代数学 第一章(群)习题解答21-45-SHI

合集下载

群论试题及答案

群论试题及答案

群论试题及答案一、选择题(每题2分,共10分)1. 群的运算满足以下哪些条件?A. 封闭性B. 结合律C. 存在单位元D. 存在逆元答案:ABCD2. 以下哪个不是阿贝尔群的性质?A. 群的运算满足交换律B. 群中任意两个元素的乘积仍然在群中C. 群中存在唯一的单位元D. 群中每个元素都有唯一的逆元答案:B3. 群的阶数是指:A. 群中元素的个数B. 群中元素的最小公倍数C. 群中元素的最大公约数D. 群中元素的乘积答案:A4. 以下哪个不是子群的性质?A. 子群是群的一个非空子集B. 子群中的元素对群的运算封闭C. 子群包含群的单位元D. 子群的阶数必须小于原群的阶数答案:D5. 群的同态映射满足以下条件:A. 保持运算结构B. 映射到的群与原群是同构的C. 保持单位元和逆元D. 映射是双射答案:A二、简答题(每题5分,共20分)1. 简述群的定义及其基本性质。

答案:群是一个集合G,配合一个二元运算*,满足以下四个条件: - 封闭性:对于任意的a, b ∈ G,有a * b ∈ G。

- 结合律:对于任意的a, b, c ∈ G,有(a * b) * c = a * (b * c)。

- 存在单位元:存在一个元素e ∈ G,使得对于任意的a ∈ G,有e * a = a * e = a。

- 存在逆元:对于G中的任意元素a,存在一个元素b ∈ G,使得a * b = b * a = e。

2. 什么是群的同构映射?请给出一个例子。

答案:群的同构映射是指两个群之间的一个双射函数f: G → H,它保持群的运算结构,即对于任意的a, b ∈ G,有f(a * b) = f(a) * f(b)。

例如,考虑整数加法群(Z, +)和模n的剩余类群(Zn, +),映射f: Z → Zn,定义为f(k) = k mod n,这是一个同构映射。

3. 解释什么是群的正规子群,并给出一个例子。

答案:群的正规子群是指满足以下条件的子群N:对于G中的任意元素g和N中的任意元素n,都有g * n * g^-1 ∈ N。

高等代数课后习题1-5章答案

高等代数课后习题1-5章答案

高等代数课后习题1-5章答案高等代数是大学数学中的一门重要基础课程,对于数学专业的学生来说,掌握这门课程的知识和解题技巧至关重要。

在学习过程中,课后习题是巩固知识、提高能力的重要途径。

下面,我将为大家详细解答高等代数 1-5 章的课后习题。

第一章主要介绍了多项式的基本概念和运算。

在这一章的习题中,我们经常会遇到多项式的整除、最大公因式、因式分解等问题。

例如,有这样一道题:设\(f(x)\)和\(g(x)\)是两个多项式,且\((f(x), g(x))= 1\),证明:对于任意的多项式\(h(x)\),都存在多项式\(u(x)\)和\(v(x)\),使得\(f(x)u(x) + g(x)v(x) =h(x)\)。

解答这道题,我们可以利用辗转相除法来求出\(f(x)\)和\(g(x)\)的最大公因式。

因为\((f(x), g(x))= 1\),所以存在\(u_1(x)\)和\(v_1(x)\),使得\(f(x)u_1(x) + g(x)v_1(x) = 1\)。

然后,将等式两边同时乘以\(h(x)\),得到\(f(x)(u_1(x)h(x))+ g(x)(v_1(x)h(x))= h(x)\),令\(u(x) = u_1(x)h(x)\),\(v(x) =v_1(x)h(x)\),即证明了结论。

第二章是行列式的相关内容。

行列式的计算是这一章的重点和难点。

比如,有一道求行列式值的题目:\(\begin{vmatrix} 2 & 1 & 3 \\ 1 &-1 & 2 \\ 3 & 2 & 1 \end{vmatrix}\)对于这道题,我们可以按照行列式的展开法则进行计算。

先按照第一行展开:\\begin{align}&\begin{vmatrix} 2 & 1 & 3 \\ 1 &-1 & 2 \\ 3 & 2 & 1 \end{vmatrix}\\=&2\times\begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix}-1\times\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix}+3\times\begin{vmatrix} 1 &-1 \\ 3 & 2 \end{vmatrix}\\=&2\times(-1\times1 2\times2) 1\times(1\times1 2\times3) +3\times(1\times2 (-1)\times3)\\=&2\times(-5) 1\times(-5) + 3\times(5)\\=&-10 + 5 + 15\\=&10\end{align}\第三章是线性方程组。

《线性代数》课后习题集与答案第一章B组题

《线性代数》课后习题集与答案第一章B组题

《线性代数》课后习题集与答案第一章B组题基础课程教学资料第1章矩阵习题一(B)1、证明:矩阵A 与所有n 阶对角矩阵可交换的充分必要条件是A 为n 阶对角矩阵. 证明:先证明必要性。

若矩阵A 为n 阶对角矩阵. 即令n 阶对角矩阵为:A =??n a a a 00000021,任何对角矩阵B 设为n b b b0000021,则AB=??n n b a b a b a000002211,而BA =??n n a b a b a b000002211,所以矩阵A 与所有n 阶对角矩阵可交换。

再证充分性,设 A =??nn n n n n b b b b b b b b b 212222111211,与B 可交换,则由AB=BA ,得:nn n n n n n n n b a b a b a b a b a b a b a b a b a 221122222111122111=nn n n n n n n n b a b a b a b a b a b a b a b a b a 212222221211121111,比较对应元素,得0)(=-ij j i b a a ,)(j i ≠。

又j i a a ≠,)(j i ≠,所以0=ij b ,)(j i ≠,即A 为对角矩阵。

2、证明:对任意n m ?矩阵A ,T AA 和A A T均为对称矩阵. 证明:(TAA )T =(A T )T A T =AA T,所以,TAA 为对称矩阵。

(A A T)T =A T (A T )T =A T A ,所以,A A T 为对称矩阵。

3、证明:如果A 是实数域上的一个对称矩阵,且满足O A =2 ,则A =O . 证明:设A =??nn n n n n a a a a a a a a a 212222111211,其中,ij a 均为实数,而且ji ij a a =。

由于O A =2,故A 2=AA T =nn n n n n a a a a a a a a a 212222111211nn nnn n a a a a a a a a a 212221212111=0。

线性代数(第一~三章)习题解答

线性代数(第一~三章)习题解答

习 题 一1.解:(1)31542的逆序数=2+0+2+1+0=5(2)264315的逆序数=1+4+2+1+0+0=8 (3)54321的逆序数=4+3+2+1=10(4))12)(32(135)2)(22(246---n n n n =1+2+3+…(2n -1)=2)1(+n n 2.解:四阶行列式中含有31a 的项可表示为42142143121)1()1(j j j j j j a a a a τ-,其中421,,j j j 为2,3,4的全排列。

故带有负号的项有:43312412a a a a -,44312213a a a a -,42312314a a a a -3.解:xx x x x x 347165423112展开式中含有4x 的项必须每行都取含x 的项相乘,即41863x x x x x =⋅⋅⋅=,含有3x 的项为x x x x x x ⋅⋅⋅-+⋅⋅⋅-2)1(763)1()1324()4231(ττ3128x -=4.证明:(反证法)假设该行列式不为零,则不为零的元素的个数≥n ,从而为零的元素的个数≤n n -2,与已知行列式中有n n -2个以上元素为零矛盾。

所以该行列式为零。

5.解:(1)2456323652-=⨯-⨯=+ (2)))(())((22222222b ab a b a b ab a b a ba b a b ab a b ab a ++--+-+=+-+++-33b a +=3332)(b b a =--(3)022=bababa (4)45500251190221242513122113-=-----r r r r (5)3711107403112311740532224332453213312213=-----↔-----r r r r r r r r(6)))((0))((0111121212222c b a a c a c c b a a b a b bca ar r r r abc c acb bbca a ++--++-------- 0)(10)(101))(()()(232=++++-----c b a c b a bca aa c ab ac r a b r 提取提取(7)43123524323556485437r r r r --23214123524031102115437r r r r r r -+--3524010002111400---24100011302410000111000524343231-按第一行展开--++-r r r r r r22411=-按第三列展开 (8)132141873754169521321r r r r r ---1226400622069521321r r ---2312226400622043101321r r r r ----346400240043101321r r -----16400240043101321=---(9)4321c c c c xa b c a x c b b c x a c b a x +++----xa b x c b a a x c x c b a bc x x c b a cb a xc b a --++--++--++-++131214 )(r r r r r r x c b a ----++ 提取cx b a a b c a b x a c cb bc a x c b a x c b a -------------++0001)(4223c c c c ++c x b c a x ca c ab x cb c b a x b c a x ca b c a x c b a --+----+----+---+---++-++000001)( 432c c c --cx b c a x c a c a b x cx a b ca b c a x c b a --+----+---++-++-++00000001)( 按第一列展开cx b c a x ca c ab xc x a b x c b a --+-------++--++0|00)())()()(()1()321(x a c b c b a x b c a x x c b a +-++---+----++-=τ ))()()((x c b a x b a c x c a b x c b a ----------++=6.解:(1) 证明:cb a a cb c b a cba cb a ++++++222并提取公因式321c c c ++c b a a b c b a ba++++++21211c)b 2(ac b a c b a bac b a c c c c ++++++--00001)(213123)(2c b a ++=(2)bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++5行列式性质bz ay by ax az by ax bx az ay bx az bz ay ax +++++++bz ay by ax bx by ax bx az bz bxaz bz ay by ++++++ 提取公因式bz ay by ax z by ax bx az y bxaz bz ay xa +++++++bzay by ax xby ax bx az z bx az bz ay yb ++++++5行列式性质ay by ax zax bx az y az bz ay x a ++++bz by ax zby bx az ybx bz ay x a ++++bz ay ax xby ax az zbxaz ay y b ++++bz ay by x by ax bx z bxaz bz y b +++y by ax z x bx az y zbzay x a +++2+++00bz ay y xby ax x zbxaz z yb +++25行列式性质y ax z x azy z ay x a 2+y by z x bx y zbzx a 2+ayy x ax x zazz yb 2+bz y x by x zbxz y b 2yxzx z y zy x a 3+++00zy x y xzx z yb 3 1223,c c c c ↔↔第二个行列式y xzx z y z y xb a )(33+ (3)用数学归纳法①当1=n 时,1)11(22x x x D n +===,命题成立;②设k n ≤时命题成立,即k k x k D )1(+=,则1+=k n 时,)1()1(22222100020000002100002100002+⨯+=k k n x x x x x x x x x D=kk x x x x x x x x x x⨯210002000000210000210000222222kk x x x x x x x ⨯-210020000020000122221212)1(22--⋅-+⋅=-=k k k k kx x x k x D x xD 11)2()22(+++=-+k k x k x k k n x n )1(+=综合①、②可得对一切自然数n ,都有n n x n D )1(+=. 7.解:(1)1444414444144441 =n D),,3,2(1n i r r i =+14444144441434343434 ----n n n n)34()34(--n n 提取1444414444141111 )34(,3,2 4 1-=-n ni r r i 300030000301111---)34()3(1--=-n n(2)121212555333321321321321---=n n n n n n n n Dni i c i ,3,2=提取2222224442223213213211111!---n n n n n n n∏≤<≤-nj i j i n 122)(! 式行列利用范德蒙(3)递推法nn n n a a a a a a a a D -------=-+11000010000001100001100001132211112r r +nn n a a a a a a a ------11000100000011000010000113221D n展开按第一列nn n a a a a a a a ------11001000000110000100001143321a -11-a 1Dnn 2=(4)nnn n n n nnn d c d c d c b a b a b a D 111111112----=行取第一行和第拉普拉斯定理n 2nn nnd c b a .11111111----n n n n d c d c b a b a22)( --n n n n n D c b d a 421111))((-------n n n n n n n n n D c b d a c b d a 可得类似111133331111)())((d c b a c b d a c b d a c b d a n n n n n n n n -------∏=-ni i i i i c b d a 1)((5)na xxxx a x xx x a x x x x a3211,2,1 1-=-+n i c c i inn n a a x x x a x x a a x x x a a x x x a -------- 000000 00 00 001332212,1, 1 -=--n n i r r i ixa a a x x a x a a a x x a a a x xx a n n n n -------------1132321212 000 000002000 020 00∏∏=-+=---+-ni i i n n i i a a x x x a n 2111)2()1()( 展开列按第 ∏∏=-=-++-ni i i ni i x a a x x a 211)2()(8.解:(1)计算系数行列式232142234321212r r r r D --=51050321430-=----5321032143031-+--r r 210321200=-101312173237323211r r r r D --=01240310211=----2321242274331212r r r r D --=311050331450r r -----31105033160r r ----302321342734321112r r r r D --==----5503215303131103215305r r +---101103212005=-- 所以方程组有唯一解011==D D x , 322==D Dx , 133-==DD x (2)计算系数行列式4352323211431121----=D 101110740064112132141312------++r r r r r r 10111010402021104424123------++-r r r r r r6114022111=---展开按c 43513232114711231----=D 24232143r r r r r r +-+01212901919114700610--- 324241212919190610)1(r r c +----+展开按60121290121006101413122224312322211731131r r r r r r D --+----=1421505440001041131c c -------11501440001040131-----390144000104013134---+r r 3900104131)1(434---+展开按c3131r r +303900104001)1(43-=--+41523232174313213--=D 141312223r r r r r r ---2510541042201321-------2423225105410211013212)2(r r r r r -+--------提取06003300211013212----- 0603302112C 1----展开按36=- 13522232714331214--=D 141312223r r r r r r ---5110441024203121-------2423251104410121031212)2(r r r r r -+--------提取61003200121031212----- 613201212C 1----展开按18= 所以方程组有唯一解1011==D D x , 522-==D D x , 633-==D D x , 344==DDx (3)计算系数行列式5733856155334231=D 343214131222716043307160423133r r r r r r r r r r ++--------17004330150042312004330150001013124---r r r r 64310)1(20204331502331=-⨯+展开按展开按r C3412125738856855364233r r r r D --=24232123230856831304233r r r r r r -++----0100270831301303--13123442320833013)1(r r r r r -+---+展开按600203913-=--57838581556342312=D 022435713022043507130423131131224---------展开按c r r r r r r11420720253232313---+r r r r r 提取12-58338861563343313=D 020453736020045307360433131131224---------展开按c r r r r r r 6=87338561653332314=D 220533316220053303160323131131224---------展开按c r r r r r r122275)1(3220533750212121=-⨯++展开按c r r所以方程组有唯一解111-==D D x , 222-==D D x , 133==D D x , 244==DDx9.解:(1)λλλλ--=3111211D 1232rr c c --λλλλλ----3321022132122332021---+---λλλλλλλ展开按r )2)(2()22)(2()3)(2(2---=--+--=λλλλλλλλ)1()2(2+--=λλ当0=D 时,即时=-或12λλ=,齐次方程组有非零解. (2)324124122-+--=λλλD 32423601221212---+-----λλλλλr r c cλλλλλλλ--+--+-----2460)1(3223621展开按r [])6)(4)(1()23)(2()6(32-+---++--=λλλλλλ)4)(2)(3(241423-++-=+-=λλλλλλ+-当0=D 时,即时=或-或423λλλ=-=,齐次方程组有非零解.习 题 二1. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛---=+776491056532B AB (2)⎪⎪⎪⎭⎫ ⎝⎛------=-4332412332E AB T2.解:(1)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--000046696432 (2)⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛834231413121342(3)()⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎭⎫ ⎝⎛-339226113113321 (4)()2321113-=⎪⎪⎪⎭⎫⎝⎛--(5)⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛------777468505642531432321234643755467 (6)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x()⎪⎪⎪⎭⎫⎝⎛++++++=321333223113332222112331221111x x x x a x a x a x a x a x a x a x a x a)()()(233332233113233222222112133112212111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++=3.解:⎪⎪⎪⎭⎫ ⎝⎛---=210143321TA , ⎪⎪⎭⎫ ⎝⎛=234112T B(1)⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=112143213142210143321B A T(2)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛=124113213142031234112A B T(3)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛==1165511210143321234112)(TT T A B AB4.解:从321321,,,,x x x y y y 到的线性变换可表示为:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321y y y A x x x ,其中⎪⎪⎪⎭⎫ ⎝⎛---=352143231A ;从321321,,,,y y y z z z 到的线性变换可表示为:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321z z z B y y y ,其中⎪⎪⎪⎭⎫ ⎝⎛=231341652B ,所以从321321,,,,x x x z z z 到的线性变换可表示为:=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321z z z AB x x x ⎪⎪⎪⎭⎫ ⎝⎛---352143231⎪⎪⎪⎭⎫ ⎝⎛231341652=⎪⎪⎪⎭⎫ ⎝⎛321z z z ⎪⎪⎪⎭⎫ ⎝⎛--312823111⎪⎪⎪⎭⎫ ⎝⎛321z z z 所以,从321321,,,,x x x z z z 到的线性变换为: ⎪⎩⎪⎨⎧+-=++=+-=32823 321332123211z z z x z z z x z z z x5.解:(1)E A A A f 43)(2+-=⎪⎪⎭⎫ ⎝⎛--=2321⎪⎪⎭⎫ ⎝⎛--2321-3⎪⎪⎭⎫ ⎝⎛--2321E 4+=⎪⎪⎭⎫⎝⎛8008 (2) 2201310111)(2--=--=x x x x x x f=--=E A A A f 22)(2⎪⎪⎭⎫ ⎝⎛0211⎪⎪⎭⎫ ⎝⎛0211⎪⎪⎭⎫ ⎝⎛-02112E 2-⎪⎪⎭⎫⎝⎛---=01216.(1)∵222))(()(B BA AB A B A B A B A +++=++=+ ∴要使2222)(B AB A B A ++=+,则必须AB BA = (2) ∵22))((B BA AB A B A B A -+-=-+∴要使22))((B A B A B A -=-+,则必须0=+-BA AB ,即AB BA = (3) 当AB BA =时,用数学归纳法证明kk k B A AB =)(①1=k 时,显然kk k B A AB =)(2=k 时,222)()()()(B A B AB A B AB A ABAB AB AB k =====,所以kk k B A AB =)(②设n k =时,有kk k B A AB =)(,则1+=n k 时B BA B A B A B A AB B A AB AB AB AB n n n n n n n n K)()()()()()(1!-+=====B AB B A n n )(1-=21)(B A B A n n -=11)(++===n n n n B A B AB A可见,1+=n k 时,也有k k k B A AB =)(所以,当AB BA =时,对一切正整数k 都有 k k k B A AB =)(7.解:(1) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛----111122221111n n n n n(2) ∵⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--100123122∴⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--为奇数为偶数n n n 2312 10012312 (3) ∵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1002101211001100112,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1002101211001100113⎪⎪⎪⎭⎫⎝⎛100110011⎪⎪⎪⎭⎫⎝⎛=100310331 =⎪⎪⎪⎭⎫ ⎝⎛41001100113100110011⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛100110011⎪⎪⎪⎭⎫ ⎝⎛=100310331⎪⎪⎪⎭⎫⎝⎛100110011 ⎪⎪⎪⎭⎫ ⎝⎛=100410641 ∴⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛100102)1(1100110011n n n n n8.证明:∵A 、B 为对称矩阵,∴=T A A ,=TB B(1) ∵ AC C C A C AC C T T T T T T T ==)()(∴ AC C T是对称矩阵(2) ∵ ABABA A B A B A ABABA TT T T T T ==)(∴ ABABA 是对称矩阵(3) ∵E E AA TT ==-)(1,=T A A∴==--T T T A A AA )()(11A A E A A T 11)(--== ∴ 11)(--=A A T ∴ 1-A 是对称矩阵9.解:(1) ∵027342≠=∴⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-23477342173421⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛-23472173421(2) ∵01cos sin sin cos cos sin 22≠=+=-θθθθθθ∴ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--θθθθθθθθsin cos cos sin 11sin cos cos sin 1⎪⎪⎭⎫⎝⎛-=θθθθsin cos cos sin (3) ∵232132643321532r r r r --01320321110≠-=---- ∴⎪⎪⎪⎭⎫⎝⎛643321532可逆 又∵0643211==A , 3633112=-=A , 2432113-==A 2645321=-=A , 3635222-==A , 1433223=-=A 1325331-==A , 1315232-=-=A , 1213233==A ∴⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-1121331206433215323323133222123121111A A A A A A A A A(4) ⎪⎪⎪⎭⎫⎝⎛-------=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛-----11133131121212113123233323133222123121111A A A A A A A A A(5) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----1212335123240634332311(6) 把⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000210032104321D 分块为⎪⎪⎭⎫ ⎝⎛B C A 0, 其中⎪⎪⎭⎫ ⎝⎛=1021A ,⎪⎪⎭⎫ ⎝⎛=1021B ,⎪⎪⎭⎫⎝⎛=3243C , 则01≠==B A D ,∴矩阵D 可逆。

-随机数学-习题解答-第一章答案

-随机数学-习题解答-第一章答案

1 证明 对可列不交并封闭的代数是σ代数.证:只需证1i i A +∞=∈F 。

先证:对可列不交并封闭的代数也对可列并封闭; 事实上,设F 为代数, i A ,1,2,i =,是F 上的可列个集合。

则11i i i i A B ∞∞===∑;其中1111,,2,3,...i cc i i B A B A A A i -===显然,,1,2,...i B i =是F 上的可列不交集列,由题设,1i i B ∞=∈∑F ,从而1i i A ∞=∈F ,。

由于F 为代数,故ciA ∈ F ,1,2,i =,从而1c i i A ∞=∈F ,,再由F 为代数,则1cc i i A ∞=⎛⎫∈ ⎪⎝⎭F ,,即1i i A +∞=∈F 。

证毕。

2 设C 为Ω上的集类,A ⊂Ω,令{|}A A B B ⋂=⋂∈C C ,记()A A σ⋂C 表示A ⋂C 生成的σ代数,则()()A A A σσ⋂=⋂C C ,此结论可推广至单调类和λ类. 3 设(,)ΩF ,(,)E E 和(,)G G 都是可测空间,f 为Ω到E 的关于F 的可测映射,h 为E 到G 的关于E 的可测映射,则h f 为Ω到G 的关于F 的可测映射. 4 (1)设,f g ∈U 可积,如果对于A ∀∈U ,都有AAfd gd μμ=⎰⎰,则f g =,..a s 成立;(2)设μ是σ有限测度,fd μ⎰和gd μ⎰存在,若对于A ∀∈U,都有AAfd gd μμ=⎰⎰,则f g =,..a s 成立.5 证明:设f 为(,,)μΩF上的可测函数,令1/(||)p p pff d μ=<+∞⎰,则存在简单函数列{,1}n f n ≥,使得lim 0n pn f f→+∞-=.6 设123(,),(,),(,)ΩΩΩA B C 为三个可测空间,证明()⨯⨯=⨯⨯A B C A B C7 设(,)f t ω满足:(1)1,(,)t R f t ∀∈⋅是(,)ΩF 的可测函数; (2),(,)f ωω∀∈Ω⋅是1R 上的连续函数; 则f 是乘积空间1(,)R ⨯Ω⨯B F 上的可测函数.8 若在A ∈A 上随机变量X Y =,则(|)(|)A A E X E Y χχ=A A ,..a s 成立. 证:显然,(|)A E X χA 和(|)A E Y χA 都关于A 可测,且B ∀∈A ,(|)(|)(|)(|)A A A BBBAA A BBBE X dP E X dP X dPY dP E Y dP E Y dPχχχχχχ====⎰⎰⎰⎰⎰⎰A A A A由条件期望的唯一性,(|)(|)A A E X E Y χχ=A A 。

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。

2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。

故 max 47n =,min 3M k =,(),61k =。

故 当M 最小值是3的倍数,但不是2的倍数。

3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。

由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。

若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。

所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。

综上所述,所求正整数对()()(),4,111,1x n =、。

4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。

高中数学第一章集合与常用逻辑用语总结(重点)超详细(带答案)

高中数学第一章集合与常用逻辑用语总结(重点)超详细单选题1、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.2、已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,|x−y∣∈A}中所含元素的个数为()A.2B.4C.6D.8答案:C分析:根据题意利用列举法写出集合B,即可得出答案.解:因为A={1,2,3},所以B={(2,1),(3,1),(3,2),(1,2),(1,3),(2,3)},B中含6个元素.故选:C.3、若集合A={x∣|x|≤1,x∈Z},则A的子集个数为()A.3B.4C.7D.8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.4、已知集合M={x|1−a<x<2a},N=(1,4),且M⊆N,则实数a的取值范围是()A.(−∞,2]B.(−∞,0]C.(−∞,13]D.[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13]. 故选:C5、已知集合P ={x|1<x <4},Q ={x|2<x <3},则P ∩Q =( )A .{x|1<x ≤2}B .{x|2<x <3}C .{x|3≤x <4}D .{x|1<x <4}答案:B分析:根据集合交集定义求解.P ∩Q =(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.6、已知集合S ={x ∈N|x ≤√5},T ={x ∈R|x 2=a 2},且S ∩T ={1},则S ∪T =( )A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}答案:C分析:先 根据题意求出集合T ,然后根据并集的概念即可求出结果.S ={x ∈N|x ≤√5}={0,1,2},而S ∩T ={1},所以1∈T ,则a 2=1,所以T ={x ∈R|x 2=a 2}={−1,1},则S ∪T ={−1,0,1,2}故选:C.7、设集合A ={x |−2<x <4},B ={2,3,4,5},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.多选题9、若集合A={x|x=m2+n2,m,n∈Z},则()A.1∈A B.2∈A C.3∈A D.4∈A答案:ABD解析:分别令m2+n2等于1,2,3,4,判断m,n是否为整数即可求解.对于选项A:m2+n2=1,存在m=0,n=1或m=1,n=0使得其成立,故选项A正确;对于选项B:m2+n2=2,存在m=1,n=1,使得其成立,故选项B正确;对于选项C:由m2+n2=3,可得m2≤3,n2≤3,若m2=0则n2=3可得n=±√3,n∉z,不成立;若m2=1则n2=2可得n=±√2,n∉z,不成立;若m2=3,可得n2=0,此时m=±√3,m∉z,不成立;同理交换m与n,也不成立,所以不存在m,n为整数使得m2+n2=3成立,故选项C不正确;对于选项D:m2+n2=4,此时存在m=0,n=2或m=2,n=0使得其成立,故选项D正确,故选:ABD.10、已知全集U =R ,集合A ={x|−2≤x ≤7},B ={x|m +1≤x ≤2m −1},则使A ⊆∁U B 成立的实数m 的取值范围可以是( )A .{m|6<m ≤10}B .{m|−2<m <2}C .{m|−2<m <−12}D .{m|5<m ≤8}答案:ABC分析:讨论B =∅和B ≠∅时,计算∁U B ,根据A ⊆∁U B 列不等式,解不等式求得m 的取值范围,再结合选项即可得正确选项.当B =∅时,m +1>2m −1,即m <2,此时∁U B =R ,符合题意,当B ≠∅时,m +1≤2m −1,即m ≥2,由B ={x|m +1≤x ≤2m −1}可得∁U B ={x|x <m +1或x >2m −1},因为A ⊆∁U B ,所以m +1>7或2m −1<−2,可得m >6或m <−12, 因为m ≥2,所以m >6,所以实数m 的取值范围为m <2或m >6,所以选项ABC 正确,选项D 不正确;故选:ABC.11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1 答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( )A .函数F (x )是偶函数B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图.由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确;函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确.故选:ABD[0,1]13、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),A.由(−4,4)⊂≠(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;B.由(−3,3)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.填空题14、已知集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},则M的子集个数______答案:8分析:按x、y、z的正负分情况计算m值,求出集合M的元素个数即可得解.因为集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},当x、y、z都是正数时,m=4,当x、y、z都是负数时,m=-4,当x、y、z中有一个是正数,另两个是负数时,m=0,当x、y、z中有两个是正数,另一个是负数时,m=0,于是得集合M中的元素有3个,所以M的子集个数是8.所以答案是:815、设P,Q为两个非空实数集合,P中含有0,2两个元素,Q中含有1,6两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是_________.答案:4分析:求得P+Q的元素,由此确定正确答案.依题意,0+1=1,0+6=6,2+1=3,2+6=8,所以P+Q共有4个元素.所以答案是:416、已知全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},若A={1,2,3},B={−1,0,1},则∁U(A⊙B)______.答案:{x∈Z||x|≥4}分析:利用集合运算的新定义和补集运算求解.全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},A={1,2,3},B={−1,0,1}所以A⊙B={−3,−2,−1,0,1,2,3},所以∁U(A⊙B)={x||x|≥4,x∈Z}.所以答案是:{x||x|≥4,x∈Z}解答题17、已知集合A={x|(x−a)(x+a+1)≤0},B={x|x≤3或x≥6}.(1)当a=4时,求A∪B;(2)当a>0时,若“x∈A”是“x∈B”的充分条件,求a的取值范围.答案:(1)A∪B={x|x≤4或x≥6};(2)(0,3].解析:(1)当a=4时,解出集合A,计算A∪B;(2)由集合法判断充要条件,转化为A⊆B,进行计算.解:(1)当a=4时,由不等式(x−4)(x+5)≤0,得−5≤x≤4,故A={x|−5≤x≤4},又B={x|x≤3或x≥6},所以A∪B={x|x≤4或x≥6}.(2)若“x∈A”是“x∈B”的充分条件,等价于A⊆B,因为a>0,由不等式(x−a)(x+a+1)≤0,得A={x|−a−1≤x≤a},又B={x|x≤3或x≥6},要使A⊆B,则a≤3或−a−1≥6,综合可得a的取值范围为(0,3].小提示:名师点评有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对应集合与p对应集合互不包含.18、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。

高等数学第一章参考答案(精华)

第一章参考答案习题1.11.(1)证:对0,(要使得33110nn ,考虑到311n n,只要1n,即1n)取1=[]+1N ,则当n N 时,有310n,故31lim0nn。

(2)证:2121131393n n n n,对0,(要使得212313n n ,只要1n 即可,即1n)取1=[]+1N ,则当nN 时,有212313n n ,故212lim313nn n 。

(3)证:0,(要使得22sin 10n nn,由于211nn ,只要1n,即1n)取1=[]+1N ,则当nN 时,有2sin 0n n ,则2sin lim0nn n。

(4)证:1111n nn n n故对0,(要使1n n,只要1n ,即21n)取21=[]+1N ,则当n N 时,有10n n,则lim 10nn n ()。

2.证明:对实数a 、b ,0,ab a b证“”ab ,则0a b,故0a b,即a b再证“”假设a b ,不妨令a b ,取0=2a b ,由条件可知=2a ba b,即112,矛盾。

3. 证明:“”,{}n a 收敛于a ,0,N ,当nN 时,na a,即naa a,nN 时,(,)n a U a ,故(,)U a之外最多只含数列n a 的前N 项。

“”,若对0,(,)U a 之外只含数列n a 的有限项,不妨设为120,,...,m k k k a a a ,取|精. |品. |可. |编. |辑. |学. |习. |资. |料. * | * | * | * | |欢. |迎. |下. |载.12max{,,...,}m Nk k k ,则当nN 时,na (,)U a ,即na a{}n a 收敛于a 。

4.证:lim nna a ,则对0,故N ,当nN 时,n a a(由于a ba b ),故此时nna aa alim nna a 。

该命题的逆命题不成立,例如数列{(1)}n,令(1)nna ,则有lim 1nn a ,而lim n n a 不存在。

线性代数第一章到五章(答案)

第一章 行列式一 填空题1. n 阶行列式ij a 的展开式中含有11a 的项数为 (n-1)!2.行列式12n λλλ=(1)212(1)n n n λλλ--3. 行列式1112131422232433344400a a a a a a a a a a 的值11223344a a a a4.在n 阶行列式A =|ij a |中,若j i <时, ij a =0(j i ,=1,2,…,n),则A =1122nna a a解: A 其实为下三角形行列式. 5. 排列134782695的逆序数为 10 . 解:0+0+0+0+0+4+2+0+4=106. 已知排列9561274j i 为偶排列,则=),(j i (8,3) . 解:127435689的逆序数为5,127485639的逆序数为107. 四阶行列式中带有负号且包含a 12和a 21的项为 -a 12a 21a 33a 44 . 解:四阶行列式中包含a 12和a 21的项只有-a 12a 21a 33a 44和a 12a 21a 43a 348.在函数xx xx x x f 21112)(---=中,3x 的系数为 -2 解: 行列式展开式中只有对角线展开项为3x 项.9. 行 列 式xx x x x 2213212113215 含 4x 的项410x解:含4x 的 项 应 为4443322111025x x x x x a a a a =⋅⋅⋅=.10. 若n 阶行列式ij a 每行元素之和均为零,则ij a = 0解:利用行列式性质:把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变11. =5678901201140010302001000 120 .解:将最后一行一次与其前一行互换的到三角行列式12.行列式ccb ba a ------1111111的值是 1 。

解ccb ba a------1111111=1011111a b b cc----=101111a b cc--=1010101abc =113. 行 列 式210000121000002100001200000121012-------- 的 值是 27 。

组合数学第一章习题解答


1.16、n个完全一样的球放到r个有标志的盒中,无一空盒, 试问有多少种方案? 取r个球每盒放一个,然后n-r个放入r个不同盒中,同充许空 盒的放法。 C(r+n-r-1,n-r)=C(n-1,n-r)=C(n-1,r-1)
1.18、8个盒子排成一列,5个有标志的球放到盒子中,每盒 最多放一个球,要求空盒不相邻,问有多少种排列方案? 5!×6×5×4 1.19、n+m位由m个0,n个1组成的符号串,其中n≤m+1,试问 不存在两个1相邻的符号串的数目? (m+1)*m*...*(m-n+2)/n!=C(m+1,n) 1.20、甲单位有10个男同志,4个女同志,乙单位有15个男同 志,10个女同志,由他们产生一个7人的代表团,要求其中甲单 位占4人,面且7人中男同志5位,试问有多少种方案? 按甲单位: C(10,4)C(15,1)C(10,2)+C(10,3)C(4,1)C(15,2)C(10,1)+ C(10,2)C(4,2)C(15,3)
习题:1.15试求从1到1000000的整数中,0出现的次数。 解:先将1到999999的整数都看作6位数,例如2就看作是 000002,这样从000000到999999。0出现了多少次呢? 6×105,某一位取0,其它各位任取。 0出现在最前面的次数应该从中去掉 000000到999999中最左1位的0出现了105次, 000000到099999中左数第2位的0出现了104次, 000000到009999左数第3位的0出现了103次, 000000到000999左数第4位的0出现了102次, 000000到000099左数第5位的0出现了10次, 000000到000009左数第6位的0出现了1次。 因此不合法的0的个数为105+104+103+102+101+1=111111, 不合法的应该去掉,再加整数1000000中的6个0,这样,从1到 1000000的整数中0出现的次数为6×105-111111+6=488895。 问题:在去掉多余的零的过程中,多减去了一部分,例如: 000000这种情况在每次减的过程中都出现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档