新人教版数学初中八年级下册19.1.2《函数的图像》教案

合集下载

人教初中数学八年级下册 19.1.2 函数的图象教案1

人教初中数学八年级下册  19.1.2 函数的图象教案1

归纳:描点法画函数的图象一般步骤:
1、列表:列出自变量与函数的对应值表
并取适当.
2、描点:建立直角坐标系,以自变量的值为横坐标,
描出表格中数值对应的各点.
3、连线:按照横坐标从小到大的顺序把描出的点用平滑曲线依次连接起来
根据图象回答下列问题:
1.菜地离小明家多远?小明走到菜地用了多少时间?
2.小明给菜地浇水用了多少时间?
3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?
4.小明给玉米地锄草用了多长时间?
5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?。

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教学设计

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教学设计

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教学设计一. 教材分析人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)的教学内容主要包括函数的图像表示方法和函数的解析式表示方法。

学生在第一课时已经学习了函数的定义和简单性质,本课时将进一步学习如何用图像和解析式来表示函数,从而更好地理解和把握函数的本质。

二. 学情分析学生在学习本课时,已经具备了初步的函数知识,能够理解函数的定义和简单性质。

但学生在函数图像和解析式表示方法的理解上可能存在一定的困难,因此需要教师在教学中给予充分的引导和解释。

三. 教学目标1.让学生理解函数的图像表示方法和解析式表示方法。

2.让学生能够运用图像和解析式来表示简单的函数。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.函数的图像表示方法。

2.函数的解析式表示方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和发现。

2.使用多媒体教学,展示函数的图像和解析式,增强学生的直观感受。

3.学生进行小组讨论和合作,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.相关的教学素材和案例。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾上一课时所学的函数知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体展示一些生活中的实例,让学生观察和分析这些实例中的数量关系,从而引出函数的图像表示方法和解析式表示方法。

3.操练(10分钟)教师给出一些简单的函数,让学生尝试用图像和解析式来表示。

教师在学生操作过程中给予适当的引导和帮助。

4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己在操练过程中的经验和心得,从而加深对函数图像和解析式表示方法的理解。

5.拓展(10分钟)教师提出一些具有挑战性的问题,让学生思考和探索,以提高学生的分析问题和解决问题的能力。

6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确函数的图像表示方法和解析式表示方法的重要性。

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案一. 教材分析《函数的表示方法》是中学数学中重要的概念之一,对于八年级的学生来说,这是一个新的知识领域。

本节课的内容包括函数的定义、函数的表示方法以及函数的性质。

通过本节课的学习,学生可以掌握函数的基本概念,了解函数的表示方法,并能够运用函数的性质解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有了初步的了解。

但是,学生在学习新的知识时,往往还存在一定的困难,需要教师的耐心引导和讲解。

此外,学生对于实际问题的解决能力还有待提高,需要通过大量的练习来加强。

三. 教学目标1.了解函数的定义和表示方法。

2.掌握函数的性质,并能够运用函数的性质解决实际问题。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.函数的定义和表示方法。

2.函数的性质的理解和运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索,从而掌握函数的基本概念和性质。

同时,通过案例分析和小组合作,培养学生的实际问题解决能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学PPT,包括函数的定义、表示方法和性质等内容。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考函数的定义和表示方法。

例如,什么是函数?函数如何表示?2.呈现(15分钟)通过PPT展示函数的定义和表示方法。

详细解释函数的定义,以及如何用图像、表格和解析式来表示函数。

3.操练(15分钟)让学生通过练习题来巩固函数的定义和表示方法。

可以选择一些简单的练习题,让学生独立完成,然后进行讲解和解析。

4.巩固(10分钟)通过一些实际问题来巩固函数的性质。

例如,给定一个函数的图像,让学生判断函数的性质。

5.拓展(10分钟)让学生通过小组合作,解决一些复杂的实际问题。

例如,给定一个实际问题,让学生运用函数的性质来解决。

人教版八年级数学下册教案:19.1.2 函数的图像

人教版八年级数学下册教案:19.1.2 函数的图像

一、课前学习:阅读教材第75至76页思考止,第77页例3至79页思考止。

思考以下问题:1、回忆平面直角坐标系的有关概念:如各象限内点的坐标特征,点P(x,y)关于x轴、y轴和原点的对称点的坐标分别为,过坐标平面内的点向x轴作垂线可找坐标、向y轴作垂线可找坐标。

2、一般地,在一个变化过程中,有个变量x和y,对于变量x的每一个值,变量y都有的值和它对应,我们就把x称为,y是x的。

如果当x=a时y=b, 那么b 叫做当自变量的值为a时的3、如何判定一个图像是函数图像,你判断的依据是什么?4、函数的图象是由直角坐标系中的一系列点组成,图象上的每一点坐标(x,y)代表了函数的一对对应值,即把自变量x与函数y的每一对对应值分别作为点的坐标和坐标,在直角坐标系中描出相应的点,这些点组成的图形,就是这个函数的图象。

5、用描点法作函数图像的具体步骤三步是、、。

二、课堂探究:1、画函数S=x2(x>0)的图象第一步:列表x 0 0.5 1 1.5 2 2.5 3 …S …第二步:描点:以x的值为坐标,相应的函数值为坐标,描出表格中数值对应的各点。

第三步:连线:按照坐标由小到大的顺序,把所描各点从左到右用平滑的曲线连接起来。

注意:原点要排除(为什么?)从所画的图象上可以看出,曲线从左向右,即当x由小变大时,y随x的增大而。

归纳:1、一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的、坐标,那么坐标平面内由这些点组成的图形就是这个函数的。

2、函数图象上的点的坐标与解析式的关系:(1)函数图象上任意一点A(x,y)中的x、y满足函数的。

(2)满足函数的的任意一对x、y的值组成的点(x,y)一定在上。

(3)判断点A(x,y)是否在函数图象上的方法是:将这个点的坐标(x,y)代入函数的看是否满足2、画y=x+0.5的图象:第一步:列表x …-3 -2 -1 0 1y …S36。

数学人教版八年级下册(19. 1. 2 函数的图像)教学设计

数学人教版八年级下册(19. 1. 2 函数的图像)教学设计

19.1.2 函数的图象 第1课时 函数的图象1.理解函数图象的意义;(重点)2.能够结合实际情境,从函数图象中获取信息并处理信息.(难点)一、情境导入在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐.如图是我国某港某天0时到24时的实时潮汐图.图中的平滑曲线,如实记录了当天每一时刻的潮位,揭示了这一天里潮位y (m)与时间t (h)之间的函数关系.本节课我们就研究函数图象.二、合作探究探究点一:函数的图象【类型一】 函数图象的意义下列各图给出了变量x 与y 之间的对应关系,其中y 是x 的函数的是( )解析:∵对于x 的每一个取值,y 都有唯一确定的值,选项A 对于x 的每一个取值,y 都有两个值,故A 错误;选项B 对于x 的每一个取值,y 都有两个值,故B 错误;选项C 对于x 的每一个取值,y 都有两个值,故C 错误;选项D 对于x 的每一个取值,y 都有唯一确定的值,故D 正确.故选D.方法总结:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.【类型二】判断函数的大致图象3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s(千米)与所经历的时间t(分钟)之间的大致函数图象是()解析:行进缓慢,路程增加较慢;在高速路上行驶,路程迅速增加;停车交费,路程不变;驶入通畅的城市道路,路程增加但增加的比高速路上慢,故B符合题意.故选B.方法总结:此类题目,理解题意是解题关键,根据题干中提供的信息,及生活实际判断图象各阶段的变化情况和特征.【类型三】由函数图象判断容器的形状下雨时在室外放置一个无盖的容器,如果雨水均匀地落入容器,容器水面高度h与时间t的函数图象如图所示,那么这个容器的形状可能是()解析:根据图象可以得到,杯中水的高度h随注水时间t的增大而增大,而增加的速度越来越小.则杯子应该是越向上开口越大.故杯子的形状可能是B.故选B.方法总结:解决此类问题,要在读懂题意的前提下,结合图象分析问题,并注意一些细节的描述,如在某段时间内的函数值的增减情况、变化趋势等.探究点二:函数图象的应用【类型一】 从函数图象上获取信息小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?解析:根据图象进行分析即可.解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停留的时间为从8分钟到12分钟,故小明在书店停留了4分钟;(3)一共行驶的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米);共用了14分钟;(4)由图象可知:0~6分钟时,平均速度为12006=200(米/分);6~8分钟时,平均速度为1200-6008-6=300(米/分);12~14分钟时,平均速度为1500-60014-12=450(米/分).所以,12~14分钟时小明骑车速度最快,不在安全限度内.方法总结:解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.【类型二】动点问题的函数图象如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以点A,P,B为顶点的三角形的面积是y,则下列图象能大致反应y与x的函数关系的是()解析:当点P由点A向点B运动,即0≤x≤4时,y的值为0;当点P在BC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CD上运动,即8<x≤12时,y不变;当点P在DA上运动,即12<x≤16时,y随x的增大而减小.故选B.方法总结:解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.三、板书设计1.函数图象的意义2.函数图象的应用本课设计的学习内容都是学生所熟知的事情,情景导入是由实例入手,这些内容有利于学生联系实际,主动进行观察、实验、猜测、验证、推理与交流等数学活动.通过一些现实生活中用图象来反映的问题实例,让学生经历将实际问题抽象为数学问题的过程.教学生如何观察分析图象,学会观察图象的一般步骤,利用问题串的形式引导学生逐步深入获得图象所传达的信息,逐步熟悉图象语言.。

人教版 八年级下册19.1.2函数的图像教案设计

人教版 八年级下册19.1.2函数的图像教案设计

人教版初中数学八年级19.1.2函数的图像教案【教材分析】教学目标1.理解函数图像的意义,2.学会用列表、描点、连线的方法画函数图像.3..学会观察、分析函数图像信息.4. 体会数形结合思想,并利用它解决问题,提高解决问题能力.【教学流程】环节导学问题师生活动情境引入提出问题,创设情境【问题1】写出正方形的边长x与面积S之间的关系式,你能想到更直观地表示S与x 的关系的方法吗?教师出示问题,学生尝试解决引入新课自主探究合作交流自(1)正方形的边长x与面积S的函数关系是什么?其中自变量x的取值范围是什么?(2)计算并填写下表:(3)如果我们在直角坐标系中,将你所填表格中的自变量x及对应的函数值S当作一个点的横坐标与纵坐标,即可在坐标系中得到一些点.大家思考一下,表示x与S的对应关系的点有多少个?•如果全在坐标中指出的话是什么样子?答案:(1)函数关系式为S=x2,因为x代表正方形的边长,所以自变量x>0,(2)将每个x的值代入函数式即可求出对应的S值.填表略(3)这样的点有无数多个,如果全描出来太麻烦,也不可能.我们只能描出其中一部分,然后想象出其他点的位置,用光滑曲线连接起来.【问题2】教师引导学生,观察、主探究合作交流归纳:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.•上图中的曲线即为函数S=x2(x>0)的图象.函数图象可以数形结合地研究函数,给我们带来便利.尝试应用1在下列式子中,对于每一个确定的值,都有唯一的对应值,即是函数.画出这些函数的图象:(1)y=x+0.5(2)y=(x>0)【问题2】下图是自动测温仪记录的图象,•它反映了日照市的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?【例1】下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地思考、尝试回答,引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….由图象可知:1.这天中凌晨4时气温最低为-3℃,14时气温最高为8℃.2.从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态.3.我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少.【例1】教师引导学生观察、思考、参与其中,讨论、交流.掌握观察图象的方法.引导学生分析图象、寻找图象信息,特别是图象中有两段平行于x•轴的线段的意义.答案:1.由纵坐标看出,菜地离小明家1.1千米;由横坐标看出,小明走到菜地用了15分钟.2.由平行线段的横坐标可看出,小明给菜地浇水用了10分钟.3.由纵坐标看出,菜地离玉米地0.9千米.由横坐标看出,小明从菜地到玉米地用了12分钟.4.由平行线段的横坐标可看出,小明给玉米地锄草用了18分钟.5.由纵坐标看出,玉米地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?离小明家2千米.由横坐标看出,小明从玉米地走回家用了25分钟.所以平均速度为:2÷25=0.08(千米/分钟).尝试应用1.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反映全程h与t的关系图是()2. 4.如图的图象表示小红放学回家途中骑车速度与时间的关系,你能想象出她回家路上的情境吗?教师出示问题,学生先自主,再合作,交流展示,师生共同评价1.D2.答案不唯一:例如,从图像观察可知,小红放学后开始做加速运动,后来匀速行驶,再后来慢慢减速,回到了家。

新人教版八年级数学下册《十九章 一次函数 19.1 函数 19.1.2函数的图象 画函数图象》教案_16

新人教版八年级数学下册《十九章 一次函数  19.1 函数  19.1.2函数的图象  画函数图象》教案_16

《函数的图象(1)》教学设计一、教学目标知识与技能目标:1、掌握函数图象的概念,会画函数的图像.2、学会观察,分析函数图象信息,提高识图能力。

过程与方法目标:1、让学生观察分析,获得变量之间关系的直观体验。

2、体会数形结合思想,并利用它解决问题,提高解决问题能力.情感与态度目标:渗透数形结合思想,体会到数学来源于生活,又应用于生活,培养学生的团结协作精神,探索精神和合作交流能力。

二、教学重点、难点1、重点:函数图象的概念2、难点:分析概括图象中的信息。

三、学情分析八年级上学期的学生具有初步几何知识,但他们的几何认知能力仍处于较低级的阶段,空间观念、想象力还需要进一步提高。

根据自主性和差异性原则,把学法概括为“感,探,议,创”从学生感兴趣的问题情境感知函数图象,引导学生自主探究,并在合作交流的基础上创造性学习。

四、教法分析本节课采用“问题情境---自主探究---合作互动”的教学模式。

从生活中的实例出发,以观察、想象、发现、概括的探究式学习方式,让学生参与知识的发生、发展、形成过程。

并运用多媒体直观演示,化静为动,使学生始终处于主动探索问题的积极状态中,使数学学习变得有趣、有效、自信、成功。

五、教学过程设计(一)、创设情景、孕育新知活动一:走进生活多媒体展示图片以实际引入,通过对北京天气的了解,观察北京的春天某天的气温T如何随时间t的变化而变化.引导学生从图象中获取信息。

先引导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;然后引导学生从两个变量的对应关系上认识函数,体会函数意义,为后面函数图象的概念埋下伏笔;并从中感受图象的直观性。

同时以此引入课题函数的图象。

(二)、自主探究,理解新知例题1.正方形边长为x,面积为S,探究下列问题:(1)写出S关于x的函数关系式,并求出x的取值范围.(2)计算并填写下表:在直角坐标系中,将上面表格中各对数值所对应的点描出来,然后用光滑的曲线连接这些点.通过以上活动,引导学生总结归纳出函数图象的概念.一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

新人教版八年级数学下《19.1.2函数的图象 画函数图象》优质课教学设计_0

新人教版八年级数学下《19.1.2函数的图象 画函数图象》优质课教学设计_0
PS:x与y是成对出现,像这样的有多少对?可否把他列一个表格?以前学过的什么也是成对出现的?
为什么列表这要打省略号?
二、深入学习
1、紧跟步伐——画出函数y=x+1的图象.
第一步:列表(取点时要注意对称的点)
由这个系列的对应值,能够得到一系列的有序实数对(点的坐标):
第二步:描点:在直角坐标系中,描出这些有序实数对(坐标)的对应点。
课题:19.1.2函数图像
学习目标:
知晓函数的表示方法,掌握描点法画函数图象及图象与解析式的关系。
重点难点:掌握描点法画函数图象及图象与解析式的关系。
学习过程:
一、了解感知
1、一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有与其对应,那么我们就说x是,y是x的。如果当x =a时,对应的y =b,那么b叫做当自变量的值为a时的。用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。这种式子叫做。如:y=x+1,当x=1时,函数值y=,当x=-1时,函数值y=,当x=0时,函数值y=。
第三步:连线:用光滑曲线依次把这些点连起来,便可得到这个函数的图象。
(1) (2)
总结:描点法画函数图象一般步骤:
第一步:.(在自变量取值范围内取一些值.通过函数关系式求出对应函数值列成表格.)
第二步:.(在直角坐标系中,以自变量的值为横坐标,相对应函数值为纵坐标,描出表中对应各点.)
第三步:.(按照坐标பைடு நூலகம்小到大或者从大到小I的顺序把所有点用平滑曲线连结起来.
2、趁热打铁——必过知识
按上面的步骤试画出y=2x的图象在上图(2)的坐标系中
三、迁移使用
1、总结一下函数的表是方法现在有:(1)(2)(3)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《19.1.2函数的图象》◆ 教材分析本课是在学习函数概念的基础上,进一步讨论函数的图象,学习从函数图象上获取信息,初步讨论函数的变化规律和变化趋势.学习用描点法画函数的图象.体会函数的三种表示方法的特点,学习综合运用三种表示方法表示函数关系.◆教学目标1.了解函数图象的意义;2.会观察函数图象获取信息,根据图象初步分析函数的对应关系和变化规律;3.经历画函数图象的过程,体会函数图象建立数形联系的关键是分别用点的横、纵坐标表示自变量和对应的函数值.4.会用描点法画出函数图象,能说出画函数图象的步骤;5.会判断一个点是否在函数的图象上;6.了解函数的三种表示法及其优缺点;7.能用适当的方式表示简单实际问题中的变量之间的函数关系;8.能对函数关系进行分析,对变量的变化情况进行初步分析.◆教学重难点◆1.函数图象的意义,从图象中获取信息.2.描点法画出函数图象.3.综合运用三种表示法表示函数关系,研究运动变化过程.◆课前准备◆多媒体:PPT课件、电子白板第一课时一、情景导入引起兴趣:你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝水,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中(如图19-1-),瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度了,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是( B )[说明与建议] 说明:利用学生非常熟悉的故事创设问题情境,引发学生兴趣的同时也引起学生的思考,从而考虑解决问题的方法.建议:通过探究函数图象的一系列问题,使学生充分认识图象,从图象中获取信息,理解图象的实际含义,直观感受到数形结合解决这类问题的价值,从学法上给学生以指导,为后面学生自主解决函数图象问题作好铺垫.二、初步认识学会画图1.观察北京某天的气温图,这个图反应了哪两个变量之间的函数关系?你知道是如何画出来的吗?[设计意图]这个图在前面已研究过,学生回答第一个问题并不难,紧接着提出第二个问题,引出本节课知识点——画函数图像.2.思考:一个正方形的边长为x,面积用S表示.(1)请写出面积S与边长x之间的函数关系式?自变量x的取值范围是什么?解:S=x²(x>0)(2)计算并填写下表:x S 00.50.2111.52.2242.56.2393.512.241 55556(3)在直角坐标系中,画出上面表格中各对数值所对应的点,然后用光滑曲线连接这些点.解:3.定义:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.三、认真观察学会识图:1.思考:下图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?解:气温T是时间t的函数,上图是函数图象,此函数不能用解析式表示.由图象可知:(1)这一天中凌晨4时气温最低(-3℃),14时气温最高(8℃);(2)从0时至4时气温呈下降状态(即温度随时间的增长而下降),从4时到14 时气温呈上升状态,从14时至24时气温又呈下降状态.(3)从图象可以看出这一天中任一时刻的气温大约是多少.2.例2如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?分析:小明离家的距离y是时间x的函数.由图象中有两段平行于x轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里.解:(1)从纵坐标看出,食堂离小明家0.6km;由横坐标看出,小明从家到食堂用了8min.(2)从横坐标看出,25-8=17,小明吃早餐用了17min.(3)从纵坐标看出,0.8-0.6=0.2,食堂离图书馆0.2km;从横坐标看出,28-25=3,小明从食堂到图书馆用了3min;(4)从横坐标看出,58-28=30,小明读报用了30min;(5)从纵坐标看出,图书馆离小明家0.8km;由横坐标看出,68-58=10,小明从图书馆回家用了10min,由此算出平均速度是0.08km/min.3.练习:(1)汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多长时间?它的最高速度是多少?(2)汽车在哪些时间段保持匀速行驶?时速分别是多少?(3)出发后8分钟到10分钟之间可能发生了什么情况?(4)请你描述汽车行驶的整个过程.解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.(2)在2 分钟到6 分钟,18分钟到22 分钟之间汽车匀速行驶,速度分别是30千米/时和90千米/时.(3)此时汽车处于静止状态,可能是遇到红灯等情况(回答只要合理即可).(4)汽车在0~2分钟开始发动加速行驶;2~6分钟以30千米/时的速度匀速行驶;6~8 分钟,由于某些状况,开始减速慢行;8~10 分钟,汽车静止;10~18分钟,又开始加速行驶;18~22 分钟以90千米/时的速度匀速行驶;22~24 分钟减速行驶到达目的地.(2)下面的图像反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.根据图像回答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)张强从文具店回家的平均速度是多少?答案:(1)体育场离张强家2.5 km,张强从家到体育场用了15 min;(2)体育场离文具店:2.5-1.5=1(km);(3)张强在文具店逗留了:65-45=20(min);(4)回家速度:1.5÷四、课堂小结:100-6518=(km/h).60第二课时一、例题讲解:例3在下列式子中,对于x 的每一个确定的值,y有唯一的对应值,即y是x 的函数.画出这些函数的图象.(1)y=x+0.5;解:(1)列表:(2)y= (x>0).7描点,连线.(2)列表:X y……0.512161.54232.52.4323.5 41.551.261……描点,连线.二、方法归纳:描点法画函数图象一般步骤如下:(1)列表——表中给出一些自变量的值及其对应的函数值;(2)描点——在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;(3)连线——按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.三、巩固练习:1.(1)画出函数y=2x-1的图像;(2)判断点A(-2.5,-4),B(1,3),C(2.5,4)是否在函数y=2x-1的图像上.解:(1)如图所示;(2)A(-2.5,-4),B(1,3)不在函数y=2x-1的图像上,C(2.5,4)在函数y=2x-1的图像上.22.(1)画出函数y=x 的图像.(2)从图像中观察,当x<0时,y随x的增大而增大,还是y随x的增大而减小?当x>0时呢?解:(1)如图所示;(2)当x<0时,y随x增大而减小;当x>0时,y随x的增大而增大.四、课堂小结:(1)函数图象上的点的横纵坐标分别表示什么?(2)画函数图象时,怎样体现函数的自变量取值范围?(3)用描点法画函数图象按照哪些步骤进行?(4)怎样从图象上看出当自变量增大时,对应的函数值是增大还是减小?第三课时一、问题引入:问题:如图19-1-,要做一个面积为12 m长为y m.2的小花坛,该花坛的一边长为x m,周(1)变量y是变量x的函数吗?如果是,写出自变量的取值范围;(2)能求出这个问题的函数解析式吗?(3)当x的值分别为1,2,3,4,5,6时,请列表表示变量之间的对应关系;(4)能画出函数的图象吗?解:(1)y是x的函数,自变量x的取值范围是x>0.12(2)y=2(x+).(3)x/m y/m 1262163144145 614.8 16(4)【小结】在上题中我们亲自动手用列表格、写式子和画图象的方法表示了一个函数.这三种表示函数的方法分别称为列表法、解析式法和图象法.思考一下,从这个例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?这就是我们这节课要研究的内容.二、例题探究:例4一水库的水位在最近5小时内持续上涨,下表记录了这5小时内6个时间点的水位高度,其中t表示时间,y表示水位高度.xt/时y/米……313.323.633.944.254.5(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你们能发现水位变化有什么规律吗?(2)水位高度y 是否为时间t 的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位变化规律吗?(3)据估计这种上涨还会持续2小时,预测再过2小时水位高度将达到多少米.分析:记录表中已经通过6 组数值反映了时间t与水位y 之间的对应关系.我们现在需要从这些数值中找出这两个量之间的一般规律,由它写出函数解析式,再画出函数图象,从而预测水位.解:(1)如下图,描出表中数据对应的点.可以看出这6 个点在一条直线上.在结合数据,可以发现每小时水位上升0.3m.(2)由于水位在最近5h内持续上涨,对于时间t的每一个确定的值,水位高度y 都有唯一的值与其对应,所以y是t的函数.开始的水位高度为3m,以后每小时水位上升0.3m.故函数y=0.3t+3(0≤t≤5)他表示经过th水位上升0.3t m,即水位y为(0.3t+3) m,其图象为点A(0,3)和点B(5,4.5)之间的线段AB.(3)如果水位的变化规律不变,当t=5+2=7(h)时,水位高度y=0.3×7+3=5.1(m).三、课堂小结:1.合作探究:说说函数的三种表示方法各有什么优点和不足,分小组讨论一下.【引导探究】列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.图象法形象、直观地表示出函数中两个变量的关系.相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.表示方法列表法解析式法图象法全面性×√×准确性√√×直观性√×√形象性××√从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.◆教学反思略。

相关文档
最新文档