数 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Leakage mechanisms in BiFeO3 thin filmsGary W. Pabst, Lane W. Martin, Ying-Hao Chu, and R. RameshCitation: Appl. Phys. Lett. 90, 072902 (2007); doi: 10.1063/1.2535663View online: /10.1063/1.2535663View Table of Contents: /resource/1/APPLAB/v90/i7Published by the American Institute of Physics.Related ArticlesLarge photoinduced conductivity reduction in thin films of metallic ferromagnetic manganitesAppl. Phys. Lett. 99, 222507 (2011)Temperature-dependent leakage current behavior of epitaxial Bi0.5Na0.5TiO3-based thin films made by pulsed laser depositionJ. Appl. Phys. 110, 103710 (2011)Probing the metal-insulator transition of NdNiO3 by electrostatic dopingAppl. Phys. Lett. 99, 192107 (2011)Evidence of interface conversion and electrical characteristics improvement of ultra-thin HfTiO films upon rapid thermal annealingAppl. Phys. Lett. 99, 182904 (2011)Examination of insulator regime conduction mechanisms in epitaxial and polycrystalline SmNiO3 thin filmsJ. Appl. Phys. 110, 094102 (2011)Additional information on Appl. Phys. Lett.Journal Homepage: /Journal Information: /about/about_the_journalTop downloads: /features/most_downloadedInformation for Authors: /authorsLeakage mechanisms in BiFeO 3thin filmsGary W.Pabst,Lane W.Martin,a ͒Ying-Hao Chu,and R.RameshDepartment of Materials Science and Engineering,University of California,Berkeley,Berkeley,California 94720and Lawrence Berkeley National Laboratory,Berkeley,California 94720͑Received 18December 2006;accepted 13January 2007;published online 13February 2007͒The authors report results of transport studies on high quality,fully epitaxial BiFeO 3thin films grown via pulsed laser deposition on SrRuO 3/DyScO 3͑110͒substrates.Ferroelectric tests were conducted using symmetric and asymmetric device structures with either SrRuO 3or Pt top electrodes and SrRuO 3bottom parison between these structures demonstrates the influence of electrode selection on the dominant transport mechanism.Analysis of film electrical response suggests Poole-Frenkel emission as the limiting leakage current mechanism in the symmetric structure.Temperature dependent measurements yield trap ionization energies of ϳ0.65–0.8eV.No clear dominant leakage mechanism was observed for the asymmetric structure.©2007American Institute of Physics .͓DOI:10.1063/1.2535663͔With an ever-expanding demand for data storage,trans-ducers,and microelectromechanical systems applications,materials with superior ferroelectric and piezoelectric re-sponses are of great interest.The Pb ͑Zr,Tr ͒O 3͑PZT ͒family of materials has served as the cornerstone of these devices to date.A critical drawback of this material,however,is its toxicity due to the lead content.Recently,lead-free ferroelec-tric BiFeO 3͑BFO ͒has attracted a great deal of attention because of its superior properties in both epitaxial and polycrystalline thin films.1–4Its remnant polarization P r and out-of-plane converse piezoelectric coefficient d 33are com-parable to those of the tetragonal,Ti-rich PZT system.More-over,due to a high Curie temperature ͑T C =820–850°C ͒,5,6it also shows great promise for use in high temperature ap-plications.Additionally,previous studies have successfully integrated BFO films on Si substrates by using a SrTiO 3͑STO ͒template layer and SrRuO 3͑SRO ͒bottom electrode.7,8These films exhibited large coercive fields and a large leak-age current,which might limit the applicability of BFO in devices.Such drawbacks have prompted a number of studies attempting to reduce the leakage in BFO through the use of chemical dopants.9–12In fact,Fujitsu Microelectronics America,Inc.recently announced the production of 65nm ferroelectric random access memory devices using Mn-doped BFO to reduce the leakage current.13In this letter we focus our attention on the mechanisms that lead to the large leakage current in high quality BFO thin films.This will,in turn,help guide future work to integrate BFO into functional microelectronic devices.Thin film heterostructures of BFO ͑ϳ175nm ͒and SRO ͑ϳ50nm ͒were grown on DyScO 3͑DSO ͒͑110͒single crys-tal substrates via pulsed laser deposition at 700°C and 100mTorr partial pressure of oxygen.X-ray diffraction ͑Panalytical X’Pert MRD Pro ͒shows that BFO films grown on DSO substrates are single phase and exhibit very narrow rocking curves for the 002-pseudocubic diffraction peak of BFO ͑full width at half maximum ͒of 0.055°pointing to the extremely high quality and epitaxial nature of these films.Additionally,at these thicknesses,the BFO films appear torelax to a derivative of the bulk rhombohedral structure 14as confirmed by a scan of the rhombohedrally nondegenerate 210R reflection in BFO.15,16Note that we do not rule out an additional slight monoclinic distortion to the lattice.Through careful control of the growth of the underlying SRO bottom electrode layer,we can engineer the structural domain con-figuration of the SRO and thereby affect control over the BFO domain structure.17The samples measured here exhibit multivariant domain structures in the BFO films as imaged via piezoforce microscopy ͑not shown here ͒.Top SRO elec-trodes ͑32m diameter ͒were deposited ex situ at room tem-perature and then annealed in oxygen at 600°C for 30min to facilitate crystallization.Finally,approximately 150nm of platinum was sputtered onto the SRO top electrodes to facili-tate a low resistance contact.Ferroelectric and leakage mea-surements were carried out using a Radiant Technologies Inc.RT6000S ferroelectric test system.The ferroelectric nature of these films is demonstrated in Figs.1͑a ͒–1͑d ͒.The polarization–electric field ͑P -E ͒hyster-esis loops are sharp and square and yield a 2P r value of 120–130C/cm 2.Such values are consistent with previ-a ͒Author to whom correspondence should be addressed;electronic mail:lwmartin@FIG.1.͑Color online ͒Ferroelectric data demonstrating intrinsic ferroelec-tricity and sharp hysteresis.Included are ͑a ͒a voltage series,͑b ͒a frequency series of P -V loops,and PUND measurements for ͑c ͒varying voltage at 1s and ͑d ͒varying pulse width for given voltages.APPLIED PHYSICS LETTERS 90,072902͑2007͒0003-6951/2007/90͑7͒/072902/3/$23.00©2007American Institute of Physics90,072902-1ously measured values for BFO grown on STO and STO/Si substrates.1,7,8,15The saturation of the hysteresis loops as a function of voltage͓Fig.1͑a͔͒is key evidence of intrinsic ferroelectricity in thefilms.The weak frequency dependence of the loops͓Fig.1͑b͔͒also supports this claim.To more closely investigate the ferroelectric properties,pulsed polar-ization positive up negative down͑PUND͒measurements were made with a varyingfield at a pulse width of1s͓Fig. 1͑c͔͒and with a varying pulse width atfixed voltages͓Fig. 1͑d͔͒.The switched polarization values͑⌬P͒of these mea-surements match well with the2P r values obtained from the P-E loops.Note also the weak pulse width dependence of Fig.1͑d͒once saturation is reached,yet another indication of robust intrinsic ferroelectricity.The literature on possible leakage current limiting mechanisms for BFO and other similar ferroelectric perov-skite oxides discusses a large number of possible mecha-nisms.These mechanisms fall into two categories,bulk-limited and interface-limited conduction.Of all the possible mechanisms,we consider three in this letter that are com-monly observed in other perovskite oxides.Thefirst mecha-nism is interface-limited Schottky emission,which arises from a difference in Fermi levels between a metal͑electrode͒and an insulator or semiconductor͑film͒.The energy differ-ence creates a potential barrier between the metal and insu-lator that charges must overcome.The current density across a Schottky barrier is18J S=AT2exp−ͫ⌽k B T−1k B T ͩq3V4o Kdͪ1/2ͬ,͑1͒where A is the Richardson constant,⌽is the height of the Schottky barrier,K is the dielectric constant of thefilm,and d is the sample thickness.The second mechanism considered is bulk-limited space-charge-limited conduction͑SCLC͒. The limitation arises from a current impeding space charge forming as charges are injected into thefilm from the elec-trode at a rate faster than they can travel through thefilm. The current density for SCLC is19,20J SCLC=9o K8V2d3,͑2͒whereis carrier mobility.The third mechanism is bulk-limited Poole-Frenkel emission.This conduction mechanism involves the consecutive hopping of charges between defect trap centers.The ionization of the trap charges can be both thermally andfield activated.The conductivity for Poole-Frenkel emission is21PF=c exp−ͫE I k B T−1k B T ͩq3Vo Kdͪ1/2ͬ,͑3͒where c is a constant and E I is the trap ionization energy.Typical leakage data͑I-V͒as a function of applied volt-age for a175nm thickfilm are shown in Fig.2͑a͒.Data for both positive and negative biases have been graphed on the same axis.By plotting our data in various manners as a func-tion of voltage,we can quickly gain insight into the nature of the leakage mechanism.According to Eq.͑2͒above,SCLC can be investigated by plotting the leakage data as J vs V2,as shown in Fig.2͑b͒.If SCLC were the dominant leakage mechanism,a straightfit to the data in Fig.2͑b͒would be possible.Since it shows an exponential trend,SCLC can be ruled out as the leakage current limiting mechanism for these BFO thinfilms for the voltage range measured.Similar analysis of Eqs.͑1͒and͑3͒tells us that if a Schottky barrier controls the leakage current or if Poole-Frenkel emissions are dominant,semilog plots of J/T2vs V1/2andvs V1/2,respectively,will show straight linefits to the data.Both these plots,however,will often show regions with straightfits to the data,as shown in Figs.2͑c͒and2͑d͒. To identify which mechanism might be dominating the leak-age current,it is necessary to extract the dielectric constant from the slopes of these plots.Iakovlev et al.report the index of refraction for BFO to be n=2.5;22thus we should expect a dielectric constant of K=n2=6.25.From the Schottky plot͓Fig.2͑c͔͒,a dielectric constant ofϳ0.77is obtained for a negative bias as well as forfields aboveϳ2V for a positive bias.The Poole-Frenkel plot ͓Fig.2͑d͔͒on the other hand yields a dielectric constant of ϳ6.25for a negative bias and a positive bias aboveϳ2V.Since this is the expected value of the dielectric constant and the value obtained from the Schottky plot is off by an order of magnitude,it is indicative of the leakage mechanism in these BFOfilms being dominated by Poole-Frenkel emis-sions.This is not unexpected as Poole-Frenkel emission has been identified as the dominant leakage mechanism in other ferroelectric perovskites such as PZT.23,24In the case of BFO,the likely trap center is the Fe ions.It is widely ac-cepted that oxygen vacancies formed during growth cause a portion of the Fe3+ions to become Fe2+.These Fe ions are often considered to be responsible for the high leakage of BFO.To determine the value of the Poole-Frenkel trap ioniza-tion energy we measured leakage as a function of tempera-ture.Plots ofvs1000/T forfixed voltages are shown in Fig.3͑a͒.From these slopes,ionization energies are ex-tracted and used to extrapolate the zero-field ionization en-ergy͓Fig.3͑b͔͒.The low voltages not conforming to the trend are not unexpected as we do not observe Poole-Frenkel dominating in positive bias at lowfields.Fitting with the higherfield data points yields a trap ionization energy of ϳ0.8eV.It should be noted,however,that multiplemea-FIG.2.͑Color online͒Typical I-V characteristics of the Pt/SRO/BFO/SRO/ DSO thinfilm structures.͑a͒Typical leakage data.Variousfits of these data are shown to help determine the leakage mechanism:͑b͒SCLC,͑c͒Schottky barrier,or͑d͒Poole-Frenkel emission.surements yielded a range of about 0.65–0.8eV for the trap ionization energy.In contrast,analysis of data taken with Pt top electrodes ͑Pt/BFO/SRO//DSO ͒yielded inclusive results.Figure 4shows data for Pt analogous to that of Fig.2for the Pt/SRO top electrodes.First,notice that there is a considerable asym-metry between I -V behavior for positive and negative biases ͓Fig.4͑a ͔͒,consistent with the fact that the top ͑Pt ͒and bot-tom ͑SRO ͒electrodes have different work functions and electron affinities.Both polarities were prepoled and the re-sponse was repeatable.At this time the origin of this behav-ior is unknown.The SCLC,Schottky,and Poole-Frenkel plots all show regions with reasonable fits ͓Figs.4͑b ͒and 4͑c ͔͒.The SCLC plot shows a linear fit above ϳ2.5V for increasing negative bias ͓Fig.4͑b ͔͒.This same region,how-ever,also shows a near perfect match for Schottky emission ͓Fig.4͑c ͔͒.The higher voltage regions of both positive and the decreasing negative biases show linear fits for the Poole-Frenkel mechanism as well ͓Fig.4͑c ͔͒.The best Poole-Frenkel fit yields a dielectric constant of 5.5,which is slightly lower than the expected 6.25but not unreasonable.These data indicate that using Pt alone as a top electrode to contact BFO films creates a capacitor with competing leak-age mechanisms.In summary,we have shown the leakage mechanism of BFO with symmetric SRO electrodes on DSO substrates to be dominated by Poole-Frenkel emission.A measured trap ionization energy of 0.65–0.8eV may correspond to the ion-ization of Fe 2+ions.We have also shown that there is no clear dominant mechanism when Pt is used as the top elec-trode.Careful studies and attention must be given to choose a contact with the appropriate material properties to alleviate this effect.This work is supported by the Director,Office of Basic Energy Sciences,Materials Sciences Division of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231and ONR-MURI Grant No.E21-6RU-G4.1J.Wang,J.B.Neaton,H.Zheng,V .Nagarajan,S.B.Ogale,B.Liu,D.Viehland,V .Vaithyanathan, D.G.Schlom,U.V .Waghmare,N. A.Spaldin,K.M.Rabe,M.Wuttig,and R.Ramesh,Science 299,1719͑2003͒.2W.Eerenstein,F.D.Morrison,J.Dho,M.G.Blamire,J.F.Scott,and N.D.Mathur,Science 307,1203͑2005͒.3J.Wang,A.Scholl,H.Zheng,S.B.Ogale,D.Viehland,D.G.Schlom,N.A.Spaldin,K.M.Rabe,M.Wuttig,L.Mohaddes,J.Neaton,U.Waghmare,T.Zhao,and R.Ramesh,Science 307,5713͑2005͒.4K.Y .Yun,M.Noda,and M.Okuyama,Appl.Phys.Lett.83,3981͑2003͒.5Y .N.Venevtsev,G.Zhadanov,and S.Solov’ev,Sov.Phys.Crystallogr.4,538͑1960͒.6G.Smolenskii,V .Isupov,A.Agranovskaya,and N.Kranik,Sov.Phys.Solid State 2,2651͑1961͒.7J.Wang,H.Zheng,Z.Ma,S.Prasertchoung,M.Wuttig,R.Droopad,J.Yu,K.Eisenbeiser,and R.Ramesh,Appl.Phys.Lett.85,2574͑2004͒.8S.Y .Yang,F.Zavaliche,L.Mohaddes-Ardabili,V .Vaithyanathan,D.G.Schlom,Y .J.Lee,Y .H.Chu,M.P.Cruz,Q.Zhan,T.Zhao,and R.Ramesh,Appl.Phys.Lett.87,102903͑2005͒.9C.Wang,M.Takahashi,H.Fujino,X.Zhao,E.Kume,T.Horiuchi,and S.Sakai,J.Appl.Phys.99,054104͑2006͒.10C.-F.Chung,J.-P.Lin,and J.-M.Wu,Appl.Phys.Lett.88,242909͑2006͒.11G.L.Yuan and S.W.Or,Appl.Phys.Lett.88,062905͑2006͒.12X.Qi,J.Dho,R.Tomov,M.G.Blamire,and J.L.MacManus-Driscoll,Appl.Phys.Lett.86,062903͑2005͒.13Fujitsu Microelectronics America,Inc.,Sunnyvale,CA,Press Release,2August 2006͑/ca/en/news/pr/fma_20060802.html ͒.14F.Kubel and H.Schmid,Acta Crystallogr.,Sect.B:Struct.Sci.46,698͑1990͒.15R.R.Das,D.H.Kim,S.H.Baek,C.B.Eom,F.Zavaliche,S.Y .Yang,R.Ramesh,Y .B.Chen,X.Q.Pan,X.Ke,M.S.Rzchowski,and S.K.Streiffer,Appl.Phys.Lett.88,242904͑2006͒.16G.Xu,H.Hiraka,G.Shirane,J.Li,J.Wang,and D.Viehland,Appl.Phys.Lett.86,182905͑2005͒.17Y .-H.Chu,Q.Zhan,L.W.Martin,M.P.Cruz,P.-L.Yang,G.W.Pabst,F.Zavaliche,S.-Y .Yang,J.-X.Zhang,L.-Q.Chen,D.G.Schlom,I.-N.Lin,T.-B.Wu,and R.Ramesh,Adv.Mater.͑Weinheim,Ger.͒18,2307͑2006͒.18W.Schottky,Naturwiss.26,843͑1938͒.19N.F.Mott and R.W.Gurney,Electronic Processes in Ionic Crystals ͑Clarendon,Oxford,1940͒.20mpert and P.Mark,Current Injection in Solids ͑Academic,New York,1970͒.21J.Frenkel,SR 5,685͑1938͒.22S.Iakovlev,C.-H.Solterbeck,M.Kuhnke,and M.Es-Souni,J.Appl.Phys.97,094901͑2005͒.23B.Nagaraj,S.Aggarwal,T.K.Song,T.Sawhney,and R.Ramesh,Phys.Rev.B 59,16022͑1999͒.24P.Zubko,D.J.Jung,and J.F.Scott,J.Appl.Phys.100,114113͑2006͒.FIG.3.͑Color online ͒͑a ͒Temperature dependence of conductivity with linear fits ͑red lines ͒used to extract trap ionization energies.͑b ͒Plot of trap ionization energies from ͑a ͒in order to extrapolate the zero-field trap ion-izationenergy.FIG.4.͑Color online ͒Typical I -V characteristics of the Pt/BFO/SRO/DSO thin film structures.͑a ͒Typical leakage data.Various manipulations of these data are shown to help determine the leakage mechanism:͑b ͒SCLC,͑c ͒Schottky barrier,or ͑d ͒Poole-Frenkel emission.。