2011年考研数学三考试大纲(2012可参考)

合集下载

考研路

考研路

为什么考研?该不该考研?
自我认知 现实定位 选择自己的路
选择哪个学校?
• • • • 个人实力 下一步的就业范围 有把握的学江泽民在庆祝北 京大学建校一百周年大会上向全世界宣告: “为了实现现代化,中国要有若干所具有 世界先进水平的一流大学。”由此,中国 教育部决定在实施“面向21世纪教育振兴 行动计划”中,重点支持国内部分高校创 建世界一流大学和高水平大学,简称 “985 工程”。
985名单
一期(34所)清华大学 北京大学 厦门大学 南京大 学 复旦大学 天津大学 浙江大学 南开大学 西安交 通大学 东南大学 武汉大学 上海交通大学山东大 学 湖南大学 中国人民大学吉林大学 重庆大学 电 子科技大学 四川大学 中山大学 华南理工大学 兰 州大学 东北大学 西北工业大学 哈尔滨工业大学 华中科技大学 中国海洋大学 北京理工大学大连理 工大学北京航空航天大学北京师范大学 同济大学 中南大学 中国科学技术大学 二期(5所)中国农业大学 国防科学技术大学中央 民族大学 华东师范大学 西北农林科技大学
北京(26所)清华大学 北京大学 中国人民大学北京工 业大学北京理工大学北京航空航天大学北京化工 大学 北京邮电大学 对外经济贸易大学中国传媒大 学 中央民族大学 中国矿业大学(北京)中央财经大 学 中国政法大学 中国石油大学(北京)中央音乐学 院 北京体育大学北京外国语大学 北京交通大学 北京科技大学 北京林业大学中国农业大学 北京中 医药大学华北电力大学(北京) 北京师范大学 中国 地质大学(北京) 上海(9所)复旦大学 华东师范大学 上海外国语大学 上海大学同济大学 华东理工大学东华大学 上海财 经大学上海交通大学 天津(4所)南开大学 天津大学 天津医科大学 河北工 业大学 重庆(2所)重庆大学 西南大学

中山大学2011考研参考书目

中山大学2011考研参考书目

211 翻译硕士英语:①英美概况部分参见《英语国家社会与文化入门》上、下册,朱永涛编,高等教育出版社,2005;②其它部分不列参考书241 英语:①《新编英语教程》(1-3册),李观仪等,上海外语教育出版社,1999242 俄语:①《俄语入门》第二册,周鼎、徐振新编,外语教学与研究出版社,2000;②《大学俄语基础教程》第二、三册,张智罗、童强等,高等教育出版社,1994243 日语:①《中日交流标准日本语》初级上、下册,集体合著,人民教育出版社、光村图书出版株式会社,2005244 法语:①《公共法语》上、下册,吴贤良主编,上海外语教育出版社,1997245 德语:①《大学德语》修订本(1-2册),赵仲、戴鸣钟等编,高等教育出版社,2001-2002246 西班牙语:①董燕生、刘建:《现代西班牙语》第一册,外语教学与研究出版社,1999;②董燕生、刘建:《现代西班牙语》第二册,外语教学与研究出版社,1999;③岑楚兰、蔡绍龙:《新编西班牙语阅读课本》第一册,外语教学与研究出版社,1999247 韩语:①郭一诚:《韩国语能力考试真题精解及模拟800题(中级)》,世界图书出版公司248 阿拉伯语:①新编阿拉伯语( 1-4册),国少华主编,外语教学与研究出版社,ISBN7560033199;②《阿拉伯语阅读》(上、下);③《阿拉伯语阅读》组,出版社:外语教学与研究出版社,ISBN756000620308 护理综合:考试范围参考“2009年全国硕士研究生入学考试护理综合考试科目及参考大纲”331 社会工作原理:①《社会工作概论》,王思斌,高等教育出版社,1999(2004);②《社会学》,戴维.波普诺,中国人民大学出版社,2000;③《西方社会学理论教程》侯均生主编,南开大学出版社,2001333 教育综合:本科目考试范围为:①教育学原理:教育学概述、教育的概念、教育与人的发展、教育与社会发展、教育目的、教育制度(包括学学校制度等)、课程、教学、德育、班主任、教师、学校管理。

考研数学三(函数、极限、连续)历年真题试卷汇编1(题后含答案及解析)

考研数学三(函数、极限、连续)历年真题试卷汇编1(题后含答案及解析)

考研数学三(函数、极限、连续)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2004年]函数在区间( )内有界.A.(-1,0)B.(0,1)C.(1,2)D.(2,3)正确答案:A解析:解一大家知道,若f(x)在有限闭区间[a,b]上连续,则f(x)一定在[a,b]上有界,但若f(x)在开区间(a,b)内连续,则f(x)在(a,b)内未必有界,而如果再附加条件和存在,则f(x)必在(a,b)内有界,这就是命题1.1.1.1(2).由于下述极限存在,又f(x)在(-1,0)内连续,故由命题1.1.1.1(2)知f(x)在(-1,0)内有界.仅(A)入选.解二因可补充定义则补充定义后的函数f(x)成为有界闭区间[-1,0]上的连续函数.利用有界闭区间上连续函数的有界性可知f(x)在[-1,0)[-1,0]上有界.仅(A)入选.解三因由命题[1.1.1.1(1):如果x∈(a,b),或则f(x)在(a,b)内无界。

即知,f(x)在(0,1)及(1,2),(2,3)内均无界.仅(A)入选.注:命题1.1.1.1 (1)如果x0(a,b),或则f(x)在(a,b)内无界.(2)如果和存在,且f(x)在(a,b)内连续,则f(x)在(a,b)内有界.知识模块:函数、极限、连续2.[2014年]设且a≠0,则当n充分大时,有( ).A.B.C.D.正确答案:A解析:解一由可取从而有不等式即亦即当a>0时有当a<0时有由式①、式②可知仅(A)入选.解二因由极限的定义,对任意ε>0,存在正整数N,使得n>N时,有|an一a|<ε,从而取时有即仅(A)入选.解三由得到取则存在N>0,当n>N时有即亦即故仅(A)入选.知识模块:函数、极限、连续3.[2000年]设对任意的x,总有φ(x)≤f(x)≤g(x),且则( ).A.存在且等于零B.存在但不一定为零C.一定不存在D.不一定存在正确答案:D解析:下面举反例说明(A),(B),(C)都不正确.仅(D)入选.令φ(x)=1-1/x2,f(x)=1,g(x)=1+1/x2,显然有φ(x)≤f(x)≤g(x),且这时有这说明(A)、(C)都不正确.事实上,满足上述条件的f(x),其极限不一定存在.因而(B)也不正确.例如,令φ(x)=x-1/x2,f(x)=x,g(x)=x+1/x2,显然它们均满足题设条件,但知识模块:函数、极限、连续4.[2015年]设{xn)是数列.下列命题中不正确的是( ).A.B.C.D.正确答案:D解析:由命题1.1.3.8的充分条件知选项(B)正确.由命题1.1.3.8的必要条件知选项(A)、(C)正确,因而仅(D)入选.注:命题1.1.3.8 如果与均存在且相等,则存在,且知识模块:函数、极限、连续5.[2009年]当x→0时,f(x)=x—sinax与g(x)=x2ln(1—bx)是等价无穷小量,则( ).A.a=1,b=-1/6B.a=1,b=1/6C.a=-1,b=-1/6D.a=-1,b=1/6正确答案:A解析:解一因故必存在,所以必有因而a=1.再由-a3/(6b)=1得-1/(6b)=1,故b=-1/6.仅(A)入选.解二反复利用洛必达法则求之.即a3=-6b(排除(B)、(C)).又因存在,而故必有即1-a=0,故a=1,从而b=-1/6.仅(A)入选.注:命题1.1.3.1 当x→0时,有(2)x-sinx~x3/6;1-cosλ~λx2(λ为常数). 知识模块:函数、极限、连续6.[2010年]若则a等于( ).A.0B.1C.2D.3正确答案:C解析:解一即a=2.仅(C)入选.解二由题设知,a-1=1,故a=2.仅(C)入选.知识模块:函数、极限、连续7.[2014年]设P(x)=a+bx+cx2+dx3,当x→0时,若P(x)=-tanx是比x3高阶的无穷小,则下列选项中错误的是( ).A.a=0B.b=1C.c=0D.正确答案:D解析:由题设得故a=0,b-1=0,c=0,即a=0,b=1,c=0,仅(D)入选.知识模块:函数、极限、连续填空题8.[2012年]设函数则正确答案:解析:当x=e时,y=lnx-1,故知识模块:函数、极限、连续9.[2012年]正确答案:解析:知识模块:函数、极限、连续10.[2009年]正确答案:3e/2解析:知识模块:函数、极限、连续11.[2015年]正确答案:解析:知识模块:函数、极限、连续12.[2002年]设常数则正确答案:解析:知识模块:函数、极限、连续13.[2005年]正确答案:2解析:解一当x→∞时,sin[2x/(x2+1)]~2x/(x2+1),由命题1.1.4.1 [*]其中m,n为正整数.得到[*] 解二令[*]则[*]故[*] 知识模块:函数、极限、连续14.[2007年]正确答案:0解析:解一因|sinx+cosx|≤|cosx|+|sinx|≤2,故sinx+cosx为有界变量,又根据命题1.1.3.6即得所求极限为0.解二当x→∞时,2x是比xk(k 为正整数)高阶的无穷大量,因而显然|sinx+cosx|≤2,于是由命题1.1.3.6即得所求极限为0.注:命题1.1.3.6 有界变量与无穷小量的乘积为无穷小量. 知识模块:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。

2011年考研北京航空航天大学初试参考书目

2011年考研北京航空航天大学初试参考书目
【美】迈克尔·罗斯金,林振译
713自然辩证法概论
《自然辩证法概论》
北京航空航天大学出版社2008版
徐治立主编
《自然辩证法概论》
高等教育出版社2004版
教育部社会科学研究与思想政治工作司组编
721基础英语
不根据某一种教科书命题
722基础俄语
不根据某一种教科书命题
723基础德语
《当代大学德语》1- 4册
沈维道编
《传热学》(2006年第四版)
高等教育出版社
杨世铭编
942机械设计综合
面向21世纪课程教材《材料力学》Ⅰ、Ⅱ
高等教育出版社
单辉祖编
《机械设计基础》下册(2007年第二版)
北京航空航天大学出版社
吴瑞祥主编
951力学基础
《材料力学》(上、下,修订版)或国内其他材料力学(多学时类)教材
国防工业出版社
人民文学出版社(1995年)
曹靖华
《20世纪俄罗斯文学史》
人民大学出版社(2001年)
阿格诺索夫主编、凌建侯等译
《俄语语言国情学》
吉林大学出版社(1997年)
谭林
824综合德语
《德语语言学导论》
外语教学与研究出版社(2002年)
王京平著
《文学与认识》
外语教学与研究出版社(1997年)
王炳钧编著
Kleine Geschichte der deutschen Literatur
周世勋
《量子力学教程》第二版
科学出版社
曾谨言
《量子物理》
高等教育出版社
赵凯华
712行政管理基础
《管理学》(第二版)
高等教育出版社2005年版
周三多
《公共行政学》(第三版)

[整理]年考研数学二大纲

[整理]年考研数学二大纲

本帖最后由 hfdls 于 2011-9-6 14:09 编辑数学二 2011年考研大纲与2012年考研大纲对比变化:基本没有2011数学二大纲/理工科考试科目:高等数学、线性代数、考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 78%线性代数 22%四、试卷题型结构试卷题型结构为:单项选择题 8 小题,每小题4 分,共32分填空题 6 小题,每小题4 分,共24 分解答题(包括证明题) 9 小题,共94 分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L´Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数. 当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.2012考研数学二大纲/理工科考试科目:高等数学、线性代数一、考试形式和试卷结构试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学78%线性代数22%四、试卷题型结构试卷题型结构为:单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

最新考研数学二 大纲

最新考研数学二 大纲

2011年考研数学二大纲2011年考研数学二大纲考试科目:高等数学、线性代数考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。

2、答题方式答题方式为闭卷、笔试。

3、试卷内容结构高等数学 78%线性代数22%4、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法刚求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。

考研高等数学二大纲

2011年考研高等数学(二)考试大纲考试科目:高等数学、线性代数试卷结构:(一)总分:试卷满分为150分时间:180分钟(二)内容比例:高等数学约78%;线性代数约22%(三)题型比例单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学部分一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1. 理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。

2. 了解函数的有界性、单调性、周期性和奇偶性。

.3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。

5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求:1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

2011年考研数学(二)及参考答案

2011年考研数学试题(数学二)一、选择题1. 已知当时,函数A k=1,c=4B k=a, c=-4C k=3,c=4D k=3,c=-42.A B C D03. 函数的驻点个数为A0 B1 C2 D34. 微分方程A BC D5设函数具有二阶连续导数,且,则函数在点(0,0)处取得极小值的一个充分条件A BC D6.设A I<J<KB I<K<JC J<I<KD K<J<I7.设A为3阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第一行得单位矩阵。

记则A=A B C D8设是4阶矩阵,是A的伴随矩阵,若是方程组的一个基础解系,则的基础解系可为A B C D二、填空题9.10. 微分方程11.曲线的弧长s=____________12.设函数 ,则13.设平面区域D由y=x,圆及y轴所组成,则二重积分14.二次型,则f的正惯性指数为________________三、解答题15. 已知函数,设,试求的取值范围。

16. 设函数y=y(x)有参数方程,求y=y(x)的数值和曲线y=y(x)的凹凸区间及拐点。

17. 设,其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求18. 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记是曲线l在点(x,y)外切线的倾角,求y(x)的表达式。

19.证明:1)对任意正整数n,都有2)设,证明收敛。

20.一容器的内侧是由图中曲线绕y旋转一周而成的曲面,该曲面由连接而成。

(1)求容器的容积。

(2)若从容器内将容器的水从容器顶部全部抽出,至少需要多少功?(长度单位:m;重力加速度为;水的密度为)21.已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,,其中,计算二重积分。

22.X01P1/32/3Y-101P1/31/31/3求:(1)(X,Y)的分布;(2)Z=XY的分布;(3)23.A为三阶实矩阵,,且(1)求A的特征值与特征向量;(2)求A参考答案选择题:CBCC ABDD填空题:9. 10. 11. 12. 13 14. 解答题:15. 解:16.解:sss17.解:18. 解:19.解:20. 解:21. 解:22. 解:23. 解:。

11年考研数学大纲-数一

11年考研数学大纲-数一2011年考研数学大纲内容 数一考试科目高等数学、线性代数、概率论与数理统计试卷结构一、试卷满分及答题时间试卷满分为150分,考试时间为180分钟二、内容比例高等数学约56% 线性代数约22% 概率论与数理统计 约22% 三、题型结构单项选择题8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 0sin lim 1x x x →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.本章考查焦点1.极限的计算及数列收敛性的判断2.无穷小的性质二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。

1989-2013年考研数学三历年真题全打印版


(D) (−1)n n!
∫ ∫ π
2
(3)设函数 f (t) 连续,则二次积分 2 dθ
f (r 2 )rdr =(
0
2 cosθ

∫ ∫ 2
4−x2
(A) dx
x2 + y2 f (x2 + y2 )dy
0
2 x− x2
∫ ∫ 2
(B) dx
4−x2 f (x2 + y2 )dy
0
2 x− x2
∫ ∫ (C)
{ } 则 Pj = P − 2 ≤ X j ≤ 2 ( j = 1,2,3), 则( )
A. P1 > P2 > P3
B. P2 > P1 > P3 C. P3 > P1 > P2 D. P1 > P3 > P2
(8)设随机变量 X 和 Y 相互独立,则 X 和 Y 的概率分布分别为:
X0123
P
B、 o(x) ⋅ o(x2 ) = o(x3)
C、 o(x2 ) + o(x2 ) = o(x2 )
D、 o(x) + o(x2 ) = o(x2 )
x x −1
(2)设函数 f (x) =
的可去间断点个数为( )
x(x +1) ln x
A.0
B.1
C.2
D.3
{ } (3)设 Dk 是 圆 域 D = (x, y) x2 + y2 ≤ 1 位 于 第 K 象 限 的 部 分 , 记
1
1
1
1
2488
X
-1
0
1
P
1
1
1
3
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年全国硕士研究生入学统一考试数学考试大纲一一数学三 可供2012年参考(权威资料) 考试科目:微积分、线性代数、概率论与数理统计 考试形式和试卷结构

一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 微积分 56% 线性代数 22% 概率论与数理统计 22% 四、试卷题型结构 试卷题型结构为: 单项选择题选题 8小题,每题4分,共32分 填空题 6小题,每题4分,共24分 解答题(包括证明题) 9小题,共94分

微 积 分 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则

两个重要极限:0sinlim1xxx 1lim1xxex 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性.单调性.周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.了解数列极限和函数极限(包括左极限与右极限)的概念. 6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法. 7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系. 8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.

二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值

考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程. 2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间(,)ab内,设函数()fx具有二阶导数.当()0fx时,()fx的图形是凹的;当()0fx时,()fx的图形是凸的),会求函数图形的拐点和渐近线.

9.会描述简单函数的图形.

三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用

考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法. 3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题. 4.了解反常积分的概念,会计算反常积分.

四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题. 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.

五、无穷级数 考试内容 常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式

考试要求 1.了解级数的收敛与发散.收敛级数的和的概念. 2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数. 6.了解xe.sinx.cosx.ln(1)x及(1)x的麦克劳林(Maclaurin)展开式. 六、常微分方程与差分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用

考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程. 4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.了解一阶常系数线性差分方程的求解方法. 7.会用微分方程求解简单的经济应用问题.

线 性 代 数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理

考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算

考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则.

三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法

考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.

相关文档
最新文档