材料科学基础 课后题第三章 习题解答

合集下载

材料科学基础习题与参考答案(doc14页)完美版

材料科学基础习题与参考答案(doc14页)完美版

材料科学基础习题与参考答案(doc14页)完美版第⼀章材料的结构⼀、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离⼦键、⾦属键、组元、合⾦、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第⼆相强化。

⼆、填空题1、材料的键合⽅式有四类,分别是(),(),(),()。

2、⾦属原⼦的特点是最外层电⼦数(),且与原⼦核引⼒(),因此这些电⼦极容易脱离原⼦核的束缚⽽变成()。

3、我们把原⼦在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的⾦属晶格分别为(),()和()。

5、体⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有体⼼⽴⽅晶格的常见⾦属有()。

6、⾯⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有⾯⼼⽴⽅晶格的常见⾦属有()。

7、密排六⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),具有密排六⽅晶格的常见⾦属有()。

8、合⾦的相结构分为两⼤类,分别是()和()。

9、固溶体按照溶质原⼦在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原⼦与溶剂原⼦相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、⾦属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、⾦属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合⾦中不作为()相,⽽是少量存在起到第⼆相()作⽤。

13、CuZn、Cu5Zn8、Cu3Sn的电⼦浓度分别为(),(),()。

材料科学基础-作业参考答案与解析

材料科学基础-作业参考答案与解析

材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100} {110} {111}面间距FCC2a24a33aBCC2a22a36a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.附表1-2 立方晶系中原子的面密度和线密度晶面/晶向{100} {110} {111} <100> <110> <111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10°时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳. 答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50% 的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解 (1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L →β;2时, 两相平衡共存, 0.50.9L β;2~2′ 时, 剩余液相发生共晶转变0.50.20.9L βα+;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--.P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P 中F 相对量: F P 6.690.77100%9.38%6.690.001w w -=⨯⨯=-. P 中Fe 3C 相对量: 3Fe C 10.6%9.38% 1.22%w =-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d ′ 中共晶渗碳体相对量: d Cm L 4.3 2.11100%41.27%6.69 2.11w w '-=⨯⨯=-共晶L d ′ 中二次渗碳体相对量: d Cm L 6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w '--=⨯⨯⨯=--II L d ′ 中共析渗碳体相对量:d Cm L 6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w '---=⨯⨯⨯⨯=---共析 4. 根据下列数据绘制Au-V 二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV 3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V 1522V V V (1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)β(0.45)w w w w w w =+===+==℃℃解 根据已知数据绘制的Au-V 二元相图参见附图4-3.附图4-3 Au-V 二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c 1, c 2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为 722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂ 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222k s cos 3001111cos 2001(1)01cos cos 60.646 1.57 MPa.m mϕλϕλτσ==++⨯++==++⨯-++=====即至少需要1.57 MPa 的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg 中的最重要滑移系. 那种晶体的塑性最好, 为什么?答: 滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有体心立方结构, 主要滑移系可表示为 {110}<111>, 共有6×2 = 12个; Al 具有面心立方结构, 其滑移系可表示为 {111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe 居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs= τk/ m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答: 孪生与滑移的异同点如附表6-1所示.附表6-1 晶体滑移与孪生的比较锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章固态相变。

无机材料科学基础习题及解答

无机材料科学基础习题及解答

第一章晶体几何基础1-1 解释概念:等同点:晶体结构中,在同一取向上几何环境和物质环境皆相同的点。

空间点阵:概括地表示晶体结构中等同点排列规律的几何图形。

结点:空间点阵中的点称为结点。

晶体:部质点在三维空间呈周期性重复排列的固体。

对称:物体相同部分作有规律的重复。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合为对称型,也称点群。

晶类:将对称型相同的晶体归为一类,称为晶类。

晶体定向:为了用数字表示晶体中点、线、面的相对位置,在晶体中引入一个坐标系统的过程。

空间群:是指一个晶体结构中所有对称要素的集合。

布拉菲格子:是指法国学者A.布拉菲根据晶体结构的最高点群和平移群对称及空间格子的平行六面体原则,将所有晶体结构的空间点阵划分成14种类型的空间格子。

晶胞:能够反应晶体结构特征的最小单位。

晶胞参数:表示晶胞的形状和大小的6个参数(a、b、c、α、β、γ).1-2 晶体结构的两个基本特征是什么?哪种几何图形可表示晶体的基本特征?解答:⑴晶体结构的基本特征:①晶体是部质点在三维空间作周期性重复排列的固体。

②晶体的部质点呈对称分布,即晶体具有对称性。

⑵14种布拉菲格子的平行六面体单位格子可以表示晶体的基本特征。

1-3 晶体中有哪些对称要素,用国际符号表示。

解答:对称面—m,对称中心—1,n次对称轴—n,n次旋转反伸轴—n螺旋轴—ns ,滑移面—a、b、c、d1-5 一个四方晶系的晶面,其上的截距分别为3a、4a、6c,求该晶面的晶面指数。

解答:在X、Y、Z轴上的截距系数:3、4、6。

截距系数的倒数比为:1/3:1/4:1/6=4:3:2晶面指数为:(432)补充:晶体的基本性质是什么?与其部结构有什么关系?解答:①自限性:晶体的多面体形态是其格子构造在外形上的反映。

②均一性和异向性:均一性是由于部质点周期性重复排列,晶体中的任何一部分在结构上是相同的。

异向性是由于同一晶体中的不同方向上,质点排列一般是不同的,因而表现出不同的性质。

材料科学基础第四版答案

材料科学基础第四版答案

材料科学基础第四版答案【篇一:材料科学基础课后习题答案】txt>第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。

其中一次键的结合力较强,包括离子键、共价键和金属键。

一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。

二次键的结合力较弱,包括范德瓦耳斯键和氢键。

二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。

6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。

一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。

相反,对于离子键或共价键结合的材料,原子排列不可能很致密。

共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。

9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。

答:单相组织,顾名思义是具有单一相的组织。

即所有晶粒的化学组成相同,晶体结构也相同。

两相组织是指具有两相的组织。

单相组织特征的主要有晶粒尺寸及形状。

晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。

单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。

等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。

对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。

如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。

如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。

材料科学基础习题库第章凝固

材料科学基础习题库第章凝固

第三章纯金属的凝固(一) 填空题1.金属结晶两个密切联系的基本过程是和2 在金属学中,通常把金属从液态向固态的转变称为,通常把金属从一种结构的固态向另一种结构的固态的转变称为。

3.当对金属液体进行变质处理时,变质剂的作用是4.铸锭和铸件的区别是。

5.液态金属结晶时,获得细晶粒组织的主要方法是6.金属冷却时的结晶过程是一个热过程。

7.液态金属的结构特点为。

8.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的,高温浇注的铸件晶粒比低温浇注的,采用振动浇注的铸件晶粒比不采用振动的,薄铸件的晶粒比厚铸件。

9.过冷度是。

一般金属结晶时,过冷度越大,则晶粒越。

(二) 判断题1 凡是由液态金属冷却结晶的过程都可分为两个阶段。

即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。

2.凡是由液体凝固成固体的过程都是结晶过程。

3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。

( )4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的过程。

( )5.当纯金属结晶时,形核率随过冷度的增加而不断增加。

( ) 6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。

( )7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。

( )8.所有相变的基本过程都是形核和核长大的过程。

( )9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细( )10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。

( )11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。

( )12. 金属的理论结晶温度总是高于实际结晶温度。

( )13.在实际生产条件下,金属凝固时的过冷度都很小(<20℃),其主要原因是由于非均匀形核的结果。

( )14.过冷是结晶的必要条件,无论过冷度大小,均能保证结晶过程得以进行。

( )15.在实际生产中,评定晶粒度方法是在放大100倍条件下,与标准晶粒度级别图作比较,级数越高,晶粒越细。

材料科学基础课后习题

材料科学基础课后习题

材料科学基础课后习题课后习题第⼀章原⼦结构与结合键1.原⼦中⼀个电⼦的空间位置和能量可⽤哪四个量⼦数来决定?2.在多电⼦的原⼦中,核外电⼦的排布应遵循哪些个原则?3.在元素周期表中,同⼀周期或同⼀主族元素原⼦结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?4.何谓同位素?为什么原⼦量不总为整数?5.铬的原⼦序数为24,共有四种同位数:4.31%的Cr原⼦含有26个中⼦,83.76%含有28个中⼦,9.55%含有29个中⼦,且2.38%含有30个中⼦。

试求铬的原⼦量?6.铜的原⼦序数为29,原⼦量为63.54,它共有两种同位素Cu63和Cu65,试求两种铜的同位素之含量百分⽐。

7.铟的原⼦序数为49,除了4f亚层之外其它内部电⼦亚层均已填满。

试从原⼦结构⾓度来确定铟的价电⼦数。

8.铂的原⼦序数为78,它在5d亚层中只有9个电⼦,并且在5f层中没有电⼦,请问在Pt的6s亚层中有⼏个电⼦?9.已知某元素原⼦序数为32,根据原⼦的电⼦结构知识,试指出它属于哪个周期?哪个族?并判断其⾦属性强弱。

10.原⼦间的结合键共有⼏种?各⾃特点如何?11.已知Si的原⼦量为28.09,若100g的Si中有5×1010个电⼦能⾃由运动,试计算:(a)能⾃由运动的电⼦占价电⼦总数的⽐例为多少?(b)必须破坏的共价键之⽐例为多少?12.S的化学⾏为有时象6价的元素,⽽有时却象4价元素。

试解释S这种⾏为的原因。

13.⾼分⼦链结构分为近程结构和远程结构。

他们各⾃包括内容是什么?14.按分⼦材料受热的表现分类可分为热塑性和热固性两⼤类,试从⾼分⼦链结构⾓度加以解释之。

15.分别绘出甲烷(CH4)和⼄烯(C2H4)之原⼦排列与键合。

16.下图1-1绘出三类材料——⾦属、离⼦晶体和⾼分⼦材料之能量与距离关系曲线,试指出它们各代表何种材料。

参考答案1.主量⼦数n、轨道⾓动量量⼦数li、磁量⼦数mi和⾃旋⾓动量量⼦数Si。

材料科学基础(武汉理工大学,张联盟版)课后习题及答案 - 副本

第二章答案2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。

答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。

2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。

定量:晶胞参数。

2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。

离子键的特点是没有方向性和饱和性,结合力很大。

共价键的特点是具有方向性和饱和性,结合力也很大。

金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。

范德华键是通过分子力而产生的键合,分子力很弱。

氢键是两个电负性较大的原子相结合形成的键,具有饱和性。

2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。

2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。

不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。

2-8写出面心立方格子的单位平行六面体上所有结点的坐标。

答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。

材料科学基础习题及答案

第一章习题1.原子中一个电子的空间位置和能量可用哪四个量子数来决定?2.在多电子的原子中,核外电子的排布应遵循哪些原则?3.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?4.何谓同位素?为什么元素的相对原子质量不总为正整数?5.铬的原子序数为24,它共有四种同位素:4.31%的Cr原子含有26个中子,83.76%含有28个中子,9.55%含有29个中子,且2.38%含有30个中子。

试求铬的相对原子质量。

6.铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu63和Cu65,试求两种铜的同位素之含量百分比。

7.锡的原子序数为50,除了4f亚层之外其它内部电子亚层均已填满。

试从原子结构角度来确定锡的价电子数。

8.铂的原子序数为78,它在5d亚层中只有9个电子,并且在5f层中没有电子,请问在Pt的6s亚层中有几个电子?9.已知某元素原子序数为32,根据原子的电子结构知识,试指出它属于哪个周期?哪个族?并判断其金属性强弱。

10.原子间的结合键共有几种?各自特点如何?11.图1-1绘出三类材料—金属、离子晶体和高分子材料之能量与距离关系曲线,试指出它们各代表何种材料。

12.已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少?13.S的化学行为有时象6价的元素,而有时却象4价元素。

试解释S这种行为的原因。

14.A和B元素之间键合中离子特性所占的百分比可近似的用下式表示:这里x A和x B分别为A和B元素的电负性值。

已知Ti、O、In和Sb的电负性分别为1.5,3.5,1.7和1.9,试计算TiO2和InSb的IC%。

15.Al2O3的密度为3.8g/cm3,试计算a)1mm3中存在多少原子?b)1g中含有多少原子?16.尽管HF的相对分子质量较低,请解释为什么HF的沸腾温度(19.4℃)要比HCl的沸腾温度(-85℃)高?17. 高分子链结构分为近程结构和远程结构。

复旦大学材料科学导论课后习题问题详解(搭配:石德珂《材料科学基础》教材)

0
2
0
0
2
1
0
2
1
1
2
1
-1
3
0
0
3
1
0
9.材料的三级和四级结构可以通过加工工艺来改变,那么材料的二级结构可以改变吗?为什么?
答:原子的结合键是材料的二级结构。对于单一的材料来说,其价键结构是不可以通过加工工艺来改变的。但是实际工程应用中,通过一定的加工工艺来改变材料的二级结构,比如金刚石具有共价键,石墨具有共价键和物理键,而石墨等碳质原料和某些金属在高温高压下可以反应生成金刚石,即一定程度上改变了材料的二级结构。
答:(1)
其中,晶面间距最大的晶面为(100)
(2)
其中,晶面间距最大的晶面为(110)
(3)
其中,晶面间距最大的晶面为
7.已知Na+和Cl-的半径分别为0.097nm和0.181nm,请计算NaCl中钠离子中心到:(1)最近邻离子中心间的距离;(2)最近邻正离子中心间的距离;(3)第二个最近的氯离子中心间的距离;(4)第三个最近的氯离子中心间的距离;(5)它最近的等同位置间的距离。
答:
7.试计算原子N壳层内的最大电子数。若K,L,M和N壳层中所有能级都被填满,试确定该原子的原子数。
答:N壳层内最大电子数:
1s22s22p63s23p63d104s24p64d104f145s25p66s2该原子的原子数是70
8.试写出Al原子13个电子的每个电子的全部量子数。
答:
n
l
m
ms
1
0
<110>
< >
晶向的原子密度
6.求下列晶面的晶面间距,并指出晶面间距最大的晶面。

太原理工大学材料科学基础习题及参考答案(全)

太原理工大学材料科学基础习题及参考答案(全)第一章原子结构与结合键习题1-1计算下列粒子的德布罗意波长:(1)质量为10-10kg,运动速度为0.01m?s-1的尘埃;(2)速度为103m/s的氢原子;(3)能量为300eV的自由电子。

1-2怎样理解波函数ψ的物理意义?1-3在原子结构中,ψ2和ψ2dτ代表什么?1-4写出决定原子轨道的量子数取值规定,并说明其物理意义。

1-5试绘出s、p、d轨道的二维角度分布平面图。

1-6多电子原子中,屏蔽效应和钻穿效应是怎样影响电子的能级的?1-7写出下列原子的基态电子组态(括号内为原子序号):C(6),P(15),Cl(17),Cr(24)。

1-8形成离子键有哪些条件?其本质是什么?1-9试述共价键的本质。

共价键理论包括哪些理论?各有什么缺点?1-10何谓金属键?金属的性能与金属键关系如何?1-11范德华键与氢键有何特点和区别?参考答案:1-1利用公式λ=h/p=h/mv、E=hν计算德布罗意波长λ。

1-8离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原子相互作用时,产生电子得失而形成的离子固体的结合方式。

1-9共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。

共价键理论包括价键理论、分子轨道理论和杂化轨道理论。

1-10当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属建。

由于存在自由电子,金属具有高导电性和导热性;自由电子能吸收光波能量产生跃迁,表现出有金属光泽、不透明;金属正离子以球星密堆方式组成,晶体原子间可滑动,表现出有延展性。

第二章材料的结构习题2-1定义下述术语,并注意它们之间的联系和区别。

晶系,空间群,平移群,空间点阵。

2-2名词解释:晶胞与空间格子的平行六面体,并比较它们的不同点。

2-3(1)一晶面在x、y、z轴上的截距分别为2a、3b和6c,求出该晶面的米勒指数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章习题解答
3,7,10,11,25
3/113、非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料?
解答:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。

由于负离子缺位和间隙正离子使金属离子过剩,产生金属离子过剩(n 型)半导体,正离子缺位和间隙负离子使负离子过剩,产生负离子过剩(p 型)半导体。

、说明下列符号的含义:
6/113
解答:钠原子空位,
钠离子空位、带一个单位负电荷,
氯离子空位、带一个单位正电荷,
最邻近的Na+空位、Cl-空位形成的缔合中心,
Ca2+占据K位置、带一个单位正电荷,
Ca原子位于Ca原子位置上,
Ca2+处于晶格间隙位置。

1
2
7/113、写出下列缺陷反应式:(l )NaCl 溶入CaCl 2中形成空位型固溶体;
(2)CaCl 2溶入NaCl 中形成空位型固溶体;(3)NaCl 形成肖特基缺陷;
(4)AgI 形成弗伦克尔缺陷(Ag +进入间隙)。

解答:
(l )NaCl 溶入CaCl 2中形成空位型固溶体
∙++−−→−Cl Cl Ca CaCl V Cl Na' NaCl 2
(2)CaCl 2 溶入NaCl 中形成空位型固溶体
'N a Cl N a N aCl 2V Cl 2Ca CaCl ++−−→−∙
(3)NaCl 形成肖特基缺陷
∙+→Cl N a 'V V O
(4)Agl 形成弗伦克尔缺陷(Ag +进入间隙)
A g 'i A g V Ag Ag +→∙
10/113、MgO 晶体的肖特基缺陷生成能为84kJ/mol ,计算该晶体1000K 和1500K 的缺陷浓度。

(答:6.4×10-3,3.5×10-2)。

解答:
n/N = exp(-E/2RT),R=8.314,
T=1000K :n/N=6.4×10-3;
T=1500K :n/N=3.5×10-2。

3
11/113、非化学计量化合物 Fe x O 中,Fe 3+/Fe 2+ = 0.1,求 Fe x O 中的空位浓度及x 值。

(答: 2.25×10-5;0.956)
解答:'
'Fe O Fe FeO 32V O 32Fe O Fe ++−→−∙
y 2y y
Fe 3+2y Fe 2+1-3y O
1.0312=-y y
2y = 0.1-0.3y y = 0.1/2.3 = 0.0435
0435.0=y
x = 1-y = 0.9565 Fe 0.9565O
--------- 2
''1022.29565.010435
.011][-⨯=+=+-=x x
V Fe
25/113、某种NiO 是非化学计量的,如果NiO 中Ni 3+/Ni 2+=10-4,问每立方米中有多少载流子?
解答:设非化学计量化合物为Ni x O ,
'
'N i O N i N iO 32V 3O 2Ni O Ni ++−−→−∙
y 2y y
Ni 3+2y Ni 2+1-3y O
Ni 3+/Ni 2+=2y/(1-3y )=10-4
则 y=5×10-5, x=1-y=0.99995, Ni 0.99995
载流子浓度即为空位浓度:['
'Ni V ] = y/1+x = =2.5×10-5(数量比)。

相关文档
最新文档