专题--数形结合
第7讲 中考物理数形结合及图像专题

第7讲中考物理数形结合及图像专题数学是物理学的语言和工具,在物理中常采用数学图像方法,把物理图像与物理知识的关系表示出来。
物理图像类型虽然复杂,但把握住图像的共性,提高整体认知水平,理解此类题还是有章可循的。
中考试题中常见的坐标图像有以下几种:(1)速度-时间图像、路程-时间图像;(2)质量-体积图像;(3)温度-时间图象;(4)凸透镜像距-物距图像;(5)电流与电压、电流与电阻图像。
解题思路:(1)建立物理情境:仔细审题,构建物理过程的变化情景。
明确已知条件和问题类型。
(2)辨别坐标类型:观察坐标图中横纵坐标物理量名称,判断出坐标类型。
(3)分析图像中点、线、斜率率等的特点:观察坐标图像的类型,结合数学函数知识,分析图像的拐点、交叉点、斜率等表示的物理意义。
(4)数形结合分析物理过程:根据物理知识对变化过程对应的规律进行分析,从问题出发,利用已知条件建立函数关系式,进行解答。
强调:图像问题看标度,数学物理要交互;交点拐点等量点,点线斜率不糊涂;直线曲线分清楚,横纵坐标要同步;物理规律要带入,变化规律看函数。
要点理解:1、图像中的点:一个点对应着一个物理状态。
如图1中点A表示冰在吸热升温过程中的某时刻的温度为-4℃。
其中的“拐点”具有特殊的物理意义,他是两种不同情况发生突变的临界点。
点B表示,冰将要开始发生熔化现象。
点C表示冰的熔化现象结束。
2、图像中的线:图像中的线表示一个特定的物理过程,如图1中的BC段表示冰的整个熔化过程。
吸热而温度保持不变。
线的形状表示特定的数学函数关系。
图2中的曲线表示凸透镜的像距和物距的关系。
3、斜率:图像的斜率对应着除了坐标轴以外的一个新物理量。
斜线的斜率恒定,表示这个物理量大小恒定,曲线表示这个物理量逐渐变化。
如图3中甲是直线,表示导体的电阻是定值,乙是曲线,表示导体的电阻随电压变大而变大。
4、截距:出现在两个坐标轴上的截距,具有一定的物理意义。
5、面积:某些物理图像某一区间的图线与坐标轴所围的面积又常表示一个新的物理量的大小。
《数形结合思想》专题(整理)

数形结合思想知识综述(1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。
(2)解答此类问题必须充分注意以下问题:a. 认识平面坐标系中的两条坐标轴具有垂直关系b. 灵活将点的坐标与线段长度互相转化c. 理解二次函数与二次方程间的关系——抛物线与x轴的交点,横坐标是对应方程的根。
d. 熟练掌握几个距离公式:点P(x,y)到原点的距离e. 具备扎实的几何推理论证能力。
一、填空题(每空5分,共50分)1. 如果a,b两数在数轴上的对应点如图所示:则化简:__________。
2. 已知A,B是数轴上的两点,AB=2,点B表示数-1,则点A表示的数为__________。
3. 已知△ABC的三边之比是,则这个三角形是__________三角形。
4. 已知点A在第二象限,它的横坐标与纵坐标之和是1,则点A的坐标是__________。
(写出符合条件的一个点即可)5. 如图,在梯形ABCD中,AB∥CD,E为CD的中点,△BCE的面积为1,则△ACD 的面积为__________。
6. 已知二次函数的图象如图所示,则由抛物线的特征写出如下含有系数a,b,c的关系式:①②③④,其中正确结论的序号是__________(把你认为正确的都填上)7. 如图,AB是半圆的直径,AB=10,弦CD∥AB,∠CBD=45°,则阴影部分面积为__________。
8. 某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是__________元。
小学奥数-数形结合

专题二 数形结合【方法简介】数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,有助于把握数学问题的本质,“数”和“形”是紧密联系的。
我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。
由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.【应用场合】简易方程:路程问题、和差倍问题,几何应用,统计与可能性 【典型应用1】简易问题应用1:在简易方程题目中最为关键的一点就是找等量关系,通过画线段图就能清晰找出这种关系.先选对参照物,分清楚研究对象,再根据题目画出研究对象的数量关系,最后设未知数,列方程.【题1】小胖和小巧一共有208张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票? [略解]解:设小巧有x 张邮票,那么小胖有3x 张邮票.2083=+x x ,2084=x ,52=x .答:小巧有52张邮票,那么小胖有156张邮票.【技巧贴士】这是一道典型的和倍问题,首先找出等量关系,从图中可以看出小巧与小胖的邮票数之和为208张,再列方程.最后提醒别忘了算小胖的邮票数. 【题2】一辆客车和一辆轿车从宁波出发开往上海,轿车比客车迟开0.3小时,客车平均每小时行驶90千米,轿车平均每小时行108千米.轿车开出多少小时后追上客车? [略解]解:设轿车开出小x 时后追上客车.x x 108903.090=+⨯,x 1827=,5.1=x答:轿车开出1.5小时后追上客车.【技巧贴士】 这是道追及问题,在本题中因为客车与轿车行驶的路程是相等的,我们可以将两辆车的路程画作两段来分析题目,这样更容易找出等量关系. 【题3】小刘和小王两家之间的路程是1500千米,两人同时从家里出发相向而行,小刘平均每分钟走72米,小王平均每分钟走75米,几分钟后两人还相距324米? [略解]解:设x 分钟后两人还相距324米.150********=++x x ,8=x答:设8分钟后两人还相距324米.【技巧贴士】本道题目是将相遇问题进行了改变,我们还可以这样理解题目,小王和小刘之间还有324米就相遇了,所以1500米减去324米,就是他们一共走的总路程,即方程为32415007572-=+x x .【巩固练习】第一期第一部分基础达标1.商店里出售精装、平装两种集邮册.精装集邮册的售价比平装集邮册贵9.6元,是平装集邮册价格的1.6倍,这两种集邮册的售价分别是多少元?2.一辆轿车和一辆大巴士先后从南京出发开往上海,大巴士先行150千米后轿车也出发了,大巴士平均每小时行80千米,轿车平均每小时行100千米.轿车几小时后追上大巴士?3.上海到宁波的高速公路全长296千米,两辆旅游巴士车同时从两地出发,途中巴士车A休息了0.6小时,结果巴士车B1.85小时后与A车在途中相遇.已知B车平均每小时行驶92千米,A车平均每小时行多少千米?第二部分强化训练4.动物园里的狮子和老虎的数量相差14只,狮子的数量比老虎的2倍还多2只,则动物园里的狮子和老虎各有多少只?5.一盒巧克力平均分给几个小朋友,如果每人分6颗,那么还剩下14颗;如果每人分8颗,那么正好分完.一共有多少小朋友?这盒巧克力有多少颗?6.甲乙两人相距若干米,如果两人相对而行,2分钟可以相遇;如果两人同时同向而行,甲在乙后,6分钟可以追上乙.如果乙每分钟走60米,那么甲每分钟走多少米?7.暑假里小诗和小琪从学校出发骑车去电影院看电影.已知小诗骑车速度为每分钟220米,小琪为每分钟280米.小诗出发6分针后小琪去追赶,结果两人同时达到电影院,小琪骑了多少分钟?如果小诗19:00出发,电影19:30开始,那么他们两人能否在电影院开映前进入电影院?8.甲、乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇,如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后多少秒后相遇?9.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?10.甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇.若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB中点3千米的地方.已知甲比乙行得快.甲原来每小时行多少千米?【典型应用2】几何应用应用2:几何题目的实质是以形化数,现阶段我们应该掌握基础图形的面积公式、周长公式和体积公式。
中考数学专题之数形结合

中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
全国高考数学复习微专题:恒成立问题——数形结合法

恒成立问题——数形结合法一、基础知识:1、函数的不等关系与图像特征:(1)若x D ∀∈,均有()()()f x g x f x <⇔的图像始终在()g x 的下方 (2)若x D ∀∈,均有()()()f x g x f x >⇔的图像始终在()g x 的上方2、在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3、要了解所求参数在图像中扮演的角色,如斜率,截距等4、作图时可“先静再动”,先作常系数的函数的图像,再做含参数函数的图象(往往随参数的不同取值而发生变化)5、在作图时,要注意草图的信息点尽量完备6、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点: (1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图像变换作图 (2)所求的参数在图像中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图像上的特征 二、典型例题:例1:已知不等式()21log a x x -<在()1,2x ∈上恒成立,则实数a 的取值范围是_________ 思路:本题难于进行参变分离,考虑数形结合解决,先作出()21y x =-的图像,观察图像可得:若要使不等式成立,则log a y x =的图像应在()21y x =-的上方,所以应为单增的对数函数,即1a >,另一方面,观察图像可得:若要保证在()1,2x ∈时不等式成立,只需保证在2x =时,()21log a x x -<即可,代入2x =可得:1log 22a a ≤⇒≤,综上可得:12a <≤答案:12a <≤小炼有话说:(1)通过常系数函数图像和恒成立不等式判断出对数函数的单调性,进而缩小了参数讨论的取值范围。
(2)学会观察图像时要抓住图像特征并抓住符合条件的关键点(例如本题中的2x =) (3)处理好边界值是否能够取到的问题例2:若不等式log sin 2(0,1)a x x a a >>≠对于任意的0,4x π⎛⎤∈ ⎥⎝⎦都成立,则实数a 的取值范围是___________思路:本题选择数形结合,可先作出sin 2y x =在0,4x π⎛⎤∈ ⎥⎝⎦的图像,a 扮演的角色为对数的底数,决定函数的增减,根据不等关系可得01a <<,观察图像进一步可得只需4x π=时,log sin 2a x x ≥,即log sin 21444aa πππ>⋅=⇒>,所以,14a π⎛⎫∈ ⎪⎝⎭答案:,14a π⎛⎫∈⎪⎝⎭例3:若不等式21x x c +->对任意x R ∈恒成立,求c 的取值范围思路:恒成立不等式变形为21x c x ->-,即2y x c =-的图像在1y x =-图像的上方即可,先作出1y x =-的图像,对于2y x c =-,可看作y x =经过平移得到,而平移的距离与c 的取值有关。
高三数学专题复习11:数形结合思想

专题十一 数形结合思想一、考点回顾1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。
它可以使抽象的问题具体化,复杂的问题简单化。
“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。
2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。
3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。
4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。
5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。
用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。
二、经典例题剖析1.选择题(1)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞解析:因为()g x 是二次函数,值域不会是A 、B ,画出函数()y f x =的图像(图1)易知,当()g x 值域是[)0+,∞时,(())f g x 的仁政域是[)0+,∞,答案:C 。
数形结合法专题研究-备战2021年中考数学解题方法之探究十法(解析版)
备战2020中考数学解题方法专题研究专题10 数形结合法专题【方法简介】数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。
“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
【真题演练】1. (2019•湖北省仙桃市•3分)不等式组的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 【解答】解:解不等式x ﹣1>0得x >1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C .2. (2019•江苏苏州•3分)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )。
A .0x <B .0x >C .1x <D .1x >【答案】D【解答】如下图图像,易得1kx b +>时,1x >故选D 。
y–1–2–312345–1–2–3–4–5123O3. (2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A ,B 和点C ,D ,先用卷尺量得AB =160 m ,CD =40 m ,再用测角仪测得∠CAB =30°,∠DBA =60°,求该段运河的河宽(即CH 的长).【解析】:过点D 作DE ⊥AB 于点E ,可得四边形CHED 为矩形,∴HE =CD =40 m.设CH =DE =x m ,在Rt △BDE 中,∠DBA =60°,∴BE =33x. 在Rt △ACH 中,∠BAC =30°,∴AH =3x.由AH +HE +EB =AB =160 m ,得3x +40+33x =160, 解得x =303,即CH =30 3 m.答:该段运河的河宽为30 3 m .4. (2018·乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【解答】 解:(1)设线段AB 解析式为y =k 1x +b(k≠0),∵线段AB 过点(0,10),(2,14),代入,得⎩⎪⎨⎪⎧b =10,2k 1+b =14,解得⎩⎪⎨⎪⎧k 1=2,b =10.。
专题七数形结合思想【人教版】七年级数学(上册)-【完整版】
A. 文具店
B. 玩具店
C. 文具店西40米
D. 玩具店东-60米
专题七 数形结合思想人教版七年级数学上册 -精品 课件ppt (实用 版)
3. 有理数a,b在数轴上的位置如图所示,则下列各式 正确的是( A )
A. a+b>0
B. ab>0
C. |a|+b<0
D. a-b>0
4. 如图,数轴上标出若干个点,每相邻两点相距1个单
14. 回答下列问题. (1)如图所示,点A,B所代表的数分别为-1,2,在数 轴上画出与A,B两点的距离和为5的点(并标上字母). (2)若数轴上点A,B所代表的数分别为a,b,则A,B 两点之间的距离可表示为AB=|a-b|,那么,当|x+1|+ |x-2|=7时,x的值为多少?当|x+1|+|x-2|>5时,x所对 应的点在数轴上的什么位置?
(1)求A,B两点所对应的数; (2)数轴上点A以每秒1个单位长度出发向左运动,同 时点B以每秒3个单位长度的速度向左运动,在点C处追 上了点A,求点C对应的数; (3)已知在数轴上点M从点A出发向右运动,速度为每 秒1个单位长度,同时点N从点B出发向右运动,速度为 每秒2个单位长度,设线段NO的中点为P,在运动的过 程中线段PO-AM的值是否变化?若不变,求其值;若变 化,请说明理由.
专题七 数形结合思想人教版七年级数学上册 -精品 课件ppt (实用 版)
专题七 数形结合思想人教版七年级数学上册 -精品 课件ppt (实用 版)
15. 已知数轴上有A,B,C三点,分别代表-24,-10, 10,甲、乙两只电子蚂蚁分别从A,C两点同时 相向而行,甲的速度为每秒4个单位.
人教版七年级数学上册课件:专题六 数形结合思想(共14张PPT)
因为BC=AB=AD,所以CD=AD+AB+BC=18(cm).
(2)如答图3-6-4.
因为M,N分别是AD,BC的
中BN点= 12,B所C=以3(AcMm=).12 AD=3(cm),
所以MN=AM+AB+BN=3+6+3=12(cm).
11
拓展提升
6. 已知如图3-6-9,数轴上有A,B,C三个点,分别表示 有理数-24,-10,8,动点P从A出发,以每秒1个单位 的速度向终点C移动,设移动时间为t秒. (1)用含t的代数式表示点P到点A和点C的距离: PA=_____t___,PC=___3_2_-_t__; (2)当点P运动到B点时,点Q从A点出发,以每秒3个 单位的速度向C点运动,Q点到达C点后,再立即以同样 的速度返回,运动到终点A.在点Q开始运动后,P,Q两 点之间的距离能否为2个单位?如果能,请求出此时点 P表示的数;如果不能,请说明理由.
解:因为a<0,所以-a>0.因为b>0,所以-b<0. 所以a-b<a+b<0.所以-a>a+b>a-b.
3
考点二:与几何相关的数形结合 【例3】已知线段AB=10 cm,直线AB上有一点C,且 BC=4 cm,M是线段AC的中点. (1)如图3-6-5,当点C在线段AB上时,求AM的长; (2)若点C在线段AB的延长线上,求BM的长.
13
③如答图3-6-7,当Q点到达C点后返回,且P点在Q 点左侧时,此时有 t+2+3(t-14)-32=32, 解得t=26. 所以此时点P表示的数为2.
④如答图3-6-8,当Q点到达C点后返回,且P点在Q 点右侧时,此时有 t-2+3(t-14)-32=32, 解得t=27. 所以此时点P表示的数为3.
专题(八) 数形结合思想在二次函数中的应用-2021年高考数学核心素养系列专题
核心素养系列(八)数形结合思想在二次函数中的应用研究二次函数的性质,可以结合图象进行.对于含参数的二次函数问题,要明确参数对图象的影响,还要进行分类讨论.【典例1】[典例] 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【素养指导】根据题意做出图像,分别讨论区间落到不同位置上.【解析】f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t + 2.综上可知,f (x )min =221,0,1,01,22,1t t t t t t ⎧+≤⎪<<⎨⎪-+≥⎩【素养点评】解二次函数定区间问题的两点关注(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).【素养专练】若函数g (x )=x 2+2mx -m 2在[1,2)上存在最小值2,求实数m 的值.【解析】g (x )=x 2+2mx -m 2=(x +m )2-2m 2,此二次函数图象的对称轴为直线x =-m .(ⅰ)当-m ≥2,即m ≤-2时,如图①g (x )在[1,2)上单调递减,不存在最小值;(ⅱ)当1<-m <2,即-2<m <-1时,如图②g (x )在[1,-m )上单调递减,在(-m ,2)上单调递增,此时g (x )min =g (-m )=-2m 2≠2;(ⅲ)当-m ≤1,即m ≥-1时,如图③g (x )在[1,2)上单调递增,此时g (x )min =g (1)=1+2m -m 2,令1+2m-m2=2,解得m=1.综上,m=1.。