双闭环逻辑无环流可逆直流调速

双闭环逻辑无环流可逆直流调速
双闭环逻辑无环流可逆直流调速

双闭环逻辑无环流可逆直流调速

一、电气传动自动控制设计要求:

(1)双闭环逻辑无环流可逆直流调速电路的连线、调试

(2)双闭环逻辑无环流可逆直流调速电路的故障排除。

二、双闭环逻辑无环流可逆直流调速电路的基本原理:

1.双闭环直流调速系统电路原理分析

图1双闭环直流调速系统电路原理图

起动过程分析:

双闭环直流调速系统突加给定电压Ugn由静止状态起动时,转速和电流的动态过程示意图如图1所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三种情况,整个动态过程就分成图中标明的I、II、III三个阶段。

图2 转速和电流的动态过程示意图

(1)第I 阶段(1~0t )是电流上升阶段。突加给定电压Ugn 后,c U 、0d U 、d I 都上升,在d I 没有达到负载电流dL I 以前,电机还不能转动。当dL d I I ≥后,电机开始起动,由于电机惯性的作用,转速不会很快增长,因而转速调节器ASR 的输入偏差电压n gn n U U U -=?的数值仍较大,其输出电压保持限幅值im U ,强迫电流d I 迅速上升。直到dm d I I ≈,im i U U ≈,电流调节器很快就压制了d I 的增长,标志着这一阶段的结束。在这一阶段中,ASR 很快进入并保持饱和状态,而ACR 不饱和。

(2)第II 阶段(21~t t )是恒流升速阶段,ASR 饱和,转速环相当于开环,在恒值电流给定im U 下的电流调节系统,基本上保持电流d I 恒定,因而系统的加速度恒定,转速呈线性增长。与此同时,电机的反电动势E 也按线性增长,对电流调节系统来说,E 是一个线性渐增的扰动量,为了克服它的扰动,0d U 和c U 也必须基本上按线性增长,才能保持d I 恒定。当ACR 采用PI 调节器时,要使其输出量按线性增长,其输入偏差电压i im i U U U -=?必须维持一定的恒值,也就是说,d I 应略低于dm I 。

(3)第Ⅲ阶段(2t 以后)是转速调节阶段。当转速上升到给定值0n n =时,转速调节器ASR 的输入偏差减小到零,输出维持在限幅值im U ,电机仍在加速,使转速超调。转速

超调后,ASR 输入偏差电压变负,开始退出饱和状态,i U 和d I 很快下降。但是,只要d I 仍大于负载电流dL I ,转速就继续上升。直到d I =dL I 时,转矩L e T T =,则dn/dt =0,转速n 才到达峰值(3t t =时)。此后,电动机开始在负载的阻力下减速,与此相应,在43~t t 时间内,d I dL I <,直到稳定。如果调节器参数整定得不够好,也会有一段振荡过程。在这最后的转速调节阶段内,ASR 和ACR 都不饱和,ASR 起主导的转速调节作用,而ACR 则力图使d I 尽快地跟随其给定值i U 。

总上所述,启动时转速调节器饱和,作用很小,只有电流调节器起作用,系统在允许的最大电流下快速启动。启动完毕速度调节器退出饱和,起转速调节作用。转速调节器作用是它是调速系统的主导调节器,它使转速n 很快地跟随给定电压Ugn 变化,稳态时可减小转速误差,如果采用PI 调节器,则可实现无静差。对负载变化起抗扰作用。其输出限幅值决定电机允许的最大电流。电流调节器是作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定电压U i (即外环调节器的输出量)的变化;对电网电压的波动起及时抗扰的作用;在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程;当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的。

2.双闭环系统的特点是:

① 系统的调速性能好。

② 能获得较为理想的“挖土机特性”。

③ 过渡过程短暂、启动快、稳定性好。

④抗干扰能力强。

三、双闭环逻辑无环流可逆直流调速电路的连线:

双闭环控制盒连接图

双闭环系统原理图

四、双闭环逻辑无环流可逆直流调速电路的电路设计与调试

双闭环系统的调试要点

(1)相序的校验对机床总电源进线用相序器或示波器检验相序。

(2)一般检查首先对电路中有关交流及直流电源电压进行测量,如有异常,应检查电源电路,以排除故障。如是调节问题,对有关调整元件进行微调,以达到规定的电压数值。

(3)运算放大器的检查应无零点飘移或振荡。

(4)触发电路的测试通常先卸去传动皮带,拆下电机接线,整流输出端接灯泡负载。断开电流调节器的输出与触发装置的输入之间的连线。根据控制电压的数值,模拟控制电压,调节触发电路,观察有关波形,看整流输出是否符合要求。如果调试的结果良好,则恢复U K的接线。

(5)电流环的调试根据电动机额定电流的I e值,选择电动机允许的最大电流为I dm=2I e,用外接电源模拟电流反馈电压U i的数值。外接电源应和速度调节器的限幅值极性相同。然后将速度调节器的输出断开,直接用极性和幅值与U sm=U i相同的外接电源送至电流调节器的输入端,以代替等值速度环输出限幅电压。

送电后,调节电流反馈信号的电位器,使主回路电压接近于零。至此电流环的调试完。

(6) 速度环的调试在电流环调试完毕,将所有电路的接线还原。让电动机处于空载状态,将速度给定电位器调在较低的速度上(可为500 r/min)。电路送电,用转速表测得的转速应为所调数值。如果偏高或偏低,则应调节速度反馈电位器,使其达到给定数值。

五、双闭环逻辑无环流可逆直流调速电路的故障排除

1、故障现象:Km1不闭合

原因:⑴U相电压为零,此时,Km2也不闭合

⑵Km2主触头没有闭合,及其接线开路

⑶U相保险及其处电路断开

⑷Qs2无法闭合及外部接线断路

⑸KI2—I断路

⑹KM2常开闭合不上

⑺KM1线圈或外接线断路

测量方法:用万用表电压档测量U到N是否为220v,正常,闭合Qs1测量KM2闭合情况,36到N是否为220v,闭合Qs2,测量105,107,106是否正常。

2、主电路故障排除

晶闸管不能导通,没有输出电压Ud=0v

原因:电流Id没有达到Ih,可控硅不能导通。

3、调节板故障排除

现象:开环正常,闭环没有Uk输出,Ud=0

原因:LM324没有电压,无法正常工作

六、结论与心得及实验过程中出现的故障现象及其解决办法

经过这次课程设计,使学员认识了双闭环逻辑无环流可逆直流调速电路各器件以及其使用方法,熟悉了各器件的连接方法。在电路连接过程中也出现了电路不能工作的现象。在指导老师和学员的共同努力下,及时的改正了出现的错误,完成了这次课题的设计及试验。总体来说本次课程设计还是成功的,完成了起初的设计要求及预想目标。

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

逻辑无环流可逆直流调速系统设计与研究

逻辑无环流可逆直流调速系统设计与研究 ——主电路设计 1 绪论 1.1电力拖动简介 随着科学技术的发展,人力劳动被大多数生产机械所代替。电力拖动及其自动化得到不断的发展。随着生产的发展,生产工艺对电力拖动系统的要求越来越高,尤其在其准确性、快速性、经济性、先进性等方面的要求,与日俱增。因此,需要不断地改进和完善电气控制设备,使电力拖动自动化可以跟得上技术要求。 电力拖动系统由电动机及其供电电源、传动机构、执行机构、电气控制装置等四部分组成。电动机及其供电电源是把电能转换成机械能;传动机构的作用是把机械能进行传递与分配;执行机构是使机械能完成所需的转变;电气控制装置是控制系统按着生产工艺的要求来动作,并对系统起保护作用。 随着生产的要求不断提高,技术不断更新,拖动系统也随之更新。同时,新型电机、大功率半导体器件、大规模集成电路、电子计算机及现代控制理论发展的发展使电力拖动自动化发生了巨大的变革。 1.2直流调速系统 直流电机由于其良好的起、制动性能和调速性能,在电力拖动调速系统中占有主导地位,虽然近年来交流电动机的调速控制技术发展很快,但是交流电动机传动控制的基础仍是直流电动机的传动技术。直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。 直流电机容易实现各种控制系统,也容易实现对控制目标的“最佳化”,直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度看,它又是交流拖动控制系统的基础。因此,掌握直流拖动控制系统可以更好的研究交流拖动系统。从生产机械要求控制的物理量来看,电力拖动控制系统有调速系统、位置

h桥可逆直流调速系统课设

燕山大学 课程研究项目报告 项目名称: H桥可逆直流调速系统设计与实验学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 日期: 2014年6月3日

目录 第一章摘要 (1) 第二章前言 (2) 第三章报告研究正文 (3) 3.1 调速控制系统设计 (3) 3.2 电源及操作系统设计 (7) 3.3 双闭环调节器电路设计 (11) 3.4 参数计算与计算机仿真 (12) 3.5 实物制作 (17) 3.6 性能测试 (19) 第四章结论 (20) 参考文献 (21)

本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理,利用MOSFET、二极管等器件设计了一个转速、电流双闭环直流晶闸管调速系统,并利用MATLAB对其进行仿真。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。 关键词:双闭环控制系统 MATLAB 电流调节器转速调节器

目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。故需要引入转速﹑电流双闭环控制直流调速系统,本文着重阐明其控制规律﹑性能特点和设计方法,是各种交﹑直流电力拖动自动控制系统的重要基础。首先介绍转速﹑电流双闭环调速系统的组成及其静特性,接着说明该系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用。在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。在现代化的工业生产中,几乎无处不使用电力拖动装置。轧钢机、电铲、提升机、运输机等各类生产机械都要采用电动机来传动。随着对生产工艺,产品质量的要求不断提高和产量的增长,越来越多的生产机械能实现自动调速。从20世纪60年代以来,现代工业电力拖动系统达到了全新的发展阶段。这种发展是以采用电力电子技术为基础的,在世界各国的工业部门中,直流电力拖动至今仍广泛的应用着。直流拖动的突出优点在于:容易控制,能在很宽的范围内平滑而精确的调速,以及快速响应等。在一定时期以内,直流拖动仍将具有强大的生命力。

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

双闭环可逆直流脉宽PWM调速系统

一、摘要: 直流电机由于具有速度控制容易,启、制动性能良好,且在宽范围内平滑调速等特点而在冶金、机械制造、轻工业等工业部门中得到广泛应用。直流时机转速的控制方法可以分为两类,即励磁控制法与电枢电压控制法。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单等特点,一直在传动领域占有统治地位。 本文对双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调整系统原理出发,逐步建立了闭环直流PWM调整系统的模型。 二、双闭环可逆直流脉宽PWM调速系统设计 1.设计分析 双闭环调整系统的传动系统结构图: 直流PWM控制系统是直流脉宽调制式调速控制系统的简称,与晶闸管直流调速系统的区别在于用直流PWM变换器取代了晶闸管变流装置,作为系统的功率驱动器,系统构成原理图如下所示: 直流PWM传动系统结构图 其中属于脉宽调制调速系统主要由调制波发生器GM、脉宽调制器UPM、逻辑延时环节DLD 和电力晶体管基极的驱动器GD和脉宽调制(PWM)变换器组成。最关键的部件为脉宽调制器。模拟式脉宽调制器本质为电压-脉冲变换装置,它是由一个运算放大器和几个输入信号构成电压比较器。去处放大器工作在开环状态,在电流调节器的输出控制信号Uс的控制下,产生一个等幅、宽度受Uс控制的方波脉冲序列,为PWM变频器提供所需的脉冲信号。脉宽调制器按所加输入端调制信号不同,可分为锯齿波脉宽、三角波脉宽调制器。目前就用较多脉宽调制信号由数字方法来产生,如专用集成PWM控制电路及单片微机所构成的脉宽调制器。

双闭环调速系统的结构图 直流双闭环调速系统的结构图如图1所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM 装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。 双闭环调速系统的结构图 调速系统起动过程的电流和转速波形 如图2所示,这时,启动电流成方波形,而转速是线性增长的。这是在最大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。 (a)带电流截止负反馈的单闭环调速系统起动过程 (b)理想快速起动过程 图2 调速系统起动过程的电流和转速波形 H 桥式可逆PWM 变换器的工作原理: PWM 控制的示意图如图3所示:可控开关S 以一定的时间间隔重复地接通和断开,当S 接通时,供电电源Us 通过开关S 施加到电动机两端,电源向电机提供能量,电动机储能:当开关S 断开时,中断了供电电源Us 向电动机电流继续流通。 I dL n t I d O I dm I dL n t I d O I dm I dcr n n (a) (b)

配合控制的有环流可逆调速系统的工作原理设计报告

自动控制系统课程 设计报告 课程名称:自动控制系统课程设计 设计题目:配合控制的有环流可逆调速系统设计

课程设计(论文)任务书

一、配合控制的有环流可逆调速系统概述及工作原理 (4) 1) 系统概述 (4) 2) 双闭环直流调速系统概述 (4) 3) V-M调速系统工作原理分析: (6) 二、主回路的设计 (8) 1) 主回路元器件参数计算及型号选择 (8) 2) 主电路保护元件的参数计算及选型。 (11) 3) 抑制环流电抗器参数的计算 (14) 4) 晶闸管脉冲触发电路设计: (16) 5) 电机励磁回路设计: (18) 6) 转速检测及反馈环节 (18) 三、控制回路的设计 (19) 1) 电流调节器ACR 的设计 (19) 2) 转速调节器的设计 (22) 3) 控制器输出限幅环节 (26) 4) 反相器设计 (26) 5) 电流反馈环节 (26) 四、直流稳压供电电源的设计 (27) 6) 工作原理 (27) 五、操作及系统故障保护回路的设计 (28) 六、参考文献 (29)

配合控制的有环流可逆调速系统概述及工作原理 1) 系统概述 有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。较大功率的可逆直流调速系统多采用晶闸管-电动机系统。由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路。 采用两组晶闸管反并联的可逆V-M 系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流。配合控制消除平均直流环流的原则是正组整流装置处于整流状态,即为正时,强迫使反组工作在逆变状态,即为负,且幅值与相等,使逆变电压把整流电压顶住,则直流平均环流为零。 图1-1 V-M 可逆调查速系统 2) 双闭环直流调速系统概述 1. 单闭环调速系统存在的问题 图1-2 单闭环直流调速系统稳态结构框图(dcr d I I ) 1) 用一个调节器综合多种信号,各参数间相互影响, 2) 环的任何扰动,只有等到转速出现偏差才能进行调节,因而转速动态降落大。 3) 电流截止负反馈环节限制起动电流,不能充分利用电动机的过载能力获得最快的动态响

H桥可逆直流调速系统设计与实验

CDIO课程项目研究报告 项目名称:H桥可逆直流调速系统设计与实验 姓名; 指导老师: 日期:

摘要 本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。所以双闭环直流调速是性能很好、应用最广的直流调速系统。本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。 关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流无静差调速系统,其稳态性能指标实现要求如下:电流超调量S≤5%调速范围 D=20;其动态性能指标:转速超调量δn=10%;调整时间时间ts=2s;电流超调量δi≤5% 。

逻辑无环流V-M可逆直流调速系统

逻辑无环流V-M可逆直流调速系统设计 摘要 两组晶闸管装置反并联的电枢可逆线路是可逆调速系统的典型线路之一,这种线路有能实现可逆运行、回馈制动等优点,但也会产生环流。为保证系统安全,必须消除其中的环流。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。本文对逻辑无环流直流可逆调速系统进行了设计,并且计算了电流和转速调节器的参数。 本文介绍了逻辑无环流可逆直流调速系统的基本原理及其构成,并对其控制电路进行了计算和设计。运用了一种基于Matlab的Simulink进行仿真并对仿真结果进行分析。 关键词: 直流电机;环流;逻辑无环流可逆调速;Matlab仿真

目录 摘要................................................................... (1) 第一章设计任务及要求 (4) 1.1设计任务 (4) 1.2设计要求 (5) 第二章逻辑无环流V-M可逆直流调速系统结构及原理 2.1逻辑无环流调速系统简介 (5) 2.2逻辑无环流调速系统的结构与原理 (6) 第三章系统主电路设计 (7) 3.1主电路原理及说明 (7) 3.2主回路参数设计 (7) 3.2.1整流变压器的选择 3.2.2晶闸管参数的计算 3.3保护电路设计 (9) 3.3.1过电压保护 3.3.2过点流保护 3.4触发回路设计 (13) 3.5励磁回路设计 (15) 第四章调节器的设计 (15) 4.1电流调节器的设计 (15) 4.2速度调节器的设计 (17) 第五章控制回路的设计 (19) 5.1逻辑控制器的组成 (19) 5.2逻辑控制器的设计 (19) 5.2.1零电平检测 5.2.2转矩极性检测 5.2.3逻辑判断的电路 5.2.4延时电路 5.2.5连锁与保护 5.3反相器 (23)

不可逆单闭环直流调速系统静特性的研究

实验三不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图1-7。 四.实验设备及仪表 1.教学实验台主控制屏。 2.NMCL—31A组件 3.NMCL—33组件 4.NMEL—03组件 5.NMCL—18组件 6.电机导轨及测速发电机(或光电编码器)、直流发电机M01 7.直流电动机M03 8.双踪示波器 9.万用表 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

4.三相主电源连线时需注意,不可换错相序。 5.系统开环连接时,不允许突加给定信号U g起动电机。 6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的 调试(主电路未通电) (a)用示波器观察 NMCL—33的双脉冲观 察孔,应有双脉冲,且间 隔均匀,幅值相同;观察 每个晶闸管的控制极、阴 极电压波形,应有幅值为 1V~2V的双脉冲。 (b)触发电路输出 脉冲应在30°~90°范围 内可调。可通过对偏移电 压调节单位器及ASR输 出电压的调整实现。例 如:使ASR输出为0V, 调节偏移电压,实现 α=90°;再保持偏移电压 不变,调节ASR的限幅 电位器RP1,使α=30°。 2.求取调速系统在 无转速负反馈时的开环 工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且U g调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d,输出电流i d以及被测

逻辑无环流可逆直流调速系统课程设计

CHENGNAN COLLEGE OF CUST 课程设计(论文)题目:逻辑无环流可逆直流调速系统设计 学生姓名:吴艳兰 学号:201197250104 班级: 1101班 专业:D自动化(工业自动化) 指导教师:李益华吴军 2014年7月

逻辑无环流可逆直流调速系统设计 学生姓名:吴艳兰 学号:201197250104 班级:1101班 所在院(系): 电气与信息工程系 指导教师:李益华吴军 完成日期: 2014年7月11日

逻辑无环流可逆直流调速系统设计 摘要 直流电动机具有良好的起制动性能,易于广泛范围内平滑调速,在需要高性能可控电力拖动的领域中得到广泛的应用。直流拖动控制系统在理论上和实践上都比较成熟,而且从反馈闭环控制角度来看,它又是交流拖动控制系统的基础,所以首先应该掌握好直流系统。 在许多生产机械中,常要求电动机既能正反转,又能快速制动,需要四象限运行的特性,此时必须采用可调速系统。本文着重介绍“逻辑无环流可逆直流调速系统”。逻辑无环流可逆直流调速系统省去了环流电抗器,没有了附加的环流损耗,节省变压器和晶闸管装置的附加设备容量。和有环流系统相比,因换流失败造成的事故率大为降低。 关键词:无环流;可逆直流调速系统;逻辑控制器

目录 1 绪论 (4) 1.1设计的目的和意义 (4) 1.2设计要求 (4) 2 系统结构方案的选择 (5) 3 主回路的选择 (6) 3.1 主电路形式的选择与论证 (6) 3.2 交流电源的选择(单相或三相) (7) 3.3 晶闸管元件的计算与选择 (7) 3.4 晶闸管保护措施的电路设计与计算 (7) 3.5 平波电抗器的计算与选择 (8) 3.6 测速机的选择与可变电位器的选择与计算 (10) 3.7 电机励磁回路设计 (10) 4 触发器的设计和同步相位的配合 (11) 4.1 触发电路的设计与选择 (11) 4.2 同步相位的配合 (12) 5 辅助电路设计 (13) 5.1 高精度给定电源的设计 (13) 5.2 其他辅助电路设计 (13) 5.2.1 转矩极性鉴别(DPT) (13) 5.2.2 零电平检测(DPZ) (14) 5.2.3 逻辑控制(DLC) (14) 5.2.4 电流反馈与过流保护(FBC+FA) (16) 5.2.5 转速变换(FBS) (17) 5.2.6 反号器(AR) (17) 6 电流环设计 (19) 6.1 调节器参数计算 (19)

双闭环可逆直流脉宽调速系统实验详细资料

双闭环可逆直流脉宽调速系统 一.实验目的 1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。 2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。 3.熟悉H型PWM变换器的各种控制方式的原理与特点。 4.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数的整定。 二.实验内容 1.PWM控制器SG3525性能测试。 2.控制单元调试。 3.系统开环调试。 4.系统闭环调试 5.系统稳态、动态特性测试。 6.H型PWM变换器不同控制方式时的性能测试。 三.实验系统的组成和工作原理 图1—1 双闭环脉宽调速系统的原理图 在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。 双闭环脉宽调速系统的原理框图如图6—10所示。图中可逆PWM变换器主电路系采用IGBT所构成的H型结构形式,UPW为脉宽调制器,DLD为逻辑延时环节, FA为瞬时动作的过流保护。 脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。由于它简单、可靠及使用方便

灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。 四.实验设备及仪器 1.NMCL系列教学实验台主控制屏。 2.NMCL—18组件 3.NMCL—31A组件 4.NMCL-22挂箱 6.M MEL—13组件。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.系统开环连接时,不允许突加给定信号U g起动电机。 5.起动电机时,需把MMEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 8.实验时需要特别注意起动限流电路的继电器有否吸合,如该继电器未吸合,进行过流保护电路调试或进行加负载试验时,就会烧坏起动限流电阻。 9.系统整定要求满足超调量小于5%,调节时间小于3秒。 六.实验方法 1.SG3525及控制电路性能测试 (1)调节UPW单元的RP电位器使输出波形的占空比为二分之一,UPW的2端与DLD 单元的1相连,按下S1开关,检查G1E1,,G2E2,G3E3,G4E2之间的波形是否正常2.开环系统调试 按图5-19接线。断开主电源,将三相调压器的U、V、W接主电路的相应处,,将主电路的1、3端相连, 6、7端接入直流电动机M03的电枢及700mH的电感,电枢回路要串入NMCL—31A 上的指针式电流表。电机加上励磁。 22挂箱的地与G(给定)的地相连,G(给定)的输出接到UPW的3端。

逻辑无环流可逆调速系统汇总

目录 1逻辑无环流可逆直流调速系统简介 ..................................................................................... 1 2逻辑无环流直流调速系统参数和缓解特性的测定 . (3) 2.1电枢回路电阻R 的测定 ............................................................................................. 3 2.2主电路电磁时间常数的测定 ...................................................................................... 4 2.3电动机电势常数e C 和转矩常数M C 的测定 ............................................................... 6 2.4系统机电时间常数Tm 的测定 ................................................................................... 6 2.5测速发电机特性)(n f U TG 的测定 .......................................................................... 7 3驱动电路的设计 (9) 3.1电流调节器的设计 (9) 3.1.1电流调节器的原理图 ....................................................................................... 9 3.1.2电流调节器的参数计算 ................................................................................. 10 3.2速度调节器的设计 . (11) 3.2.1速度调节器的原理图 ..................................................................................... 11 3.2.2速度调节器的参数计算 ................................................................................. 12 3.3触发电路的设计 .. (14) 3.3.1系统对触发器的要求 ..................................................................................... 14 3.3.2 触发电路及其特点 ........................................................................................ 14 3.3.3KJ004的工作原理 . (15) 4无环流逻辑控制器DLC 设计 ............................................................................................. 18 5系统主电路设计 . (19) 5.1主电路原理及说明 .................................................................................................... 19 5.2保护电路的设计 ........................................................................................................ 19 总结 .......................................................................................................................................... 21 参考文献 .................................................................................................................................. 22 附录 (23)

H桥可逆直流调速系统设计论文

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 小组成员: 指导教师:王立乔 日期: 2015年6月24日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (5) 1.1 转速、电流双闭环调速系统的组成 (6) 1.2.稳态结构图和静特 (7) 1.2.1各变量的稳态工作点和稳态参数计算 (8) 1.3双闭环脉宽调速系统的动态性能 (9) 1.3.1动态数学模型 (10) 1.3.2起动过程分析 (11) 1.3.3 动态性能和两个调节器的作用 (12) 第二章 H桥可逆直流调速电源及保护系统设计 (13) 第三章调节器的选型及参数设计 (15) 3.1电流环的设计 (16) 3.2转速环的设计 (17) 第四章Matlab/Simulink仿真 (19) 第五章实物制作 (22) 第六章性能测试 (24) 6.1 SG3525性能测试 (25) 6.2 开环系统调试 (26) 总结 (28) 参考文献 (28)

前言 在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能。而直流调速系统调速范围广、静差率小、稳定性好,过载能力大,能承受频繁的冲击负载,可实现频繁的无极快速起制动和反转等良好的动态性能,能满足生产过程自动化系统中各种不同的特殊运行要求。在高性能的拖动技术领域中,相当长时期内基本几乎都采用直流电力拖动系统。开环直流调速由于自身的缺点几乎不能满足生产过程的要求,在应用广泛的双闭环直流调速系统中,传统的PID控制已经得到比较成熟的应用,但是受电动机负载等非线性因素的影响,传统的控制策略在实际应用中难以保持设计是的性能。由于模拟控制技术的日渐成熟,又由于模糊控制不依赖于被控对象的精确数字模型,能够克服非线性因素的影响,对调节对象参数变化具有较强的鲁棒性,所以将模糊控制与传统的PID控制结合可以起到满意的控制效果,在此基础上提出自调整因子[图片]模糊控制器,根据控制的误差值,通过适当的调节规则来调整一些控制参数值,从而用于高精度直流调速系统中,具有响应快、超速小,对系统参数及结构变化适应性强的优点。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%的无静差调速系统。 项目分工:

实验1:不可逆单闭环直流调速系统静特性的研究(B5参考格式)

《运动控制系统》实验报告 姓名: 专业班级: 学号: 同组人: 实验一 不可逆单闭环直流调速系统静特性的研究 一、实验目的 1、了解转速单闭环直流调速系统的组成。 2、加深理解转速负反馈在系统中的作用。 3、研究直流调速系统中速度调节器ASR 的工作原理及其对系统静特性的影响。 4、测定晶闸管--电动机调速系统的机械特性和转速单闭环调速系统的静特性。 二、实验系统组成及工作原理 采用闭环调速系统,可以提高系统的动静态性能指标。转速单闭环直流调速系统是常用的一种形式。图1-1所示是不可逆转速单闭环直流调速系统的实验原理图。 图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V 供电,通过与电动机同轴刚性联接的测速发电机TG 检测电动机的转速,并经转速反馈环节FBS 分压后取出合适的转速反馈信号U n ,此电压与转速给定信号U n *经速度调节器ASR 综合调节,ASR 的输出作为移相触发器GT 的控制电压U ct ,由此组成转速单闭环直流调速系统。 在本系统中ASR 采用比例—积分调节器,属于无静差调速系统。 图中DZS 为零速封锁器,当转速给定电压U n *和转速反馈电压U n 均为零时,DZS 的输出信号使转速调节器ASR 锁零,以防止调节器零漂而使电动机产生爬行。 RP 给定 图1-1 不可逆转速单闭环直流调速系统

三、实验注意事项 1. 直流电动机M03参数为:P N =185W ,U N =220V ,I N =1.1A ,n =1500r/min 。 2. 直流电动机工作前,必须先加上直流激励。 3. 系统开环以及单闭环起动时,必须空载,且不允许突加给定信号U g 起动电机,每次起动时必须慢慢增加给定,以免产生过大的冲击电流,更不允许通过突合主回路电源开关SW 起动电机。 4. 测定系统开环机械特性和闭环静特性时,须注意电枢电流不能超过电机额定值1A 。 5. 单闭环连接时,一定要注意给定和反馈电压极性。 四、实验内容 1、晶闸管--电动机系统开环机械特性及控制特性的测定 (1)连接晶闸管—电动机系统为开环控制,不必使用转速调节器ASR ,可将给定电压U g (开环时给定电压称为U g ,闭环后给定电压称为U n *)直接接到触发单元GT 的输入端(U ct ),电动机和测功机分别加额定励磁。 (2)测定开环系统控制特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,在0~1500r/min 之间记录几组 (3)测定开环机械特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,然后合上负载开关SL ,改变负载变阻器R g 的阻值,使主回路电流达到额定电流I N ,此时即为额定工作点(n =n N =1500r/min ,I d =I N =1A )。然后减小负载变阻器R g 阻值,使主回路负载从额定负载减少至空载,记录几组转速 n 和负载转矩T 的数据,并在图1-3所示坐标系中画出开环机械特性曲线。 U g e 图1-2 开环控制特性曲线 图1-3 开环机械特性曲线

逻辑无环流可逆直流调速系统的文献综述

摘要 摘要:本文主要论述了逻辑无环流可逆直流调速系统的基本原和构成,并对其控制电路进行计算和设计,运用MATLAB仿真对电气结构原理图进行仿真并对仿真结果进行动静态性能分析,采用优化设计方法改善系统性能,实现了转速电流双闭环逻辑无环流可逆直流调速系统的建模和仿真。 关键词:逻辑无环流;可逆直流;MATLAB仿真 引言 随着电力传动装置在现代化工业生产中的广泛应用,以及对其生产工艺、产品质量要求的不断提高,需要越来越多的生产机械能够实现正反向可逆运行。有环流可逆系统虽然具有反向快、过渡平滑等优点,但还必须设置几个环流电抗器,因此当工艺过程对系统正反转的平滑过渡特性要求不是很高时,特别是对于大容量的系统,常采用既没有直流平均环流又没有瞬时脉动环流的逻辑无环流控制可逆系统,当一组晶闸管工作时,用逻辑电路或逻辑算法去封锁另一组晶闸管的触发脉冲,使它完全处于阻断状态,以确保两组晶闸管不同时工作,从根本上切断环流的通路,这就是逻辑控制的无环流可逆系统。本文介绍了逻辑无环流可逆直流调速系统的发展历史、工作原理,系统主电路、控制电路、触发电路和保护电路。根据系统的动、静态性能指标采用工程设计方法设计转速、电流调节器参数,并运用Matlab的Simulink工具箱和电力系统工具箱,实现逻辑无环流可逆直流调速系统的建模与仿真。 1逻辑无环流可逆直流的发展历史直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、它励和自励三类,其中自励又分为并励、串励和复励三种 1840~1955年为探索实验时期: 从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。自从Wheatsone提出和试制了直线电机以后,最早明确地提到直线电机文章的是1890年美国匹兹堡市的市长,在他所写的一篇文章中,首先明确地提到了直线电机以及它的专利。然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的顽强努力后,最终却未能获得成功。 至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨道上,另一种建议是将初级放在车辆底部。这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。1917年出现了第一台圆筒形直线电动机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作为导弹发射装置,但其发展并没有超出模型阶段。 至此,从1930~1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。 从1940~1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用工作。1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW

相关文档
最新文档