水利工程大坝变形监测
大坝变形监测实施方案

水电站大坝变形监测实施方案二〇一八年九月目录1 工程概述 (4)1.1 概述 (4)1.2 监测区域工程布置 (5)2 作业技术规范及依据 (6)3 工作内容及工作量 (7)4 采用系统 (7)4.1 坐标系统 (7)4.2 高程系统 (7)5 人员配置 (7)5.1 组织结构 (7)5.2 工作职能设置 (7)5.3 主要人员配置 (8)6 设备配置 (8)6.1 设备配置 (8)6.2 设备检校 (9)6.2.1 GNSS 接收机的检校: (9)6.2.2 Leica TCA2003 全站仪的检校: (9)6.2.3 气象仪表检校 (10)6.2.4 水准仪的检验 (10)6.2.5 水准标尺的检验 (10)6.2.6 其它 (10)7 监测网基准点、监测点布设 (11)7.1 基准点的选定及布设 (11)7.2 自动监测基准点选定及埋设 (12)7.2.1 观测环境 (12)7.2.2 地质环境 (13)7.2.3 依托保障 (13)7.3 监测点的选定和布设 (14)8 观测实施及技术要求 (14)8.1.1 水平位移全网观测 (14)8.1.2 垂直位移全网观测 (14)8.1.3 监测点水平位移观测 (15)8.1.4 监测点垂直位移观测 (16)8.2 观测技术要求 (15)8.2.1 水平位移监测GNSS 观测 (15)8.2.2 垂直位移监测网 (16)8.2.3 监测点水平位移监测 (18)8.2.4 监测点垂直位移监测 (19)9 数据处理 (19)9.1 水平位移B 级GNSS 监测网解算 (19)9.2 垂直位移监测网解算 (19)9.3 监测点水平位移解算 (20)9.4 监测点垂直位移解算 (20)10 资料整理及成果资料清单 (20)10.1 资料整理 (20)10.2 项目完成后拟提交的成果资料 (20)11 质量保证体系及质量保证措施 (21)11.1 质量保证体系 (21)11.2 质量目标 (21)11.3 质量保证措施 (22)12 安全生产措施 (23)12.1 安全教育、培训 (23)12.2 制定严格的安全生产规章制度 (23)12.3 安全措施 (23)12.3.1 野外作业安全措施 (23)12.3.2 高空作业安全措施 (24)13 现场文明施工与环境保护 (25)13.1 文明施工与职业健康 (25)14 现场应急处置 (26)14.1 夏季防暑降温应急预案 (26)14.2 施工现场触电应急救援预案 (27)15 附件: (29)水电站人工变形监测实施方案1 工程概述1.1 概述水电站位于省市县乡燕子窝村,为嘉陵江梯级水电开发的第九级,由大电站、小电站、扩建电站组成。
大坝坝体变形监测的技术方法与应用

大坝坝体变形监测的技术方法与应用摘要:面对溃坝事件带来的巨大损失,人们深刻的认识到大坝的安全监测的重要性。
采用监测技术对大坝坝体进行变形监测,测出大坝上各点的位置变化,才能分析大坝安全运行状态,并建立大坝的变形预测模型,实现大坝变形的定量预测。
只有这样,才能及时发现大坝的异常变化,对其安全性能做出准确的判断,然后采取必要措施,防止事故的发生。
关键词:大坝变形监测;位移量;监测点;近年来,随着我国水利工程建设的快速发展,如何保证水电站施工质量的安全运行已经引起了各大水电站的广泛关注。
在水电站的建设中,大坝的变形监测在水利工程安全监测中尤为重要。
一、大坝变形监测的主要技术1.视准线法,通过视准线或经纬仪建立一个平行或通过坝轴线的铅直平面作为基准面,定期观测坝上测点与基准面之间偏离值的大小,即为该点的水平位移,适用于直线形混凝土闸坝顶部和土石坝坝面的水平位移观测。
当采用这一方法时,主要要求它们的端点稳定,所以必须要作适当的布置,只能定期地测定端点的位移值,而将观测值加以改正。
视准线观测方法具有速度快、精度较高、原理简单、方法实用、实施简便、投资较少的特点,在水平位移观测中得到了广泛应用。
不足的是对较长的视准线而言,由于视线长,使照准误差增大,甚至可能造成成照困难。
当视准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。
2.引张线法。
利用张紧在两工作基点之间的不锈钢丝作为基准线,测量沿线测点和钢丝之间的相对位移,以确定该点的水平位移,适用于大型直线形混凝土的廊道内测点的水平位移观测,主要用于测定混凝土建筑物垂直于轴线方向的(顺水流方向)水平位移。
3.激光准直法。
利用激光束代替视线进行照准的准直方法,使用的仪器有激光准直仪、波带板激光准直系统和真空管道激光准直系统等,适用于大型直线形混凝土坝观测。
对于布设在直线型的土石坝或混凝土坝顶上观测点的水平位移,主要是采用视准线法和激光准直方法观测。
水利工程变形监测技术探析

1 基 准点 。基准 点 为变形 观测 系统 的基 本控制 点 ,其 是测 定 ) 【 点 和变 形 点 的依 据 。基 准点 通 常 埋设 在稳 固的基 岩 上 或变 形 作 区域 以外, 能 长 期保 存 , 不 动 。每 个工 程一 般 应建 立 3 基 尽可 稳定 个 准点 ,当确认 基 准点稳 定 可靠 时 ,也可 少于 3 。沉 降 观测 的基 准 个 点 通 常成组 设 置 ,用 以检 核工 作 基准 点 的稳 定性 ,其 检 核 方法 一 般 采用 精 密水 准 测量 的方 法 。位移 观 测 的工作 基 准点 的稳 定性 检 核 ,通常采 用 三 角测 量 法 进行 。 变形 观测 中设置 的基 准点 应进 行 定期 观测 ,将 观 测结 果 进行 统计 分 析 ,以判 断基 准点 本 身 的稳 定
.
。
与x、 Y,则该点的水平位移△为:△一 ,△ = y。同样 ~ yy-
也 可 以计 算各 观测 点 的 平均 位 移量 和平 均 位移 速率 。对 于水 工 建 筑物 , 平 位移 常用 的观测 方法 主要有 : 水 1 )大 地 测量 方 法 。是 水 平 位移 监测 的传 统方 法 , 要 包 括 三 主 角 网测 量 法 、精密 导 线测 量 法 、交会 法 等 。另 外 ,利用 测 量 机 器 人 自动观 测 的特点 ,可 实现 变形监 测的 自动化 。 2) 基准 线法 。该 方法 是水 利工 程变形 监测 的 常用方 法 ,包 括 视 准线法 、引张线法 、激光 准直 法 、垂线 法等 。 3) 用 测 量 方法 。该 方 法 即采用 专 门的 仪器 和方 法 测 量 两 专 点 之 间 的 水 平 位 移 ,主 要 利 用 传 感 器设 备 ,如 多 点 位 移 计 、光
水库工程大坝安全监测方案

水库工程大坝安全监测方案一、摘要水库工程大坝是国家重要的水利工程,其安全监测对保障周边地区安全稳定至关重要。
本文将围绕水库工程大坝的安全监测方案展开讨论,包括监测方案的目的、原则、内容、方法、周期以及监测数据分析和应对措施等相关内容。
二、引言水库大坝的安全监测是水利工程管理的基础工作之一。
随着社会的发展和科技的进步,对水库大坝的安全监测要求也在不断提高。
为了保障水库大坝的安全稳定运行,必须建立科学合理的安全监测方案。
三、监测目的1. 对水库大坝变形、渗流、应力、温度等变化进行实时监测,及时了解大坝的工况。
2. 掌握水库大坝周边地质环境的变化情况,及时评估其对大坝稳定性的影响。
3. 提供科学依据,为大坝安全管理、维护和维修提供支持。
四、监测原则1. 科学性原则:监测方案应基于科学理论和可靠技术,并经验证。
2. 综合性原则:监测方案应综合考虑大坝结构、地质环境、水文气象条件等因素。
3. 及时性原则:监测数据应能够及时反映大坝的工况变化,以便采取有效的应对措施。
4. 规范性原则:监测应符合国家相关规范和标准。
五、监测内容1. 大坝地表变形监测:包括位移监测、沉降监测、收敛监测等。
2. 大坝渗流监测:包括渗压监测、渗流量监测等。
3. 大坝应力监测:包括混凝土应力监测、钢筋应力监测等。
4. 大坝温度监测:包括混凝土温度监测、环境温度监测等。
5. 大坝周边地质环境监测:包括地下水位监测、地下水渗流监测等。
6. 其他需要监测的内容。
六、监测方法1. 地表变形监测:采用全站仪、卫星定位、测量仪器等进行实时监测。
2. 渗流监测:采用压力计、流量计、渗流仪等进行实时监测。
3. 应力监测:采用应变计、拉线式应力计等进行实时监测。
4. 温度监测:采用温度计、温度传感器等进行实时监测。
5. 周边地质环境监测:采用地下水位计、地下水渗压计等进行实时监测。
七、监测周期1. 日常监测:对大坝的地表变形、渗流、应力、温度等进行日常监测,确保及时掌握大坝的工况变化。
基于大坝的变形监测要点分析

基于大坝的变形监测要点分析大坝是一种重要的水资源调控和控制洪水的工程设施,对于确保大坝的安全稳定运行具有重要意义。
大坝的变形监测是对大坝运行过程中变形情况的监测和分析,可以及时发现大坝的变形状况,从而采取相应措施来保证大坝的安全性。
本文将从大坝变形监测的要点方面进行分析,以便更好地了解大坝变形监测的关键内容和方法。
1. 监测点的选择:大坝的变形监测需要选择合适的监测点,用以观测变形和位移。
一般来说,应选择大坝的关键部位和重要结构进行监测,如坝顶、坝基、坝身等。
还需要根据大坝的具体情况选择适当的监测方法,如测绘法、水准法、GNSS等,以便实现精准的监测和数据采集。
2. 监测参数的确定:大坝变形监测需要确定一些关键的监测参数,如位移、变形速率、变形形态等。
位移是指某一点在空间上的位移情况,可以用来描述大坝的整体位移状况;变形速率则是指位移的变化率,反映变形发展的快慢;变形形态则是指大坝的变形变化情况,如沉降、倾斜、收缩等。
通过监测这些参数,可以了解大坝的变形情况,并及时采取对策。
3. 监测频率和持续性:大坝的变形监测需要进行长期的监测,并保持一定的监测频率,以便实时掌握大坝的变形情况。
一般来说,监测频率应根据大坝的重要性和变形情况的变化程度来确定,对于重要性较高的大坝,监测频率可以适当增加,以确保及时发现变形问题。
4. 数据处理和分析:大坝变形监测所获得的数据需要进行处理和分析,以获得有效的监测结果。
数据处理包括数据存储、传输和格式转换等,可以借助计算机和专门的软件来完成。
数据分析则是通过对监测数据的统计和分析,从中找到变形的规律和趋势,为大坝的安全评估和管理提供科学依据。
5. 预警机制和处理措施:大坝变形监测的最终目的是为了预防和控制大坝的变形问题,因此需要建立相应的预警机制和相应的处理措施。
预警机制包括根据监测数据进行预测和预警,及时发现潜在的安全隐患;处理措施则是在发生变形问题时,采取相应的技术措施和管理措施,确保大坝的安全稳定运行。
水利工程管理技术——任务二 混凝土坝及浆砌石坝的变形观测

【项目二】学习目标
通过本项目的学习,要求学生掌握混凝土坝及浆砌石坝的变形、基 础扬压力、应力、应变和温度观测,混凝土坝及浆砌石坝抗滑稳定性不 够、裂缝、渗漏的处理;
熟悉混凝土坝及浆砌石坝的巡视检查与日常维护; 了解混凝土坝及浆砌石坝监测的仪器设施。
项目二 混凝土坝及浆砌石坝 的监测与维护
项目二 混凝土坝及浆砌石坝的监测与维护
端连接浮体,使浮体漂浮在液体上,利用液体对浮体的浮力 拉紧钢丝,以此铅垂线为基准,测出坝体各测点到钢丝距离 的变化量,即为坝体的水平位移(如图)。 观测仪器:
光学垂线仪、机械垂线仪、遥测垂线仪等
项目二 混凝土坝及浆砌石坝的监测与维护
二、垂线法测定坝体挠度
(一)倒垂线法
油 油槽
浮球
坝顶
A
保护井
δA A′
垂线钢丝
δB
B
B′
基岩
C C′
项目二 混凝土坝及浆砌石坝的监测与维护
二、垂线法测定坝体挠度
(一)倒垂线法
观测时,将仪器(如光学垂线仪、机械垂线仪或遥测垂线 仪)安放在底座上,置中调平,照准测线,分别读取x与y轴 (即左右岸与上下游)方向读数各两次,取平均值作为测回值。 每测点测两个测回,两测回间需要重新安置仪器。读数限差与测 回限差分别为0.1mm与0.15mm。
学习目标
一、能运用引张线法测定坝体水平位移。 二、能运用垂线法测定坝体挠度。 三、能运用水准法测定坝体垂直位移。 四、能进行混凝土坝及砌石坝的伸缩缝和裂缝观测。
学习内容
一、引张线法测定坝体水平位移 二、垂线法测定坝体挠度 三、水准法测定坝体垂直位移 四、坝体伸缩缝和裂缝观测
项目二 混凝土坝及浆砌石坝的监测与维护
四、坝体伸缩缝和裂缝观测
大坝变形监测方案

大坝变形监测方案1. 简介大坝是人类工程中保护水源、调节水量的重要设施之一。
由于大坝长期承受水压和地质运动的力量,随着时间的推移,大坝可能会发生变形。
为了保障大坝的安全性,需要进行定期的变形监测。
本文档将介绍一种大坝变形监测方案,帮助工程师进行科学有效的大坝变形监测。
2. 监测目标大坝变形监测的主要目标是提前发现大坝的变形情况,以防止严重事故的发生。
监测的主要内容包括以下几个方面:•大坝的水平位移变形:主要指大坝在水平方向上的位移情况,通过测量水平位移来判断大坝是否存在下滑或滑坡的风险。
•大坝的竖向位移变形:主要指大坝在垂直方向上的位移情况,通过测量垂直位移来判断大坝是否存在沉降的风险。
•大坝表面的裂缝情况:通过监测大坝表面的裂缝情况,可以了解大坝是否存在结构破裂或渗漏的风险。
3. 监测方法3.1 测量仪器选择为了进行大坝变形的定量测量,需要选择合适的测量仪器。
以下是一些常见的大坝变形监测仪器:•GPS测量仪:可用于测量大坝的水平位移变形,具有高精度、实时性强的特点。
•倾斜仪:可用于测量大坝的竖向位移变形,一般采用水平方向和垂直方向两个方向的倾斜角度进行测量。
•应变计:可用于测量大坝表面的应变情况,一般通过电阻、电容或光纤等方式进行测量。
3.2 监测方案设计根据大坝的具体情况,制定相应的监测方案。
以下是一个常见的大坝变形监测方案设计示例:1.确定监测点位:根据大坝的结构和地质条件,确定监测点位,包括水平位移监测点和竖向位移监测点。
2.布设测量仪器:根据监测点位,布设相应的测量仪器。
GPS测量仪可以布设在大坝上不同位置进行水平位移监测,倾斜仪可以布设在大坝表面进行竖向位移监测,应变计可以布设在大坝表面的关键部位进行应变监测。
3.数据采集与处理:定期采集测量仪器的数据,并进行数据处理。
可以使用专业的监测设备自带的软件对数据进行分析和展示,也可以使用MATLAB或Excel等软件进行数据处理。
4.结果分析与报告:对监测数据进行分析,判断大坝的变形情况,并及时生成监测报告。
大雅河水利枢纽工程大坝变形监测网方案设计

'%工程概况
大雅河水利枢纽工程以夹道子水库建设为主#位 于辽宁省本溪市桓仁县境内大雅河流域中上游#是大 雅河上的控制性工程#是一座以供水&发电&防洪&灌溉 为主#养殖和旅游业为辅的中型水利枢纽工程% 目前 水库大坝主体已基本完工#大坝的变形监测点已随工 程进展埋设完成#坝体上共布设 "J 个水平位移监测点 和 "J 个垂直位移监测点#坝体两侧山上布设 F 个新埋 设的工作基点% 根据相关要求#变形监测网的首次测 量工作需在冬季前完成%
表 '% 水 平 位 移 监 测 网 的 主 要 技 术 要 求
级别
点位中误差 H 33
平均边长 H 3
测距中误差 H 33
测边相对中 误差
测角中误差 H " o$
边长中误差 H 33
水平角观测测 回数
二等
`FC#
E## e"###
" k"::3[G
" HF#####
`"C#
`$C#
D
两次照准读数差 H 等级
!"#!$%&$''$'()&*+,-&$$.///'(01&2%$3&%4&%3
大雅河水利枢纽工程大坝变形监测网 方案设计
贾晓堂
辽宁省水利水电勘测设计研究院辽宁 沈阳!""###Z
摘!要 !本文通过对大雅河水利枢纽工程夹道子水库大坝变形监测方案的设计实施监测数据的整理等变形 监测过程进行分析归纳和总结了水利枢纽工程变形监测的内容和方法 该设计方案保证了大坝变形监测工作的 顺利开展可为类似工程变形监测网设计优化提供借鉴 关键词 !水利枢纽工程变形监测网方案设计夹道子水库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水利工程大坝变形监测
1. 引言
水利工程的大坝在使用过程中都会经历各种因素的作用,如地震、水压、地质
和环境等,这些都会导致大坝的变形,给大坝的安全带来威胁。
因此,及时有效的对水利工程大坝进行变形监测显得特别必要。
本篇文档将介绍水利工程大坝变形监测的意义、主要监测内容和技术手段,通过本文档,希望读者能够更好的了解水利工程大坝变形监测的相关知识。
2. 监测意义
水利工程大坝变形监测的主要作用是及时预警并处理大坝的变形,保障大坝安
全稳定。
一旦出现变形,就说明大坝可能存在破坏的隐患,如果不及时处理,就可能引发灾难性的后果。
因此,对水利工程大坝进行及时、精准的变形监测是十分必要的。
3. 监测内容
水利工程大坝的变形监测内容主要包括:
3.1 测点及布设
监测前需要对大坝进行分析,并根据大坝的特点,合理确定测点及其布设方案。
通常大坝的测点设置包括顶部、坝体和坝底等位置。
3.2 变形量测
通过安装测量设备测量大坝的变形量,判断大坝变形的方向和程度。
变形量的
测量包括垂直变形量和水平变形量,可以通过改变测点的相对位置和距离来得到不同方向上的变形量数据。
3.3 告警监测
在进行大坝变形监测时,监测设备还需具有实时告警监测的功能,及时将变形
数据传输到监测中心,对于监测数据偏大或偏小等异常情况,及时发出告警信号。
4. 技术手段
水利工程大坝变形监测技术手段主要包括传统的测量手段和现代化的监测技术,下面将介绍几种常见的监测技术手段:
4.1 雷达测量
雷达测量是一种非接触式的测量方式,它可以通过微波信号扫描大坝表面,获取大坝表面的变形信息。
雷达测量具有高精度、高效率、无需人工采样等优点,因此被广泛应用于水利工程大坝变形监测中。
4.2 光纤测量
光纤传感技术是一种新型的测量技术,它利用光纤的传输特性对大坝变形进行精确的监测。
光纤测量具有高精度、高灵敏度、不受干扰等优点,已成为大坝变形监测的重要手段。
4.3 振动式传感器
振动式传感器是一种基于振动测量的监测手段,它在大坝表面贴数个振动传感器,通过测量传感器的振动值来判断大坝是否存在变形。
振动式传感器具有监测速度快、实时性好等特点,被广泛应用于大坝变形监测中。
5.
本文主要介绍了水利工程大坝变形监测的意义、主要监测内容和技术手段,通过本文,我们可以发现,随着技术的不断发展和应用,大坝变形监测的精度和效率将大大提高。
在日后的监测中,我们也需不断更新自己的知识,采用更加智能、先进的技术手段,更好地保障水利工程大坝的安全稳定。